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Abstract: Given an ambiguous or underspecified web search query, search result diversification aims at accomodat-
ing different user intents within a single “entry-point” result page. However, some intents are informational, for which
many relevant pages may help, while others are navigational, for which only one web page is required. We propose
new evaluation metrics for search result diversification that considers this distinction, as well as the condordance test
for comparing the intuitiveness of a given pair of metrics quantitatively. Our main experimental findings are: (a) In
terms of discriminative power which reflects statistical reliability, the proposed metrics, DIN�-nDCG and P+Q�, are
comparable to intent recall and D�-nDCG, and possibly superior to α-nDCG; (b) In terms of the concordance test
which quantifies the agreement of a diversity metric with a gold standard metric that represents a basic desirable prop-
erty, DIN�-nDCG is superior to other diversity metrics in its ability to reward both diversity and relevance at the same
time. Moreover, both D�-nDCG and DIN�-nDCG significantly outperform α-nDCG in their ability to reward diversity,
to reward relevance, and to reward both at the same time. In addition, we demonstrate that the randomised Tukey’s
Honestly Significant Differences test that takes the entire set of available runs into account is substantially more con-
servative than the paired bootstrap test that only considers one run pair at a time, and therefore recommend the former
approach for significance testing when a set of runs is available for evaluation.
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1. Introduction

Web search queries are often ambiguous (e.g., “office” can be a
workplace or a software) and/or underspecified (e.g., “harry pot-
ter” can be a book, a film or the main character) [9]. To accom-
modate such different user needs (or user intents) given a query,
research in search result diversification has received much atten-
tion recently (e.g., Refs. [1], [10], [14], [15], [27]). TREC (Text
Retrieval Conference)*1 began a diversity task in the Web track
in 2009 [6]*2, and NTCIR (NII Testbeds and Community for In-
formation access Research)*3 concluded its first INTENT task
for mining intents and selectively diversifying search results in
2011 [29]*4. These tasks evaluate plain, ranked lists of diversified
web pages, although other approaches such as dynamic presenta-
tion [2] may also be useful.

The main challenge in diversity evaluation is the balancing be-
tween diversity and relevance. That is, we want search engines to
cover as many intents as possible in the first Search Engine Re-
sult Page (SERP), but we also want as many relevant documents
as possible. Moreover, if we know that some intents for a given
query are more likely than others, we might want to allocate more
space within the SERP to the popular intents. Furthermore, we
probably want documents that are highly relevant to each intent
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rather than those that are partially relevant. We need “good” eval-
uation metrics that reflect these requirements, in order to achieve
the goal of providing a single “entry-point” SERP that is useful
to as many users as possible.

In light of the above considerations, Sakai and Song [23] con-
ducted an extensive study of different diversity metrics in terms
of discriminative power [17], [18] and “intuitiveness,” given the
premises that intent probabilities and per-intent graded relevance

assessments are available with the diversity test collection. Dis-
criminative power is the proportion of statistically significant dif-
ferences one can get out of a given experimental environment and
therefore a measure of how reliable a metric is. (Details will be
given in Section 4.1.) Whereas, Sakai and Song discussed intu-
itiveness by manually examining pairs of ranked lists, and showed
that a family of metrics called D�-measures [23] have several
advantages over α-nDCG [8] and Intent-Aware (IA) metrics [1].
More specifically, they highlighted the following limitations of
α-nDCG and IA metrics:
( 1 ) α-nDCG can handle neither intent probabilities nor per-
intent graded relevance (although intent probabilities were later
incorporated [7], [9]).
( 2 ) IA metrics can be clearly counterintuitive at times. They
also tend to reward non-diversified systems that focus on popular
intents [7], and have relatively low discriminative power.
( 3 ) α-nDCG and IA metrics are not guaranteed to lie fully be-
tween 0 and 1.

While the three problems mentioned above do not apply to D�-
measures, the manual analysis by Sakai and Song [23] suggested

c© 2013 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.21 No.1

that D�-nDCG, a member of the D�-measure family, may be less
intuitive than α-nDCG when the intents are navigational. Con-
versely, α-nDCG seemed less intuitive than D�-nDCG when the
intents are informational. The original definitions of navigational
and informational intents by Broder [3] are:
Navigational The immediate intent is to reach a particular site.
Informational The intent is to acquire some information as-

sumed to be present on one or more web pages.
Thus, according to these definitions, there is basically only one
web page that the user wants to see when the intent is naviga-
tional, while the user may be happy to see many relevant pages
(minus duplicate information) when the intent is informational.
α-nDCG works well for navigational intents precisely because
of its α, which discourages retrieval of multiple relevant docu-
ments for each intent. Whereas, D�-nDCG works well for in-
formational intents, precisely because nDCG (normalised Dis-

counted Cumulative Gain) [12] was designed to cumulate pieces
of information across multiple relevant documents. According
to a study by Jansen, Booth and Spink [11], over 80% of their
Dogpile metasearch queries were informational, and about 10%
were navigational, although multi-intent queries were outside the
scope of their study.

The objective of this paper is to explore ways to incorporate
the explicit knowledge of informational and navigational intents
into diversity evaluation, and to design diversity metrics that are
more intuitive than D�-measures and α-nDCG*5. We propose new
diversity evaluation metrics called DIN�-measures and P+Q�, as
well as the concordance test for comparing the intuitiveness of a
given pair of metrics quantitatively. Our main experimental find-
ings are:
(a) In terms of discriminative power [17], [18] which reflects

statistical reliability, the proposed metrics, DIN�-nDCG and
P+Q�, are comparable to intent recall and D�-nDCG, and pos-
sibly superior to α-nDCG;
(b) In terms of the concordance test (introduced in Section 4.2)

which quantifies the agreement of a diversity metric with a gold
standard metric that represents a basic desirable property, DIN�-
nDCG is superior to other diversity metrics in its ability to reward
both diversity and relevance at the same time. Moreover, both
D�-nDCG and DIN�-nDCG significantly outperform α-nDCG in
their ability to reward diversity, to reward relevance, and to re-
ward both at the same time.

In addition, we demonstrate that the randomised Tukey’s Hon-

estly Significant Differences test [4] that takes the entire set of
available runs into account is substantially more conservative
than the paired bootstrap test [17], [18] that only considers one
run pair at a time, and therefore recommend the former approach
for significance testing when a set of runs is available for evalua-
tion.

The remainder of this paper is organised as follows. Section 2
discusses previous work related to this study and defines existing
diversity metrics. Section 3 defines our proposed metrics, and
Section 4 describes how we evaluate diversity evaluation metrics
in terms of discriminative power and the concordance test. Sec-

*5 This paper is a revised version of an international conference paper pub-
lished in April 2012 [21].

tion 5 describes our experiments and reports on discriminative
power and concordance test results. Finally, Section 6 concludes
this paper.

2. Previous Work

This section summarises prior art related to this study. Sec-
tion 2.1 first defines some traditional graded-relevance IR met-
rics on top of which diversified IR metrics have been designed.
Section 2.2 defines these existing diversity metrics, namely, α-
nDCG, IA metrics and D�-measures. Section 2.3 summarises
previous findings from comparing different diversity metrics.

2.1 Traditional Metrics
We first define a popular version of nDCG. Let g(r) denote the

gain value at rank r in a system’s ranked list. Following a popular
practice, we let g(r) = 7 if the document at r is highly relevant

(L3), g(r) = 3 if it is relevant (L2), and g(r) = 1 if it is partially

relevant (L1). Otherwise g(r) = 0. The cumulative gain at rank r

is defined as cg(r) =
∑r

k=1 g(k). Also, let g∗(r) and cg∗(r) denote
the (cumulative) gain at rank r in an ideal ranked list, obtained by
listing up all relevant documents in descending order of relevance
levels. nDCG at document cutoff l can be defined as:

nDCG@l =

∑l
r=1 g(r)/ log(r + 1)

∑l
r=1 g

∗(r)/ log(r + 1)
. (1)

Let J(r) = 0 if a document at rank r is nonrelevant to the query
and J(r) = 1 otherwise. Let C(r) =

∑r
k=1 J(k). Then the blended

ratio at rank r, a graded-relevance version of precision, is defined
as:

BR(r) =
C(r) + βcg(r)

r + βcg∗(r)
(2)

where β (≥ 0) is a user persistence parameter which is set to 1
throughout this study. Then Q-measure [17], [18], [22] is defined
as:

Q-measure =
1
R

L∑

r=1

J(r)BR(r) (3)

where R is the total number of known relevant documents and L

is the size of the ranked list. Note that β = 0 reduces Q-measure
to the well-known Average Precision. Since we are interested
in evaluation with a small document cutoff to evaluate the first

SERP, we use a document-cutoff version of Q-measure, Q@l,
which replaces the R with min(l,R) and the L with l in Eq. (3)
to ensure that the maximum value achievable is 1.

As can be seen, both nDCG and Q are defined based on cu-

mulating gains discounted by ranks, and are inherently suitable
for informational queries where more relevant documents means
better user satisfaction. But there also exist metrics that are
more suitable for navigational queries, for which obtaining ex-
actly one (highly) relevant document is sufficient. ERR [5] and
P+ [16], [19] are examples of such metrics. ERR assumes that the
user is dissatisfied with documents from ranks 1 to r − 1 and is
finally satisfied with one at rank r, and that the satisfaction proba-
bilities are proportional to the gain values. Whereas, P+ assumes
that the user stops examining the ranked list at the preferred rank

(rp), which contains one of the most relevant documents within
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the ranked list and is closest to the top of the list. In this paper, as
we are interested in evaluation with a small document cutoff, we
define rp after truncating the ranked list at the cutoff*6.

Formally, P+ is defined as [16], [19]:

P+ =
1

C(rp)

rp∑

r=1

J(r)BR(r) (4)

if there is at least one relevant document in the (truncated) ranked
list, and P+ = 0 otherwise.

Sakai [16], [19] showed that metrics for navigational topics
(such as P+) generally have lower discriminative power than those
for informational topics (such as Q) as the former generally rely
on fewer data points, i.e., retrieved relevant documents that are
treated as relevant. Similarly, as was mentioned earlier, Sakai and
Song [23] reported somewhat negative results for ERR in terms of
discriminative power.

Q-measure, P+ and ERR can be seen as members of the Nor-

malised Cumulative Utility (NCU) metrics family [22]. An NCU
metric is defined as a combination of the user’s stopping probabil-
ity distribution across document ranks and a utility function given
a particular stopping rank. Q-measure’s probability distribution
is uniform across all relevant documents; that of P+ is uniform
across all relevant documents retrieved between ranks 1 and rp.
Both metrics measure the utility by means of the aforementioned
blended ratio. Whereas, both ERR and a rank-biased version of
NCU [22] use stopping probabilities that depend on the number
of relevant documents previously seen.

2.2 Diversity Metrics
α-nDCG is an extension of nDCG towards diversity evaluation.

It views both query intents and documents as sets of nuggets. The
main idea is to discount the gains according to “nuggets already
seen” before discounting by ranks. The strength of the novelty-
biased discount is controlled by α (which is set of 0.5 through-
out this paper as we use the official α-nDCG values from the
TREC 2009 Web track [6]). Formally, let Jn(r) = 1 if a doc-
ument at rank r is relevant to the n-th nugget and 0 otherwise;
let Cn(r) =

∑r
k=1 Jn(r), i.e., the number of documents observed

within top r that contained the n-th nugget. Then the novelty-

biased gain is defined as NG(r) =
∑m

n=1 Jn(r)(1 − α)Cn(r−1), where
m is the total number of nuggets for the query. α-nDCG is defined
by replacing the raw gain values in Eq. (1) with the novelty-biased
gains.

Unlike the IA metrics and the D(�)-measures discussed below,
the original α-nDCG [8] can handle neither intent likelihood nor
per-intent graded relevance. Leenanupab, Zuccon and Jose [13]
have proposed to adjust the value of α per topic, which may im-
prove the intuitiveness of α-nDCG. However, this approach does
not change the above two limitations.

Given the intent probabilities P(i|q) for intent i and query q,
where

∑
i Pr(i|q) = 1, as well as per-intent graded relevance as-

sessments, an IA version of a given metric M is given by

*6 Suppose that the cutoff l = 10, and the system output has an L1-relevant
document at rank 1, and two L2-relevant documents at ranks 5 and 10,
and one L3-relevant document at rank 20. Then, in our setting, rp = 5 as
we ignore the document at rank 20.

M-IA =
∑

i

Pr(i|q)Mi (5)

where Mi is the per-intent (or local) version of metric M. For
example, nDCG-IA is computed as follows: (1) Define an ideal
ranked list for each intent; (2) For each intent, compare the sys-
tem output with the local ideal list and compute the local nDCG
(nDCGi); (3) Finally, apply Eq. (5).
α-nDCG and IA metrics are not guaranteed to range between

0 and 1: in the case of α-nDCG, computing an ideal list based on
nuggets is NP-complete; in the case of IA metrics, it is generally
not possible for a single system output to be ideal for all intents
at the same time.

We now define the D-measures, which are free from the afore-
mentioned limitations of α-nDCG and the IA metrics. Given the
intent probabilities Pr(i|q) and per-intent graded relevance assess-
ments, where gi(r) is the gain value for document at rank r for
intent i, we first define the global gain at rank r as:

GG(r) =
∑

i

Pr(i|q)gi(r) . (6)

We then define a single ideal list (in contrast to the IA metrics
which define an ideal list for every intent) by sorting all relevant
documents by the global gain, and denote the ideal global gain at
rank r by GG∗(r). Finally, by replacing the raw gains of metrics
such as nDCG and Q-measure with the global gains, D-measures
(D-nDCG, D-Q, etc.) can be computed. Note that there is no
NP-complete problem involved here.

Sakai and Song [23] proposed to plot D-measures against in-

tent recall (a.k.a. I-rec or subtopic recall [31], the proportion of
intents covered by a ranked list) to visualise the trade-off between
relevance and diversity. In addition, to obtain a single-value met-
ric, they proposed to compute the D�-measures in addition:

D�-measure = γI-rec + (1 − γ)D-measure (7)

where γ is a parameter. Throughout this paper, we let γ = 0.5: in-
tent recall and D-nDCG/Q are highly correlated with each other
and therefore D�-nDCG/Q are not so sensitive to the choice of
γ [23]. The NTCIR-9 INTENT task also used D�-nDCG with
γ = 0.5 as the primary metric for ranking participating sys-
tems [29].

2.3 Comparing Diversity Metrics
To date, there are only a few studies that compared the reliabil-

ity and usefulness of different diversity metrics.
Clarke et al. [7] compared diversity metrics including α-nDCG,

a similar metric called Novelty- and Rank-Biased Precision

(NRBP) and an IA version of ERR (ERR-IA) in terms of discrim-
inative power. Somewhat surprisingly, their results suggested that
intent recall, a simple set-based diversity metric, is more dis-
criminative than others. However, their experiments were lim-
ited to uniform intent probabilities and binary per-intent graded
relevance assessments from the TREC 2009 Web diversity test
collection [6].

Sakai and Song [23] compared D(�)-measures with α-nDCG
and a variety of IA metrics including ERR-IA, using uniform and
nonuniform intent probabilities and graded per-intent relevance
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assessments added to the TREC 2009 Web diversity test collec-
tion. They compared the metrics in terms of discriminative power
and “intuitiveness”: their results suggested that D�-measures are
the most promising diversity metrics among the existing ones.
Also, as was mentioned earlier, their intuitiveness analysis sug-
gested that while α-nDCG may sometimes be more intuitive than
other metrics for navigational intents, D�-measures may be more
intuitive for informational intents, which is the main motivation
of this study. Moreover, as Sakai and Song’s intuitiveness analy-
sis was somewhat subjective and anecdotal, we propose the con-
cordance test for quantifying the relative intuitiveness of diversity
metrics in this present study. In a sequel to Sakai and Song [23],
Sakai and Song [24] showed that D(�)-measures are superior to
ERR-IA in terms of discriminative power and the concordance
test using the NTCIR-9 INTENT test collections as well as the
TREC 2009 Web diversity test collection.

Using the Amazon Mechanical Turk framework and the TREC
2009 Web diversity test collection with binary relevance assess-
ments, Sanderson et al. [26] examined the predictive power of
diversity metrics such as α-nDCG: if a metric prefers one ranked
list over another, does the user also prefer the same list? While
our concordance test for quantifying the “relative intuitiveness”
of diversity metrics was partially inspired by the side-by-side ap-
proach of Sanderson et al., their work and ours fundamentally
differ in the following aspects: (1) While Sanderson et al. treated
each subtopic (i.e., intent) as an independent topic to examine the
relationship between user preferences and metric preferences, we
aim to measure the intuitiveness of metrics with respect to the
entire (ambiguous or underspecified) topic in terms of diversity
and relevance; (2) While Sanderson et al. used the Mechanical
Turkers, we use very simple evaluation metrics that represent di-
versity or relevance as the gold standard in order to quantify intu-
itiveness. Sanderson et al. found that intent recall (called “cluster
recall” in their paper) is as effective as other diversity metrics
in predicting user preferences, despite its simplicity. They also
reported that diversity metrics agreed well with user preferences
especially for navigational (sub)topics, although their analysis re-
lied on only 18 navigational subtopics.

3. Proposed Metrics

This section proposes new diversity metrics that rely on the
explicit knowledge on whether an intent is informational or navi-
gational.

3.1 DIN-measures and DIN�-measures
Our first proposal, the DIN-measure family*7, is identical to

the D-measure family in the way the globally ideal ranked list is
defined. The only difference is that systems do not receive any
credit for returning multiple relevant documents for each naviga-

tional intent. For example, consider a ranked list shown in Fig. 1
for a query with exactly one informational intent i and exactly
one navigational intent j. Suppose that, as the figure shows, the
document at rank 1 is L1-relevant to i, the document at rank 2
is L3-relevant to i and L1-relevant to j, and so on. While exist-

*7 DIN stands for: Diversification for Informational and Navigational in-
tents.

Fig. 1 An example ranked list for a query with one informational intent and
one navigational intent.

ing diversity measures such as α-nDCG and D-nDCG consider
the document at rank 4 as relevant to j, DIN-measures treats this
document as nonrelevant to j because a relevant document has
already been found at rank 2 for this navigational intent. (As this
example shows, even navigational intents may have multiple rel-
evant documents in the test collection.) Note that this is similar
to how the binary-relevance Reciprocal Rank evaluates a ranked
list: only the first relevant document matters.

Formally, let {i} and { j} denote the sets of informational and
navigational intents for query q, and let isnewj(r) = 1 if there is
no document relevant to the navigational intent j between ranks
1 and r − 1, and isnewj(r) = 0 otherwise. We redefine the Global
Gain as:

GGDIN(r) =
∑

i

Pr(i|q)gi(r) +
∑

j

isnewj(r)Pr( j|q)g j(r) . (8)

This should be compared with the original Global Gain (Eq. (6))
which does not distinguish between informational and naviga-
tional intents. It can be observed that GGDIN simply ignores re-
dundant relevant documents for navigational intents.

Now, DIN-nDCG, for example, can be defined as:

DIN-nDCG@l =

∑l
r=1 GGDIN(r)/ log(r + 1)
∑l

r=1 GG∗(r)/ log(r + 1)
. (9)

Similarly, DIN-Q can be defined as:

DIN-Q@l =
1

min(l,R)

l∑

r=1

J(r)DIN-BR(r) (10)

where

DIN-BR(r) =
C(r) + β

∑r
k=1 GGDIN(k)

r + β
∑r

k=1 GG∗(k)
. (11)

Note that only the system’s global gains (numerators in Eqs. (9)
and (11)) have been modified, and the ideal global gains (denom-
inators) remain unchanged. This means that, unlike D-measures,
the maximum possible value of a DIN-measure may be less than
one. We regard this as a cost of improving the intuitiveness of
diversity metrics while keeping them simple.

Just like D-measures, DIN-measures can be combined with in-
tent recall to boost diversity relative to relevance (Recall Eq. (7)).
We call the resultant metrics DIN�-metrics. In this paper, we ex-
amine DIN�-nDCG and DIN�-Q: the latter uses the cutoff version
of Q-measure as was described in Section 2.1.

3.2 P+Q and P+Q�
Our second proposal is to extend the IA approach of Agrawal

et al. [1], so that two different metrics are used for informational
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and navigational intents, respectively. A natural choice would be
to use two metrics that share a similar user model: in this paper,
we use Q@l for informational intents, and P+ for navigational
intents, and call the resultant metric P+Q:

P+Q@l =
∑

i

Pr(i|q)Qi@l +
∑

j

Pr( j|q)P+j . (12)

Here, for example, Qi@l means Q@l computed for intent i based
on an ideal list defined particularly for this intent. Recall also
that, in this paper, the preferred rank rp j for each P+j is defined
after truncating the ranked list at l, and therefore rp j ≤ l holds
(see Section 2.1).

Let us go back to Fig. 1: P+Q is computed for this example
as follows. For the informational intent i, Q@l is computed by
taking the relevant documents at ranks 1, 2 and 5 into account:
recall that Q assumes that the user is equally likely to stop ex-
amining the ranked list at any of these three ranks. Whereas, for
the navigational intent j, we first determine rp: in this example,
rp = 4 (not 2), because the highest relevance level found in the
ranked list is L3 and the document at rank 4 is the first document
whose relevance level is L3. Then, P+ for j is computed: recall
that it assumes that the user is equally likely to stop examining
the ranked list at ranks 2 and 4. Finally, the value of Q and P+ are
combined by taking the intent probabilities into account. Note
that, in this particular example, P+ is the same as Q for intent j

and therefore P+Q is the same as Q-IA, the Intent-Aware version
of Q. Whereas, if the document at rank 2 in Fig. 1 was (say) L3-
relevant for j, then the document at rank 4 would be ignored and
P+Q would be less than Q-IA.

Just like the IA metrics, the maximum value of P+Q is usu-
ally below 1: a single system output is almost never ideal for all
intents at the same time. Again, we regard this as a cost of im-
proving the intuitiveness of diversity metrics while keeping them
simple.

Furthermore, we consider combining P+Q with intent recall to
emphasise diversity in a way similar to Eq. (7), and call the re-
sultant metric P+Q�. Note that Sakai and Song [23], [24] did not
consider the combination of IA metrics with I-rec, although it is
also possible*8.

4. Evaluating Evaluation Metrics

This section describes two methods for comparing the “good-
ness” of diversity metrics: discriminative power [17], [18], which
represents the statistical reliability of a metric, and the concor-

dance test, which is our new proposal.

4.1 Discriminative Power
Given a test collection with a set of runs, discriminative power

is measured by conducting a statistical significance test for every
pair of runs and counting the number of significant differences.
In this paper, we use two different significance tests that rely on
computer power and thereby require fewer assumptions than clas-
sical tests such as the t-test. The first is the paired bootstrap test

*8 Combining α-nDCG and I-rec in a similar way would be redundant, as
α-nDCG already has a mechanism for emphasising diversity, namely the
parameter α.

which was the significance test originally used for measuring dis-
criminative power [17]. The second is the randomised version of

Tukey’s Honestly Significant Differences (HSD) test [4].
The bootstrap test is conducted for every run pair indepen-

dently. That is, the statistical significance at α (i.e., Type I error
probability: note that this is unrelated to α-nDCG) for a run pair is
tested without taking the other runs into consideration. However,
pairwise tests conducted in this fashion for k run pairs inevitably
results in the family-wise error rate of 1 − (1 − α)k: this is the
probability of detecting at least one significant difference for a
pair of runs that are in fact no different from each other [4]. Note
that this problem applies to all pairwise significance tests.

In contrast, the randomised Tukey’s HSD test takes the entire
set of runs into account to judge whether each run pair is signifi-
cantly different or not. Thus this test is naturally more conserva-

tive, i.e., researchers are less likely to find significant differences
that are not “real.” We chose to use this test along with the origi-
nal bootstrap test because of this advantage, and also because the
two tests are similar in spirit in that they rely on modern com-
putational power instead of making many statistical assumptions.
(Smucker, Allan and Carterette [28] have recommended the ran-
domisation test for pairwise significance testing.)

Let tT,i denote the i-th topic from a topic set T of size N, and let
M(t, r j) denote the value of a metric M for a topic t and a run r j. A
paired bootstrap test for a given run pair (r1, r2) can be performed
as shown in Fig. 2: first, a vector z of per-topic performances dif-
ferences are obtained, and we set up a null hypothesis (H0) saying
that these values were sampled from a distribution whose popula-
tion mean is zero; then, to construct an empirical distribution that
obeys H0, a shifted vector w is prepared and B bootstrap samples
are obtained from it; then, for every trial b, the studentised statis-
tic of z (i.e., t(z)) is compared with the corresponding statistic for
the bootstrap sample (t(w∗b)); in this way, we obtain the Achieved

Significance Level (ASL; a.k.a. p-value), which represents how
likely z would be under H0. As in any other significance testing,
H0 is rejected if AS L < α.

Based on the bootstrap test, Sakai [17] also showed how to es-
timate the performance delta (Δ) required in order to achieve sta-
tistical significance at α given the topic set size N: the algorithm
is shown in Fig. 3. For example, if we have B = 1,000 boot-
strap samples and α = 0.05, we find the 50-th largest |t(w∗b)|
and record the corresponding non-studentised mean |w∗b| for ev-

z = (z1, . . . , zN) where zi = M(tT,i, r1) − M(tT,i, r2);
t(z) = z

σ/
√

N
where z and w = (z1 − z, . . . , zN − z);

count = 0;
for b = 1 to B do {

w∗b = bootstrap sample of size N
obtained by sampling with replacement from w;

t(w∗b) = w∗b

σ∗b/
√

N
where w∗b and σ∗b are

mean and standard deviation of w∗b;
if( |t(w∗b)| ≥ |t(z)| ) count + +;

}
ASL = count/B;

Fig. 2 Algorithm for obtaining the Achieved Significance Level with the
two-sided, paired bootstrap test given two runs r1 and r2, topic set T
(|T | = N) and metric M [17].
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ery run pair. These values represent the borderline Δ’s between
significance and nonsignificance. Finally, to be conservative, we
take the maximum value observed across all run pairs.

In contrast to pairwise tests such as the bootstrap test, the main
idea behind Tukey’s HSD is that if the largest mean difference ob-
served is not significant, then none of the other differences should
be significant either. Given a set of runs, the null hypothesis is
that there is no difference between any of the systems. Following
Carterette [4], we perform randomised Tukey’s HSD as shown in
Fig. 4: from a given matrix X whose element at (row i, column j)
represents the performance of the j-th run for the i-th topic, we
create B new matrices X∗b by permutating each row at random;
then, for every run pair, we compare the performance Δ of this
run pair with the largest performance Δ observed within X∗b. Fi-
nally, the ASL value is computed in a way similar to Fig. 2, but
for each run pair.

Using the results of the randomised Tukey’s HSD tests, we also
try to estimate the performance Δ required to achieve a statistical
significance at α for a given topic set size as shown in Fig. 5: we
simply take the smallest observed Δ from all the run pairs that
were found to be significantly different.

For more details on the bootstrap and the randomised ver-
sion of Tukey’s HSD test, we refer the reader to Sakai [17] and
Carterette [4], respectively. Note that this paper does not propose
any new statistical significant tests.

It has been pointed out that discriminative power is not useful
when, for example, the “metric” in question sorts systems alpha-
betically by the system name as this produces perfectly consistent

foreach pair of runs (r1, r2) do
if( |t(w)∗b′ | is the Bα-th largest value in {|t(w)∗b|})
Δα(r1, r2) = |w∗b′ |;

Δα = maxi, j Δα(ri, r j);

Fig. 3 Algorithm for estimating the performance Δ required for obtaining a
significant difference at α with the paired bootstrap test [17].

foreach pair of runs (r1, r2) do count(r1, r2) = 0;
for b = 1 to B do {

create matrix X∗b whose row t is a permutation of row t of X
for every t ∈ T ;

max∗b = maxi x∗bi ; min∗b = mini x∗bi where
x∗bi is the mean of i-th column vector of X∗b;

foreach pair of runs (r1, r2) {
if( max∗b − min∗b > |x(r1) − x(r2)| where

x(ri) is the mean of the column vector for run ri in X )
count(r1, r2) + +;

}
foreach pair of runs (r1, r2) do ASL(r1, r2) = count(r1, r2)/B;

Fig. 4 Algorithm for obtaining the Achieved Significance Level with the
two-sided, randomised Tukey’s HSD given a performance value ma-
trix X whose rows represent topics and columns represent runs [4].

foreach pair of runs (r1, r2) with a significant difference at α do
Δα(r1, r2) = |mean(r1) − mean(r2)|;

Δα = mini, j Δα(r1, r2);

Fig. 5 Algorithm for estimating the performance Δ required for obtaining a
significant difference at α with the randomised Tukey’s HSD test.

judgments regardless of the data used (e.g., Ref. [25]). However,
we are interested in metrics that are strictly functions of a ranked
list of items (i.e., system output) and a set of judged items (i.e.,
right answers). We are not interested in a “metric” that knows

that (say) one ranked list is from Google and that the other is
from Bing, and uses this knowledge to say which is better than
the other. Moreover, note that, by means of discriminative power,
we are measuring the robustness of metrics to variations in the
choice of topics and therefore the reliability of experiments: we
are not discussing which particular differences are actually per-
ceptible to the user. We do believe, however, that significance
testing is one useful tool for making “real” improvements that
may eventually add up to produce user-perceptible differences.

4.2 Concordance Test
Sakai and Song [23] manually examined the actual ranked lists

of documents to compare the intuitiveness of different diversity
metrics, but here we propose the concordance test for quantifying
the intuitiveness. Suppose we want to compare two diversity met-
rics M1 and M2. We choose a deliberately simple Gold Standard

metric MGS that should represent the intuitiveness, i.e., the most
important property that the diversity metrics should satisfy. For
the purpose of search result diversification, the two most impor-
tant properties are diversity and relevance. In the present study,
we use intent recall (I-rec at l) to represent diversity, and effective

precision (Ef-P at l) to represent relevance. Here, Ef-P is the pro-
portion of documents that are effectively relevant to at least one
intent: for informational intents, “effectively relevant” just means
relevant; for each nagivational intent, it means that only the first
relevant document is counted as relevant and other “redundant”
relevant documents are ignored. For example, the Ef-P for the ex-
ample shown in Fig. 1 (Section 3) is 3/5 = 0.6, as the document
at rank 4 is treated as nonrelevant. Note that the gold standards
themselves are not good enough as stand-alone diversity metrics:
they ignore document ranks, graded relevance, and intent proba-
bilities. We use them to separate out and test a particular property
of a more complex metric.

Given M1, M2 and MGS (i.e., either I-rec or Ef-P), we measure
the “relative intuitiveness” of the two diversity metrics in terms
of concordance with MGS as shown in Fig. 6. In this pseudocode,

Disagreements = 0; Correct1 = 0; Correct2 = 0;
foreach pair of runs (r1, r2) do

foreach topic t do {
ΔM1 = M1(t, r1) − M1(t, r2);
ΔM2 = M2(t, r1) − M2(t, r2);
ΔMGS = MGS(t, r1) − MGS(t, r2);
if( ΔM1 × ΔM2 < 0 ){ // M1 and M2 disagree

Disagreements + +;
if( ΔM1 × ΔMGS ≥ 0) ) // M1 and MGS agree

Correct1 + +;
if( ΔM2 × ΔMGS ≥ 0) ) // M2 and MGS agree

Correct2 + +;
}

}
Concordance(M1|M2,MGS) = Correct1/Disagreements;
Concordance(M2|M1,MGS) = Correct2/Disagreements;

Fig. 6 Concordance test algorithm for metrics M1 and M2 based on prefer-
ence agreement with MGS.
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Table 1 Test collection statistics.

#Documents Approx. one billion Web pages (ClueWeb09).
#Topics 24 with at least one navigational intent (17 faceted; 7 ambiguous).
#Intents 99 with at least one relevant document (68 informational; 31 navigational).
Mean and Range of #Intents/topic 4.1 [1, 6] (all); 2.8 [1, 5] (informational); 1.3 [1, 3] (navigational) across 24 topics.
Intent probabilities for n intents Uniform: j-th intent has the probability 1/n; Nonuniform: j-th intent has the probability 2n− j+1/

∑n
k=1 2k .

#Relevant 2,635 across 99 intents (1,465 L3-relevant; 663 L2-relevant; 507 L1-relevant);
2,437 across 68 informational intents (1,328 L3-relevant; 620 L2-relevant; 489 L1-relevant);
198 across 31 navigational intents (137 L3-relevant; 43 L2-relevant; 18 L1-relevant).

Mean and Range of #Intents/document 1.19 [1, 4] for 2,223 unique relevant documents across topics.
#Runs 20 Category A runs selected at random.

Disagreement is the number of ranked list pairs for which the
two diversity metrics disagreed with each other as to which list is
better; Correct1 is the number of ranked list pairs from the dis-
agreements, for which M1 agrees with the “correct judgment” of
MGS, and so on. In the pseudocode, note that if ΔMGS is zero
(i.e., the gold standard says that the two ranked lists are tied), this
case is counted as a “correct” case. We found that ties actually
occur quite often with “crude” metrics such as I-rec.

Note also that we focus on the disagreements between M1 and
M2 rather than the entire set of ranked list pairs. (We have a total
of 4,560 pairs: 24 topics × 190 run pairs.) This is because we
already know that different diversity metrics are generally highly
correlated to one another [23]. Thus, Fig. 6 enables us to discuss
“which metric is more intuitive than the other” assuming that the
gold standard truly represents intuitiveness.

We can expect metrics such as D�-measures, DIN�-measures
and P+Q� to show good concordance test results when I-rec is
used as the gold standard, since these metrics directly depend on
I-rec by means of Eq. (7) and the like. Also, we can expect DIN�-
measures and P+Q� to show good results when Ef-P is used as the
gold standard, since these metrics all rely on the basic idea of ig-
noring redundant documents for navigational intents*9. In short,
it would not be surprising if our proposed metrics do well in our
concordance experiments. The contribution here, however, is that
we are able to quantify exactly how often some of these metrics
outperform the other metrics, including the popular α-nDCG.

The above method considers diversity (I-rec) and effective rel-
evance (Ef-P) one at a time. However, what we really want are
intuitive evaluation metrics that consider both. We therefore ex-
tend the algorithm shown in Fig. 6 to handle two gold-standard
metrics MGS

1 and MGS
2 (which in this paper are I-rec and Ef-P):

in this case, Correct1 is incremented only if M1 agrees with MGS
1

and with MGS
2 , and so on.

5. Experiments

5.1 Data
For evaluating different diversity metrics in terms of discrim-

inative power and the concordance test, we used the graded rel-

evance version of the TREC 2009 Web diversity test collection
with Category A runs [6], which we obtained from Sakai and
Song [23]. The original TREC data has binary per-intent rele-
vance assessments, but this version contains L3 (highly relevant),
L2 (relevant) and L1 (partially relevant) documents for each in-

*9 Note, however, that while both DIN�-measures and Ef-P takes the first
relevant document for each navigational document as relevant, P+Q�
goes down to the preferred rank rp as was discussed in Section 3.2.

Fig. 7 Effect of B on the accuracy of the ASL curve for D�-nDCG@10
(Uniform Pr(i|q)).

tent, which were defined based on judgements from multiple as-
sessors. From the official 50 topics, we selected those that had at
least one navigational subtopic (i.e., intent), which resulted in 24
topics. Some statistics of this data set are shown in Table 1. As
shown in the table, our data set contains 68 informational and 31
nagivational intents, with a total of 2,635 relevant documents for
the informational intents and 198 for the navigational intents; we
use the uniform and nonuniform intent probabilities of Sakai and
Song [23], and the 20 sampled runs from the same study, which
gives us 190 run pairs.

Following previous work [16], [17], [22], [23], we used B =

1,000 for the bootstrap tests. On the other hand, as we had
no previous experience in using the randomised Tukey’s HSD,
we determined the value of B through a preliminary experiment:
Smucker, Allan and Carterette [28] used B = 100,000 for their
pairwise randomisation test but we thought that a fewer number
of trials may suffice. Figure 7 (b) shows the ASL curves [17] for
D�-nDCG with the uniform intent probabilities based on the ran-
domised Tukey’s HSD test for different values of B: the y-axis
represents the ASL and the x axis represents the 190 run pairs
sorted by the ASL. The graphs are somewhat cluttered but that
is exactly the point: for example, the curve for B = 5,000 almost
completely overlaps with that for B = 10,000. Based on these
results, we use B = 5,000 for randomised Tukey’s HSD. For ref-
erence, Fig. 7 (a) shows a similar set of graphs for the bootstrap
test: it can be observed that B = 1,000 is probably sufficient, and
that much lower ASLs are obtained compared to Tukey’s HSD.
This demonstrates the fact that pairwise tests may “find” signifi-
cant differences that are not substantial. Note that the family-wise
error rate (see Section 4.1) for any pairwise tests at α = 0.05 with
190 run pairs is 1 − 0.95190 > 0.9999.
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Fig. 8 ASL curves based on the bootstrap test.

Fig. 9 ASL curves based on the randomised Tukey’s HSD.

5.2 Evaluation Toolkit
For computing all evaluation metrics, we used the NTCIREVAL

toolkit [20]*10. The only exception was α-nDCG: we used the of-
ficial α-nDCG values from TREC (with α = 0.5) as implementing
this metric requires a greedy approximation of the ideal ranked
list [8]. For all metrics, we used the document cutoff of l = 10
as we are interested in evaluating the first SERP, the entry-point
page for different user intents.

5.3 Discriminative Power Results
Figure 8 and Fig. 9 show the ASL curves of some selected di-

versity metrics, based on the bootstrap test and the randomised
Tukey’s HSD, respectively. Parts (a) of these figures show the
results with the uniform intent probability distribution: α-nDCG
and I-rec are included here as these two metrics do not utilise in-
tent probabilities. Parts (b) of these figures show the results with
the nonuniform distribution: D-nDCG, DIN-nDCG and P+Q are
included here to highlight the effect of combining these met-
rics with I-rec and thereby obtaining D�-nDCG, DIN�-nDCG and
P+Q�. We want metrics that are discriminative, i.e., those that are
closer to the origin in the figures.

Table 2 and Table 3 cut Fig. 8 and Fig. 9 in half at α = 0.05
to quantify discriminative power and the performance Δ required
for achieving statistical significance with 24 topics. For example,
Table 2 (a) shows that the discriminative power of I-rec according

*10 Available at http://research.nii.ac.jp/ntcir/tools/ntcireval-en.html.

Table 2 Discriminative power/performance Δ of diversity metrics based on
the bootstrap test at α = 0.05.

(a) uniform (b) nonuniform

I-rec 52.6% 0.20 P+Q� 50.5% 0.16
P+Q� 51.6% 0.15 D�-nDCG 50.5% 0.14
D�-nDCG 50.0% 0.16 DIN�-nDCG 50.5% 0.16
DIN�-nDCG 50.0% 0.15 D�-Q 48.9% 0.18
D�-Q 50.0% 0.14 DIN�-Q 48.9% 0.16
DIN�-Q 49.5% 0.16 D-nDCG 39.5% 0.12
α-nDCG 49.5% 0.15 DIN-nDCG 37.9% 0.12
D-nDCG 43.2% 0.14 D-Q 35.3% 0.12
DIN-nDCG 41.6% 0.14 P+Q 33.7% 0.15
D-Q 36.8% 0.12 DIN-Q 33.2% 0.14
DIN-Q 34.7% 0.15
P+Q 34.2% 0.12

Table 3 Discriminative power/performance Δ of diversity metrics based on
the randomised Tukey’s HSD test at α = 0.05.

(a) uniform (b) nonuniform

D�-nDCG 29.5% 0.17 D�-nDCG 30.0% 0.17
D�-Q 26.8% 0.16 P+Q� 29.5% 0.16
DIN�-nDCG 26.8% 0.17 D�-Q 26.8% 0.15
I-rec 26.8% 0.23 DIN�-nDCG 25.8% 0.16
P+Q� 26.3% 0.15 DIN�-Q 22.6% 0.15
DIN�-Q 23.7% 0.15 P+Q 15.8% 0.12
α-nDCG 22.6% 0.17 D-nDCG 13.2% 0.15
D-nDCG 18.9% 0.14 DIN-nDCG 8.9% 0.13
P+Q 18.4% 0.09 D-Q 2.6% 0.13
DIN-nDCG 15.8% 0.13 DIN-Q 0.5% 0.12
D-Q 6.3% 0.12
DIN-Q 3.7% 0.11

to the bootstrap test at α = 0.05 is (100/190) = 52.6% (i.e., 100
significantly different run pairs were found) and the Δ required
for achieving statistical significance is around 0.20.

First, by comparing the bootstrap and the randomised Tukey’s
HSD results (i.e., Fig. 8 vs. Fig. 9 and Table 2 vs. Table 3), it can
be observed that:
• The relative performances of the different metrics are gener-

ally similar with these two tests, although it is not clear why P+Q
does relatively well with the randomised Tukey’s HSD (Fig. 9 (b))
but not with the bootstrap test (Fig. 8 (b)).
• The randomised Tukey’s HSD is substantially more conser-

vative than the bootstrap test, as it is clear from the contrast be-
tween Fig. 8 and Fig. 9. For example, at α = 0.05, the discrim-
inative power of I-rec according to the bootstrap is 52.6% (Ta-
ble 2 (a)), while that according to the randomised Tukey’s HSD is
only 26.8% (Table 3 (a)): that is, about half of the significant dif-
ferences obtained with the bootstrap test are not significant with
the randomised Tukey’s HSD. (This set of significant differences
obtained by the randomised Tukey’s HSD is a true subset of the
set of significant differences obtained by the bootstrap test.)
• The performance Δ’s as estimated with the randomised

Tukey’s HSD are similar to the corresponding values based on
the bootstrap test. For example, with the uniform setting, the per-
formance Δ required for achieving a statistical significance with
P+Q� given 24 topics is 0.15 according to both tests (Table 2 (a)
and Table 3 (a)).

The above observations suggest that the randomised Tukey’s
HSD is a good alternative to the pairwise bootstrap test for the
purpose of comparing evaluation metrics. Also, given a set of
available runs, researchers are encouraged to make use of all of
these runs in significance testing, as focussing on a particular set
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Table 4 Comparison of significantly different run pairs (randomised
Tukey’s HSD at α = 0.05; uniform setting).

α-nDCG D�-nDCG DIN�-nDCG P+Q�
I-rec 13/38/5 0/51/5 1/50/1 3/48/2
α-nDCG - 1/42/14 4/39/12 4/39/11
D�-nDCG - - 5/51/0 6/50/0
DIN�-nDCG - - - 3/48/2

of runs (by means of a pairwise test) may often lead to wrong
conclusions [4].

Next, by comparing the different metrics in terms of discrim-
inative power as shown in Fig. 8 and Fig. 9 and Table 2 and Ta-
ble 3, it can be observed that:
• DIN�-nDCG and P+Q� are comparable to I-rec and D�-

nDCG in terms of discriminative power (Fig. 8 and Fig. 9)*11.
• α-nDCG may be slightly less discriminative than the above

best metrics (Fig. 8 (a) and Fig. 9 (a)). This difference is evident
particularly when α is large (e.g., α ≥ 0.1). (Again, this α is
the Type I Error probability, not the redundancy parameter of α-
nDCG.)
• Combination with I-rec dramatically boosts the discrimina-

tive power of all diversity metrics (e.g., compare P+Q� with P+Q
in Fig. 8 (b) and Fig. 9 (b));
• D-Q and DIN-Q are the least discriminative metrics among

the ones we examined (e.g., see bottom of Table 3 (b)). Moreover,
in the tables, DIN�-Q is never more discriminative than DIN�-
nDCG, and D�-Q is never more discriminative than D�-nDCG.
(For these reasons, DIN(�)-Q and D(�)-Q are not shown in the
two figures.)

The above observations suggest that DIN�-nDCG and P+Q�
are promising as metrics that explicitly takes into account
whether each intent is informational or navigational. The high
discriminative power comes mostly from the simple I-rec metric.
Note, however, that these results only suggest that DIN�-nDCG
and P+Q� are statistically reliable and consistent: they say noth-
ing about whether they are right or wrong. Hence we discuss
the “intuitiveness” of these metrics in Section 5.4. Based on the
above results, we hereafter focus our attention to DIN�-nDCG
and P+Q� as well as D�-nDCG and α-nDCG for comparison pur-
poses.

Table 4 provides a further analysis of some of the results from
Table 3 (a), i.e., the randomised Tukey’s HSD results with the uni-
form setting. The table shows the degree of overlap between the
sets of significantly different pairs for I-rec, α-nDCG, D�-nDCG,
DIN�-nDCG and P+Q�. For example, it can be observed from
the rightmost column that I-rec and P+Q� have 48 run pairs in
common, and that these two metrics obtained 3 + 48 = 51 signif-
icant differences and 48 + 2 = 50 significant differences, respec-
tively. (These correspond to the discriminative power values of
51/190 = 26.8% and 50/190 = 26.3% in Table 3 (a).) The main
message this table conveys is that these metrics are quite similar
to each other when averaged across topics.

Table 5 shows the Kendall’s τ and (the symmetric version of)
τap proposed by Yilmaz, Aslam and Robertson [30] for ranking

*11 DIN�-nDCG will never outperform D�-nDCG in terms of discriminative
power, because it is based on fewer data points (i.e., documents treated
as relevant) than D�-nDCG when not identical to it.

Table 5 Kendall’s τ/Symmetric τap for ranking the 20 runs (uniform set-
ting). Values higher than 0.9 are shown in bold for convenience.

α-nDCG D�-nDCG DIN�-nDCG P+Q�
I-rec .74/.80 .91/.93 .92/.94 .94/.93
α-nDCG - .79/.83 .80/.94 .78/.84
D�-nDCG - - .99/.99 .95/.95
DIN�-nDCG - - - 1/1

Table 6 Concordance test results. For each metric pair, the higher score is
shown in bold. Disagreements are shown in parentheses. Signifi-
cant differences according to the two-sided sign test are indicated
by †’s (α = 0.05) and ‡’s (α = 0.01).

(a) Gold standard: I-rec (“diversity”)
D�-nDCG DIN�-nDCG P+Q�

α-nDCG .597/.995‡ .607/.996‡ 0.573/1‡
(236) (242) (246)

D�-nDCG - 1/1 .908/1‡
(19) (120)

DIN�-nDCG - - .907/1‡
(118)

(b) Gold standard: Ef-P (“effective relevance”)
D�-nDCG DIN�-nDCG P+Q�

α-nDCG .623/.733† .616/.748‡ .646/.654
(236) (242) (246)

D�-nDCG - .474/.842 .800/.625†
(19) (120)

DIN�-nDCG - - .831/.593‡
(118)

(c) Gold-standard: I-rec AND Ef-P
D�-nDCG DIN�-nDCG P+Q�

α-nDCG .398/.729‡ .397/.744‡ .390/.654‡
(236) (242) (246)

D�-nDCG - .474/.842 .708/.625
(19) (120)

DIN�-nDCG - - .737/.593†
(118)

the 20 runs by the aforementioned five metrics. τap compares the
similarity of two run rankings based on pairwise swaps just like
τ, but is more sensitive to swaps near the top ranks. It can be
observed that the rankings by I-rec, D�-nDCG, DIN�-nDCG and
P+Q� all resemble each other, quite naturally as the “�” represents
linear combination with I-rec. Perhaps what is more interesting
is that the ranking by DIN�-nDCG and P+Q� are actually identi-
cal as indicated by the τ and τap values of 1, despite the different
rationales behind them (see Section 3).

Table 4 and Table 5 have shown how similar the five diversity
metrics are on average; below we focus on individual cases where
they differ.

5.4 Concordance Test Results
Table 6 show the concordance test results for α-nDCG, D�-

nDCG, DIN�-nDCG and P+Q� computed using the algorithm
shown in Fig. 6: Part (a) uses I-rec as the gold-standard and there-
fore represents how the diversity metrics favour diversified re-
sults like they should; Part (b) uses Ef-P as the gold-standard and
therefore represents how they favour the result with more rele-
vant documents like they should (while ignoring redundant rele-
vant documents for navigational intents). Part (c) computes the
concordance scores by requiring that the diversity metrics agree
with both I-rec and Ef-P. For example, Table 6 (a) shows that, if
we compare α-nDCG and D�-nDCG in terms of diversity, there
are 236 disagreements, and that while the concordance score for
α-nDCG is only .597, that for D�-nDCG is .995. This means that,
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given a pair of ranked lists for which α-nDCG and D�-nDCG dis-
agree with each other, D�-nDCG is far more likely to agree with
I-rec on the preference than α-nDCG. This difference is statisti-
cally significant according to a two-sided sign test at α = 0.01.
The relative results can be summarised as follows:
( 1 ) In terms of diversity (Part (a)), D�-nDCG, DIN�-nDCG and
P+Q� significantly outperform α-nDCG; P+Q� significantly out-
performs D�-nDCG and DIN�-nDCG; and therefore P+Q� is the
winner (note that P+Q� agrees 100% with I-rec in the rightmost
column of Table 6 (a)).
( 2 ) In terms of effective relevance (Part (b)), D�-nDCG and
DIN�-nDCG significantly outperform α-nDCG, and also signif-
icantly outperform P+Q�; and therefore D�-nDCG and DIN�-
nDCG are the winners.
( 3 ) In terms of both diversity and effective relevance (Part (c)),
D�-nDCG, DIN�-nDCG and P+Q� significantly outperform α-
nDCG; DIN�-nDCG significantly outperforms P+Q� in addition;
and therefore DIN�-nDCG is the winner.

Recall that these results should be regarded with a grain of
salt. First, it is not surprising that D�-nDCG, DIN�-nDCG and
P+Q� behave similarly to I-rec (see Eq. (7)). In particular, P+Q�
is highly consistent with I-rec in Part (a) because the raw P+Q
values are relatively low: recall that a single ranked list is highly
unlikely to achieve a very high performance value for all intents at
the same time (Section 3.2). When the raw P+Q value are low, the
impact of I-rec on the P+Q� is high, due to a linear combination
that is similar to Eq. (7). Second, it is not surprising that DIN�-
nDCG behaves similarly to Ef-P, since they both look at the first
retrieved relevant document for every navigational intent. Nev-
ertheless, the concordance test results are valuable because they
allow quantitative comparisons and show exactly how often one
metric outperforms another with real data. According to our re-
sults, DIN�-nDCG is the best metric that takes both diversity and
effective relevance into account (from Part (c)). Moreover, note
that both D�-nDCG and DIN�-nDCG significantly outperform α-
nDCG from the viewpoint of rewarding diversity (Part (a)) and

from the viewpoint of rewarding effective relevance (Part (b)).
Note also that our concordance test is applicable to any pair

of evaluation metrics provided that an appropriate gold-standard
metric that represents a desirable property can be defined.

6. Conclusions

In this study, we proposed new evaluation metrics called DIN�-
measures and P+Q� which incorporate the explicit knowledge of
informational and navigational intents into diversity evaluation.
Like Intent-Aware metrics and D�-measures, these metrics can
handle intent probabilities and per-intent graded relevance. (Re-
call that α-nDCG used at TREC handles neither.) We also pro-
posed the concordance test for comparing the intuitiveness of a
given pair of metrics quantitatively. Our main experimental find-
ings are:
(a) In terms of discriminative power [17], [18] which reflects

statistical reliability, the proposed metrics, DIN�-nDCG and
P+Q�, are comparable to intent recall and D�-nDCG, and pos-
sibly superior to α-nDCG;
(b) In terms of the concordance test which quantifies the agree-

ment of a diversity metric with a gold standard metric that repre-
sents a basic desirable property, DIN�-nDCG is superior to other
diversity metrics in its ability to reward both diversity and rel-
evance at the same time. Moreover, both D�-nDCG and DIN�-
nDCG significantly outperform α-nDCG in their ability to reward
diversity, to reward relevance, and to reward both at the same
time.

In addition, we demonstrated that the randomised Tukey’s
Honestly Significant Differences test that takes the entire set of
available runs into account is substantially more conservative
than the paired bootstrap test that only considers one run pair at
a time. We therefore recommend the former approach for signifi-
cance testing when a set of runs is available for evaluation.

Finally, limitations of the present study include the following:
( 1 ) As was discussed in Section 3, DIN�-measures and P+Q� do
not range fully between 0 and 1. However, we regard this as a
cost of taking into account the distinction between informational
and navigational intents and yet keeping the metrics simple to un-
dertand and to compute. Recall that computing α-nDCG requires
a greedy approximation of the ideal list.
( 2 ) Our experiments do not involve human participants: we be-
lieve that our approach and user-based studies such as the work
by Sanderson et al. [26] are complementary. Note that it is not
straightforward to conduct a user study for diversity metrics, as
a diversified SERP is intended for a population of users sharing
the same query but having different intents, as opposed to a small
group of participants.
( 3 ) Our experiments rely on a single test collection, with only 24
topics and artificial intent probabilities [23]. (But recall that our
experiments involve 68 informational intents and 31 navigational
intents as shown in Table 1.) We will conduct similar experiments
using the NTCIR INTENT test collections which come with in-
tent probabilities obtained through assessor voting [24], [29].
( 4 ) While the proposed metrics leverage the explicit knowledge
of whether each intent is informational or nagivational, there is
another aspect that is available in the TREC diversity test col-
lections which we did not consider, namely, the distinction be-
tween ambiguous and faceted topics [6]. Clarke, Kolla and Vech-
tomova [9] have briefly discussed this in the context of extending
α-nDCG. However, the challenge here would be how to keep the
evaluation metric simple and intuitive.
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