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Protocol for a Two-Layered Group
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A group including a larger number of processes implies larger computation and communication overheads
to manipulate and transmit messages. In this paper, we discuss a group which is composed of subgroups of
processes to reduce the overheads. Each subgroup has a gateway process which communicates with the other
gateway processes. We propose a protocol to causally deliver messages to processes in a group by using a
vector of message sequence numbers whose size is the number of subgroups, smaller than number of processes.
We evaluate the protocol.
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1 Introduction

A group of multiple processes is cooperating to
achieve some objectives in distributed applications
like teleconferences. In these applications, huge
number of processes are cooperating, which are dis-
tributed in not only local area but also wide area. A
large-scale group is a group which includes hundreds
of processes. Each communication channel between
processes may not supports same Quality of Service
(QoS). A wide-area group is a group where processes
are distributed in wide-area networks like the Inter-
net. Tachikawa and Takizawa [9,10] discuss protocols
for wide-area groups which adopt fully distributed
control and destination retransmission.

A group communication protocol supports a group
of n (> 1) processes with causally/totally ordered
delivery of messages [1,6]. In order to support the
.ordered delivery of messages, a wector clock (1, 6]
including n elements is used assuming that under-
lying networks are reliable. Here, a header length
of messages is O(n) for number n of processes in
the group. O(n?) computation and communication
overheads are implied. Even if a group of tens pro-
cesses can be realized by traditional group protocols,
it is difficult, maybe impossible to support a group of
hundreds of processes due to large computation and
communication overheads. In order to reduce the
overheads, hierarchical groups are discussed {3, 11].

Papers [2,3] discuss how to multicast messages in tree
routings but do not discuss ordered delivery of mes-
sages. Takamura and Takizawa [11] discuss how to
support the causally ordered delivery in a hierarchi-
cal group by using the vector clock but the the vector
size is the total number of processes. In this paper,
a group is composed of subgroups each of which in-
cludes processes in a local area. Subgroups are inter-
connected by the Internet. We discuss a two-layered
group (TG) protocol for a large-scale and wide-area
group of processes. Messages are ordered by using a
type of vector clock whose size is the number of sub-
groups, smaller than the total number of processes.
Furthermore, we assume underlying networks are less
reliable, i.e. message may be lost and delivered out
of order. The TG protocol supports the causally or-
dered delivery of messages while detecting and recov-
ering from message loss.

In section 2, we present a system model. In sec-
tion 3, we discuss the causally ordered delivery in a
two-layered group. In section 4, we discuss the TG
protocol. In section 5, we evaluate the TG protocol
in terms of delay time.

2 System Model
2.1 Groups

A group of multiple processes is cooperating in or-
der to achieve some objectives in a distributed sys-



tem. In the one-to-one communication and multicast
communication [2], each message is reliably delivered
to one or more than one process. On the other hand,
multiple processes first establish a group in the group
communication. Then, a process sends a message
to multiple processes while receiving messages from
multiple processes in the group. Here, a message m;
causally precedes another message my (m; — mg) iff
a sending event of m; happens before (5] a sending
event of my [1]. A process is required to deliver a
message m, before my if m; — ma.

Due to the computation and communication over-
heads O(n?) for number n of processes in a group, it
is difficult to support a larger group with the group
communication service. In order to reduce the over-
heads, a group G is composed of disjointed subgroups
Gi, ..., Gi. Each subgroup G, is composed of pro-
cesses and a gateway process p;o. If a process p; in a
subgroup G; sends a message m to destination pro-
cesses in another subgroup G; (j # i), pi first sends
m to a gateway process p;o in G;. Then, p; for-
wards m to a gateway process pjp of the destination
subgroup G,. The gateway process pjo delivers m to
the destination processes in G;. Such a group as G
is referred to as two-layered |Figure 1]. A group is
Aat iff every pair of processes in the group directly
exchange messages. For example, processes in a sub-
group are interconnected in a local area network, A
pair of gateway processes are interconnected in the
Internet.

It is significant to discuss which process coordi-
nates communication among processes in a group.
In a centralized way (3,4}, there is one controller in
a group. Every process first sends a message to the
controller and then the controller delivers the mes-
sage to all the destination processes in the group.
The delivery order of messages is decided by the con-
troller. Thus, the messages easily can be totally or-
dered. In a distributed way, there is no centralized
controller. Every process directly sends messages to
the destination processes and directly receives mes-
sages [rom processes in a group. Each process makes
a decision on delivery order and atomic receipt of
messages by itself, e.g. by using the vector clock [6].
ISIS [1] takes a decentralized way where every des-
tination process sends a receipt confirmation to the
sender of a message in a reliable underlying network.
Takizawa et al. {7,8,10] take a fully distributed ap-

Figure 1: Two-layered group.

proach where every destination process sends a re-
ceipt confirmation to not only the sender but also all
the other destinations in less-reliable networks.

2.2 Confirmation vector

For a group G of n (> 1) processes p1,...,Pn. a
vector V is in a form (Vi,...,V,) [6]. Every process
p; has a vector V = (V, ..., V,) where each element
V; is initially 0 (j = 1,...,n). Each time a pro-
cess p; sends a message m, V; is incremented by one.
Then, the message m carries the vector V (m.V)
of the sender process p,. On receipt of a message
m from another process, Vi := max(Vi,m.Vz) (k =
1,...,n, k # i) in a process. Here, for a pair of
vectors A = (A;,...,A,) and B = (By,..., By},
AL BIifA; < B; (j=1,...,n). A message my
causally precedes another message m, (m; — m») iff
mp.V < me.V. m, is causally concurrent with mo
(m || me) iff neither my; — mgy nor mg — my.

The confirmation vector RSQ of message sequence
numbers is used to detect message loss in proto-
cols [7,8]. A sequence number seq is incremented
by one in a process p; each time p; sends a message.
The process p; has a variable rsq; which shows a
sequence number seq of message which p, expects
to receive next from a process p; (j = 1,...,n).
Each message m carries the confirmation m.RSQ(=
(m.rsq1,...,m.7sq¢,)). On receipt of a message m
from a process p,, a process p; accepts m if rsq; =
m.seq and then rsq; := rsq; + 1. The confirmations
m.rsq, ..., M.rsq, are stored in a matrix ACK as
ACK;, = muosqe(k = 1,...,n). A message m re-
ceived from a process p; is pre-acknowledged in a pro-
cess p; if m.seq < min(ACK,;,...,ACKy,), ie. p;
knows that every other process has accepted m. If ev-
ery message is destined to all the processes, m; — m,
iff m1.RSQ < m2.RSQ [8].

A process p, can deliver a pre-acknowledged mes-
sage m if every message causally preceding m is
delivered and p; receives from every process a
pre-acknowledged message causally preceded by m.
Here, the message m is acknowledged in a process
pi- The process p; is sure that the message m is
pre-acknowledged in every process, i.e. every pro-
cess knows that every other process accepts m.

On receipt of a message m from a process pj, if
rsq; < m.seq, the process p; finds a message gap, i.e.
p; loses a message m’ from p; where rsg; < m’.seq <
m.seq. Next, suppose a process p sends a message
my to a pair of processes p; and p; but p; fails to
receive m;. After receiving mi, p; sends a message
mg to p; where mo.rsqir = my.seq + 1. The process
pi receives mo where rsq, < ms.rsq, and finds that
p: has not received m; from pr. Thus, p; finds loss
of a message m from another process py on receipt
of a message m' from p; if rsqx < m.seq < m’.rsqy

(k # 4).
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Figure 2: Two-layered group (TG).

3 Causally Ordered Delivery in Two-
layered Group :

A two-layered group (TG} G is composed of multi-
ple subgroups G, ..., Gk (k > 1). Each subgroup G;
includes processes p;y, - .., pit, ({; > 1) and one gate-
way process p;o. Processes and messages transmitted
in a subgroup are referred to as local. A main sub-
group is composed of gateway processes pio, - - -, Pk
where global messages are exchanged. If a local mes-
sage m is destined to a process in another subgroup,
m is an outgoing local message. An outgoing lo-
cal message m sent in a subgroup G; is changed
to a global message M. Then, the global message
M is transmitted in a main subgroup and then is
changed to a local massage m; in a destination sub-
group G;. Here, m and m; are source and destina-
tion local messages of a global message M, si(M)
and dl;{M), respectively. A capital character like
M shows a global message for a local message m.
Let dl;(m) denote a destination local message of a
source local message m in G;. Let sl(m) be a source
local message of a destination local message m. Let
g(m) denote a global message of a local message m.
A notation “M; —g M;” shows that a global mes-
sage M) causally precedes M, in a main subgroup
of G, i.e. among the gateway processes. A nota-
tion “m; —; my” indicates that a local message m;
causally precedes ms in G;.

[Definition] A local message m| causally precedes

another local message my (m; — mp) iff si(m;) —;

sl(my), dli{m1) —; sl(mg), or m; — mz — my for

some local message m3z. O

[Theorem 1] g(m;) —¢ g(m2) if my — mg. O
Suppose a group G includes a pair of subgroups

G; and G; whose gateway processes are p;p and pjo,

respectively. A process p;s in G; sends a local mes-
sage m; to p; in G;. The process pj; sends a local
message mo before receiving a destination local mes-
sage m|(= dlj(m;)) and a local message m3z after
receiving m} as shown in Figure 2. Since pjo sends
M, to pio after receiving My, M; —¢ M;. How-
ever, my || ma. “My —g MR" if “my; — mg” from
Theorem 1. However, “m; — mo” does not neces-
sarily hold even if M; —¢ M;. We have to discuss a
mechanism for not ordering a pair of global messages
Mi(= g(m;)) and My(= g(m2)) unless “m; — my”

holds.

4 TG Protocol

We discuss a broadcast two-layered group (B-TG) G
where processes send messages to all the processes.
We assume that networks are less reliable, i.e. mes-
sages may be lost due to communication fault like
congestion and unexpected delay. We discuss a basic
data transmission procedure to causally order mes-
sages in a two-layered group (TG) G. Each local
message m includes following fields:

m.seq = local sequence number.

m.sg = source subgroup G,.

M.Sp = Source process in m.sg.

m.rsq = vector (rsqg, rsqu, ..., 18q,)-
m.RSQ = vector [RSQy, ..., RSQ4].
m.data = data.

Each global message M includes following fields:

M.GSQ@ = global sequence number.
M.SG = sender subgroup.

M.SP = source process in M.SG.
M.RSQ = vector [RSQy, ..., RSQk)-
M.DATA = data.

Each local process p;; in G; has following variables:
seq = local sequence number.
r8q = (rsqo, TSq1, - .., TSqI,).
RSQ = [RSQ,, ..., RSQ;].
ack = I; x [; matrix.
Each gateway process p;g has following variables:
GSQ = global sequence number.
ACK = k X k matrix.
GSQ, seq, and each element in vectors RSQ and
rsq are initially 1-in every process.
First, a local process p;s in G; sends a source local
message m as follows:
m.sp = pis. ™m.sg:= G
m.seq = seq. seq:=seq+ 1. m.rsq; := seq.
m.rsqy :=7sq, (u=0,1,.... l;, us#s).
RS5Q; := RSQ,+1. m.RSQ := RSQ.
Then, the gateway process p;o receives the outgoing
local message m from p;s in G;. Here, variables are
manipulated in p;p as follows:
T8qs :=718qs + 1.
ackgy :=m.rsgy (u=0,1,..., ).
Then, pj sends all the gateway processes a global
message M (= g(m)) which is created from m as fol-
lows:
M.SG :=m.sg. M.SP :=m.sp.
M.GSQ :=GSQ. GSQ:=GSQ+ 1.
M.RSQp :=m.RSQn (h=1,.... k, h#1).
M.RSQ; == GSQ. M.DATA := m.data.
Next, a gateway process p;p in a subgroup G re-
ceives a global message M from ;. Here, variables
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Figure 3: Communication among subgroups G; and Gs.

are manipulated in the gateway process pjo as fol-
lows:
RSQ; := RSQ; + 1.
ACK;, = M.RSQy (h=1, ..., k).
pjo sends all the processes in G a destination local
message m;(= dl{M)) created from M as follows:
mj.sp = M.SP. mj.sg:= M.5G.
m;.s5eq 1= seq. seq:= seq+l. m;.rsqy = seq.
m,.rsq, =1sqy (u=1,...,1;).
m;.RSQ := M.RSQ. mj.data := M.DATA.
A local process pj¢ receives m; from pjo:
8o = r5qo + 1.
ackoy :=mj.rsqy (u=0,1,..., 1)
RSQr = max(RSQn, m;.RSQy) (b =
1, ..., k).

If pi; receives a local message m from p;s in a same
subgroup G, variables are manipulated in p;; as fol-
lows:

78qs 1= T15qs + 1.

ackgy, == m.rsq, (u=0,1,..., ).

RSQn := max(RSQp, m.RSQr) (h =

1, ..., k).
[Ordering rule 1] A local message m, precedes an-
other local message ms in a subgroup G; (m; =i m2)
if m1.r8q < ma.rsq and my; . RSQ < m2.RSQ. O
[Theorem 2] If a local message m; causally precedes
another local message mo (m; — ms), my precedes

mg in a subgroup G; (m1 =>; mg) by the ordering
rule 1. O

Global messages are causally ordered in a gateway
process according to a following ordering rule:
[Ordering rule 2] A global message M) precedes
another global message M; in a main subgroup
(M =¢ M) if M,.RSQ < M;.RSQ. O
[Theorem 3] If a global message M, causally pre-
cedes another global message M, in a main subgroup
(M), —¢ M), M, =g Ms by the ordering rule 2. O

Even if a global message M; causally precedes
another global message M in a main subgroup
(My —¢ M3), “my — my” does not necessarily hold
for local messages m; and mg of M; and M;, re-
spectively. Suppose a gateway process p;o receives
outgoing local messages m; and my from local pro-
cesses p;; and p;2 in a subgroup Gj, respectively. The
gateway process pjp creates global messages M and
M, from m; and mq, respectively. p;o sends M, be-
fore M if my causally precedes my. Here, suppose
my and mq are causally concurrent (m [J; me2). In
the TG protocol, each time the gateway process pig
sends a global message M, M.RSQ; := GSQ and
GSQ = GSQ + 1. If pijp receives m; before maq,
M;.RSQ < M>.RSQ, i.e. M, precedes M;. Thus,
for a pair of local messages m; and ms sent in a same
subgroup, g(m; ) may precede g(ma) even if m; || ma.
[Theorem 4] If m, causally precedes mg (m; — ma)
and m,.sg # m2.sg, a global message g(m, ) precedes
another global message g(mg) by the ordering rules.

—84—
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[Example] Figure 3 shows a group G composed
of two subgroups G; and G, where p1p and pyg
be gateway processes. First, a process p1; in G,
sends a source local message « to all the processes
in G;. Here, a.seq = 1, arsq = (1,2, 1), and
a.RSQ = [2, 1]. The local message a is sent to the
gateway process pig. The gateway process pjo cre-
ates a global message A from a. Here, A.GSQ =1
and A.RS@ = [2, 1]. The gateway process pi1p sends
A with A.RSQ = [2, 1] to all the gateway processes
in the main subgroup.

RSQ in a gateway process pgo is changed to [2, 1].
p2o sends a destination local message a2 of A to all
the processes in the subgroup G;. On receipt of
the destination local message a2, RSQ is changed
to [2, 2] in a pair of local processes ps; and pa» of
Gs.

The local process ps; sends a source local message b
with b.seq = 1, b.rsg = (1, 2, 1), and b.RSQ = (1, 2]
before receiving the destination local message as.
The gateway process p2g sends a global message B
created from b after receiving A. According to the
traditional definition, A — B since pso sends B
after receiving A. However, since the local mes-
sage b is sent belore as is received by po1, a pair
of global messages A and B must be causally con-
current. A.RSQ = (2, 1] while B.RSQ = [1, 2].
a | b1. arsqg = (1,2,1) and a.RSQ = {2, 1] while
brsq = (2,2,1) and b.RSQ = [1, 2]. According to
the ordering rules, neither A and B nor a and b; are
ordered. From Theorem 4, a global message C' pre-
cedes D even if local messages ¢ and d are causally
concurrent in G2 because ¢ and d are sent in a same
subgroup. O

In each subgroup G;, the vectors of message se-
quence numbers are used to causally order messages
and detect message loss. First, a local process p;,
sends a message m in G; [Figure 4]. After receipt of
m, another local process sends a message with confir-

mation of m. A gateway process p;o forwards a global
message M (= g(m)) to other gateway processes. On
receipt of M, a gateway process pjo sends a local
message m;(= dl,(M)). On receipt of m;, every lo-
cal process p;; sends a message with confirmation of
m;. lIf m; is pre-acknowledged in p;o, pjo sends a
global message N with confirmation of M. If M is
pre-acknowledged in pxo, pro sends a local message
ng with confirmation of m. On receipt of the local
message ng, m is pre-acknowledged in every process
of Gg. In each local process, messages are ordered
according to the ordering rule 1 by the vectors rsq
and RSQ as discussed in the preceding section. If a
process loses a message m in a subgroup, one process
which accepts a message m forwards m to a process
which fails to receive m.

5 Evaluation
There are following parameters to evaluate the pro-
tocols:
n = number of processes in a group G.
k = number of subgroups.
[; = number of local processes in each subgroup
G;.
dr = delay time in a flat group.
dr = delay time in a two-layered group.

In the TG protocol, the size of RSQ is & (< n)
and the size of rsq is {; (< n) in a subgroup G;.
The overhead of each local process in a subgroup G;
is O((l; + k)l;). The overhead for communication
among gateway processes is O(k?) for number k of
subgroups. The overhead of a gateway process in a
subgroup G; is O((L; + k); + k2).

It takes three rounds to deliver messages in the two-
layered group while it takes one round in the flat
group. The delay time 7 in the two-layered group
is compared with dz in the flat group. In the evalua-
tion, the delay time means duration from time when
a process creates a message until time when all the
processes receive and process the message in a group.

In a flat group, we consider a pair of processes
which are run on a same processor |Figure 5]. In
a two-layered group (TG) composed of k& subgroups
Gy, - .., Gk, we consider four processes which are run

time to process a message.

Figure 5: Delay time in flat group.
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on a same processor [Figure6]. Here, we assume that
every subgroup includes same number { of local pro-
cesses and k = /n. The minimum overhead of a
gateway process is obtained for & = \/n.

Tirst, suppose a process sends a message to each
destination process. That is, a process sends n mes-
sages in a flat group. A local process sends { local
messages and a gateway process sends & global mes-
sages in a two-layered group. Figure 7 shows the de-
lay time for number n of processes in a group. The
two-layered group implies shorter delay time than
the flat group.

Next, suppose a process broadcasts a message in
each subgroup. That is, each local process delivers
each message to all the local processes including a
gateway by one transmission. Figure 8 shows the
delay time for number n of processes in a group. If
n > 900, the two-layered group implies shorter delay
time than the flat group.

6 Concluding Remarks

We discussed the two-layered group (T'G) protocol
for large-scale group of processes. In the TG pro-
tocol, each message carries a vector whose size is

g
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Figure 8: Delay time in broadcast network.

smaller than the total number n of processes. We
evaluated the TG protocol in terms of delay time
compared with traditional flat group. We showed
that the TG protocol implies shorter delay time than
the flat group.
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