ロバストバンドル調整を用いた 車載ステレオカメラのセルフキャリブレーション

深澤 至貴 $^{1,a)}$ 岡谷 貴之 $^{1,b)}$ 出口 光一郎 $^{1,c)}$ 木村 宣隆 $^{2,d)}$

概要:車載ステレオカメラのセルフキャリブレーション,つまり車両が一般道を通常走行する際に得られ る画像のみを用いたキャリブレーションの方法を述べる.具体的には,各カメラの内部パラメータおよび レンズ歪がオフラインのキャリブレーションで既知であるとし,ステレオカメラを構成する左右カメラの 間の相対姿勢を推定する.この場合,自然のシーンを撮影した左右カメラの画像間でいかに外れ値のない 点対応を得られるか,あるいは混入した外れ値を除去できるかが鍵となる.走行中の連続画像間および左 右カメラの画像間で特徴点を追跡・対応付けてその軌跡を得,それらをすべて使用して完全な3次元復元 (SfM)を行い,ロバストバンドル調整によって全体最適化をすることで,得た点対応に混入する外れ値を 効果的に取り除き,高精度に目的パラメータを推定する.実験結果は,この方法がステレオカメラのキャ リプレーションに有効であることを示した.

1. はじめに

近年,自動車の運転を支援し交通事故を未然に防ぐため のセンサとして,車載ステレオカメラが良く用いられるよ うになってきている.ステレオ視によりシーンの奥行き情 報を得ることで,例えば前走車等を認識して衝突を未然に 防いだり,道路の白線を認識して車が走行レーンから出て しまうことを防ぐなどの目的で利用されている.

そのためには,ステレオカメラのキャリブレーション―2 台のカメラの画像と空間の幾何学的関係を与える各パラ メータを知ること―が必要であり,しかもこれを高い精度 で行うことが求められる.知る必要のあるパラメータは, 次の3種類に分けることができる.

 $P_1: 2$ 台のカメラそれぞれの内部パラメータ

P2: 両カメラの相対的な姿勢

*P*₃: ステレオカメラの車両に対する姿勢

 P_1 は,各カメラが持つ光学レンズの特性およびレンズの 歪を指す.この P_1 に加えて P_2 が分かれば,左右カメラの 画像間でマッチングを行うことでシーンのデプスを計算で き,さらに P_3 を知ることで上述のような応用が実現可能

¹ 東北大学

- ² (株) 日立製作所 Hitachi, Ltd.
- $^{\rm a)} {\rm ~~fukasawa@fractal.is.tohoku.ac.jp}$
- ^{b)} okatani@fractal.is.tohoku.ac.jp
- ^{c)} kodeg@fractal.is.tohoku.ac.jp
- ^{d)} nobutaka.kimura.fd@hitachi.com

となる.

基本的には P₁, P₂, P₃ いずれのパラメータも, そのカメ ラを搭載した車両を工場から出荷する前の段階で,何らか のキャリブレーション作業を行って決定することになる. それには,専用の器具,例えばキャリブレーション用の チャートやパタンを使うのが一般的である.これらの画像 を車載ステレオカメラで実際に撮影し,その画像を用いて 上の各パラメータを推定する.

本稿では,そのような専用の器具を使わないステレオカ メラのセルフキャリブレーションの方法を示す.セルフ キャリプレーションとは,車両が一般道路上を普通に走行 している状態にあるとき,カメラが撮影する自然シーンの 画像を元に上述のパラメータをオンラインで推定すること である.

このようなセルフキャリブレーションには2つの意義が ある.一つは,上述の工場出荷前のキャリブレーションの 作業あるいは工程が不要になることである.もう一つは, たとえ出荷前キャリブレーションを行ったとしても,走行 時の振動やその他の経年変化により,各パラメータが変化 する可能性があり,その際の再キャリブレーションが容易 に行えることである.ステレオカメラシステムを,車両の 工場出荷後に据え付けることも可能になる.

本稿では, P₁, P₂, P₃のパラメータのうち, P₂のみを対象に, これをセルフキャリブレーションで推定する問題を考える. P₁は,専用のチャートやパタンを用いないセルフキャリブレーションでは,最も推定が難しいパラメータで

Tohoku University

ある.レンズ歪はともかく,焦点距離や特に画像中心を正確に求めるのは一般に難しいことが知られている.また, 車載状態でのカメラの運動軌跡は直線上や平面上に拘束された状態に近く,臨界条件(critical configuration)による縮退(全パラメータを一意に決められない)の問題もある([10],[11]).幸い P₁は,左右の各カメラごとに別々に(取り外した状態でも)実行でき,それには Zhang の方法[12]など手軽な方法がいくつかある.

P₂ と P₃ を比べると,それぞれの推定は独立に行える上, P₂ の推定がより難しく,重要である.P₂ が得られていれ ば P₃ は,例えば車両が直進していることを画像外の情報 源から得ることで,比較的容易に推定できる.なお P₂ の 自由度は厳密には6自由度だが,ここではカメラ間の距離 は既知とし,残りの5自由度のみを定めることを考える.

今, P₁が既知であるとしているので, P₂の5自由度の決 定はカメラ間の基本行列を定めることとほぼ等価であり, 左右カメラの画像間で最低5点以上の対応点があれば計算 できる.したがって,今考えている自然シーンを対象とし たセルフキャリブレーションでは,対応点をいかに高精度 に得られるかが最大の課題となる.

自然シーンの画像から特徴点を得る場合,まず第一にそ の位置決め精度の問題がある.つまり,キャリブレーショ ン用のパタンを用いる場合のそれに対して,その精度は一 般に悪くならざるを得ない.ただしその位置決め誤差にバ イアスがなければ(つまり期待値がその空間の点の画像上 の位置に一致するならば),大量の画像および特徴点を使 うことでこの不足を補うことができるだろう.今考えてい る問題設定では,車両の走行中好きなだけデータを得られ るから,オフラインキャリブレーションでは行い得ない大 量のデータを使える.

自然シーンの画像を用いる場合のもう一つの問題は,画像間の対応付けに混入する外れ値であり,こちらがより深刻である. P2を決めるための左右の画像間の対応点を得る最も単純な方法は,走行中の画像列から左右の画像ペアを複数抜き出し,それぞれ独立に画像間対応を求める方法であるが,この場合外れ値の除去は左右の画像間のエピポーラ条件のみで行うことになり,その外れ値除去性能は最小である.より良い方法は,連続画像における特徴点の軌跡を求め,時間軸方向の情報も利用することである.

時間軸の情報を利用する方法は何通りか考えられる.例 えば左右それぞれのカメラの連続画像上で軌跡を求め,軌 跡どうしを左右のカメラ間で対応付ければ,2,3,4視点 の多重線形拘束(multi-linear constraint)[6]を用いるこ とができ,これを RANSAC 等のロバスト推定の枠組みに 取り入れることで,より強力に外れ値を除去できる.ただ しこの方法は,(収束が保証されない非線形計算に頼らず 外れ値除去を行える点で魅力的だが)利用できる画像系列 データのごく一部を使っているに過ぎず,全体で見てデー タの情報量を最大限に引き出した推定を行っているとは言 えない.例えば,いつも正しくインライアと外れ値を区別 できるとは限らない.

これに対し,本稿ではまとまった数の画像系列(約数百 視点)を用い,得られる特徴点軌跡を使って3次元復元 (SfM)を行い,そこで全体最適化を行う方法を考えた.そ こではロバストバンドル調整を使って,全体最適化の枠組 みの中で外れ値除去を行う.このやり方では,外れ値除去 のために,上述の多重線形拘束を包含する最も一般化され た強力な拘束が自動的に適用される.多重線形拘束を使う 場合と違って,最適化の計算が収束するか否かが問題とな るが,外れ値の識別に関わる最適化パラメータを段階的に 切り替えながら最適化を行う方法を述べる.

2. 関連研究

車載ステレオカメラのセルフキャリブレーションはいく つかの研究がある [4], [13], [14], [15] . 中でも Dang らの研 究 [4] が最も関連が深い.彼らは,車両走行時の画像系列上 で追跡したの特徴点軌跡を対象に,拡張カルマンフィルタ (EKF)を使って,カメラパラメータをオンラインで推定 する方法を述べている.彼らの方法は,Visual SLAM を単 眼カメラで行う MonoSLAM[5] や類似研究 [1], [3] と同じ 定式化に基づく. EKF を用いるのは,時間軸に沿って観 測が増えたとき,一定の近似を行うことで解くべき問題の サイズを一定に抑えつつ,推定精度を確保するためである.

しかしながら,SfM/SLAM に EKF を用いると,観測モ デルの非線形性によって推定精度が低下することが知られ ている.EKF は観測モデルを都度,線形近似し,また状態 変数の事後分布をガウス分布で近似する方法であるから, 推定精度を維持するには,これらの近似精度が担保される ことが必要条件である.この条件が満たされない場合,特 に観測モデルの非線形性が無視できないとき,EKF はし ばしばいわゆる一致性 (consistency)を失い,具体的には 状態変数の不確かささ(共分散)を実際よりいつも小さく 見積もってしまうことが知られている[7].文献[2]では, EKF-SLAM で実際に一致性が失われることと,その原因 の考察が示されている.

もう一つの方法はバンドル調整を用いて完全最適化を行うことである.SfM/SLAM へのアプローチとして,このフィルタリングとバンドル調整の精度および計算時間を比較した研究が [9] にあるが,後者が望ましいと結論されている.本研究はこの議論にも依拠している.

問題の定式化

3.1 ステレオカメラの幾何モデル

左右のカメラは互いに剛体結合されているものとする. 左右のカメラ間の相対姿勢は,左カメラ座標系から右カメ ラ座標系の次の座標変換によって表現できる.

$$\mathbf{x}' = \mathbf{R}\mathbf{x} + \mathbf{t} \tag{1}$$

ただしカメラ座標系とは,両カメラともに投影中心を原点とし *z* 軸を光軸とする座標系であるとする.この相対姿勢を表すパラメータを4×4行列 T によって

$$\mathbf{\Gamma} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$
(2)

と表す.

車両が走行する間,左右のカメラから画像が次々に得られる.画像を得た瞬間(左右のカメラは同期がとれているとする)のステレオカメラの視点を*i* = 1,...によって表す.*i* = 1の左カメラのカメラ座標系を基準座標系にとり,そこから*i*番目の視点における左カメラのカメラ座標系への座標変換を

$$\mathbf{x}_i = \mathbf{R}_i \mathbf{X} + \mathbf{t}_i \tag{3}$$

と書き,姿勢変化のパラメータを4×4行列

$$\mathbf{T}_{i} = \begin{bmatrix} \mathbf{R}_{i} & \mathbf{t}_{i} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$
(4)

で表す.なお $\mathbf{T}_1 = \mathbf{I}_4$ (単位行列)である.基準座標系か ら i 番目の視点における右カメラへの座標変換は

$$\mathbf{T}_{i}^{\prime} = \mathbf{T}\mathbf{T}_{i} \tag{5}$$

で表せる.左辺の行列から回転と並進成分を取り出して, 基準座標系から右カメラのカメラ座標系への座標変換は

$$\mathbf{x}_i' = \mathbf{R}_i' \mathbf{X} + \mathbf{t}_i' \tag{6}$$

のようになる.

左右のカメラのレンズ歪は次のような標準的なモデルで 表す. 左カメラのカメラ座標系での空間の点を $\mathbf{x} = [x, y, z]$ と書くとき, $u \equiv x/z, v \equiv y/z$ として, 歪を受けた座標を

$$\bar{u} = u(1 + k_1 r^2 + k_2 r^4) + 2p_1 uv + p_2(r^2 + 2u^2)$$
(7a)
$$\bar{v} = v(1 + k_1 r^2 + k_2 r^4) + p_1(r^2 + 2v^2) + 2p_2 uv$$
(7b)

とする.ただし $r^2 = u^2 + v^2$ である. 歪パラメータは $[k_1, k_2, p_1, p_2]$ である. 右カメラも同様で,その歪パラメー タを $[k'_1, k'_2, p'_1, p'_2]$ とする.最終的な画像上の投影位置は, 左右のカメラの内部パラメータを K, K' とすると,左右そ れぞれ

$$[\tilde{u}, \tilde{v}, 1]^{\top} \propto \mathbf{K}[\bar{u}, \bar{v}, 1]^{\top}$$
(8)

$$[\tilde{u}', \tilde{v}', 1]^{\top} \propto \mathbf{K}' [\bar{u}', \bar{v}', 1]^{\top}$$
(9)

のように与えられる.

3.2 キャリブレーションの問題

以上の幾何モデルの下で次のようなキャリブレーション の問題を考える.空間の点 $X_j j = 1, \ldots$ を各視点 $i = 1, \ldots$ で観測したときの座標を $\{(\tilde{u}_{ij}, \tilde{v}_{ij}) | (i, j) \in S\}$,右カメラ について $\{(\tilde{u}'_{ij}, \tilde{v}'_{ij} | (i, j) \in S')\}$ と書く.ここでSは,視 点iの左カメラ画像上に空間の点jが観測されているとき, (i, j)を要素に持つような集合で,S'は右カメラについて の同様の集合である.これらを元に,左右のカメラ間の相 対姿勢 Tを推定したい.ただしこの他に未知数として,各 視点の姿勢 $\mathbf{T}_i (i = 1, \ldots)$ と点の3次元位置 $\mathbf{X}_j (j = 1, \ldots)$ があり,必要ならばこれも推定する.

ここでは,左右のカメラの内部パラメータおよびレンズ歪は,事前にキャリプレーションを行い既知であるとする.具体的にはZhangの方法[12]を用いて行う.この結果,左カメラの画像上の点の座標(\tilde{u},\tilde{v})を元に, $[\bar{u},\bar{v},1]^{\top} \propto \mathbf{K}^{-1}[\tilde{u},\tilde{v},1]^{\top}$ を計算し,次に(7)式を(u,v)について解くことで,歪と内部パラメータの影響を取り除いたカメラ座標 $[u,v,1]^{\top}$ に正規化できる.なお後者は,(7)式を歪修正量 $\Delta u = \bar{u} - u$, $\Delta v = \bar{v} - v$ の式に書き換えた後,それらの式の右辺にu, vの推定値を代入し, Δu , Δv を求めて $u \leftarrow \bar{u} - \Delta u, v \leftarrow \bar{v} - \Delta v$ と更新することを, $u = \bar{u}, u = \bar{v}$ を初期値に反復することで計算できる.そこで以下では,上の手順で正規化された両カメラの観測点 $\{(u_{ij},v_{ij}) \mid (i,j) \in S\}$ および $\{(u'_{ij},v'_{ij} \mid (i,j) \in S')\}$ を元に,上述の未知パラメータを求めることを考える.

4. 方法

4.1 特徴点の追跡と左右の画像間対応付け

まず,対応点の集合 $\{(u_{ij}, v_{ij}) \mid (i, j) \in S\}$ および $\{(u'_{ij}, v'_{ij} \mid (i, j) \in S')\}$ を得る.経時とともに得られる 画像列に対し,各カメラで空間の同一点を追跡するととも に,左右のカメラ間でも同一点の対応関係を求める.この 処理について述べる.

まず,左右のカメラ別々に特徴点の追跡を行う.*i*番目の視点で得た左右のカメラの画像をそれぞれ*I_i*,*I'_iと書く.*この処理では左右のカメラともに同じ処理を行うので,以下では左カメラのみについて説明する.

まず I_i から特徴点を抽出する.実験では SURF を用いた.i+1 番目の画像 I_{i+1} に対しても同様に特徴点を抽出した後,特徴点の対応付けを行う($I_i \leftrightarrow I_{i+1}$,).対応付けには各特徴点の特徴量(128 個の実数からなるディスクリプタ)のユークリッド距離を用いる.各特徴点について,この距離が最小となるものを $I_i \rightarrow I_{i+1}$ および $I_{i+1} \rightarrow I_i$ の各方向について探す.このとき,視点間の車両およびカメラの移動量の小ささを前提に,特徴点の移動量は画像上で一定以下になると仮定し,各特徴点について,相手の画像上でその点の位置を中心とする入力画像サイズの 0.35 倍の矩形内を探す.こうやって得た両方向の対応のうち,双

方向に対応する点のペアのみを残す.

次にこうして得た対応点の組に対し,5点アルゴリズ ム[8]を用いたRANSACを実行し,エピポーラ条件を用い た外れ値の除去を行う.また,5点アルゴリズムによって 推定された基本行列 E_{i,i+1}を分解した4通りの姿勢変化に 対し,対応点の3次元位置を計算し,カメラ座標系のz座 標が正となるものの数が最大になる姿勢変化を記録し,同 時にそれ以外対応点のペアを外れ値と認定して削除する. この2度のチェックを経て,連続する画像ペアの間で対応 点のペアを得る.

これを繰り返すことで,空間の同一点を連続画像上で追跡した特徴点の軌跡が得られる.具体的には, $I_i \leftrightarrow I_{i+1}$ のペアと $I_{i+1} \leftrightarrow I_{i+2}$ のペアが, I_{i+1} の上で同じ特徴点を共有する場合,このペアをマージして,一つの空間の点の3枚の画像(I_i , I_{i+1} , I_{i+2})での軌跡とする.空間の同一点に対し,何かのはずみで2つの分離された軌跡を得る場合があり得るが,この場合は異なる2つの点の2つの軌跡であると見なす.

以上の処理は左右のカメラの画像 *I_i*, *I'_i* でそれぞれ独立 に行う.次に,こうして得た左右それぞれの空間の同一点 の軌跡に対し,対象とする空間の点が同じである点を選ぶ. 選ばれた点の左右の画像上の軌跡は,これら画像間の対応 を与えることになる.

そのために,各視点 i ごとに,左右の画像間 ($I_i \leftrightarrow I'_i$) で対応を求める.各特徴点について,相手の画像上でその 点の位置を中心とする画像サイズの 0.6 倍の矩形内で,特 徴量のユークリッド距離が最短となる特徴点を選び,左右 双方向に対応するペアのみを対応候補とする.この処理は 各視点ごとに行うため,左右の特徴点軌跡どうしで見ると 矛盾する場合が生じる(例えば $i \ge i + 1 \ge c$,左画像の 特徴点軌跡が対応する右画像の特徴点軌跡が異なるなど). そこで,左の各特徴点軌跡について,右の特徴点軌跡のう ちで対応候補を最も多く与えたものに対応付ける.これを 右画像から左画像への向きでも同様に行い,双方向に対応 付けられた特徴点軌跡を対応させる(すなわち空間の同じ 点を左右の画像上で観測した軌跡と見なす).

以上のようにして,空間の点ごとの特徴点軌跡を得る. これは3つに分類することでき,左カメラおよび右カメラ のどちらかのみに観測された点の軌跡と,両方のカメラか ら(1視点以上)観測された点の軌跡の3つである.次節 に述べるバンドル調整では,これら軌跡をすべて使って最 適化を行う.

4.2 パラメータの初期値の生成

推定すべき未知パラメータは,左右のカメラ間の相対姿勢 T および,各視点の姿勢 T $_i(i = 1,...)$ と点の3次元位置 X $_j(j = 1,...)$ である.

左右のカメラの相対姿勢 T は , 空間の点のうち左右のカ

 T_i は、上の特徴点追跡の過程で、連続2視点間で5点 アルゴリズムを実行し基本行列 $E_{i,i+1}$ 、およびこれを正し く分解した回転と並進成分 δR_i 、 δt_i を得ているので、基 準座標をとった左カメラのそれを使って次のように求める (i > 1).

$$\mathbf{T}_{i} = \begin{bmatrix} \delta \mathbf{R}_{i} & \delta \mathbf{t}_{i} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \mathbf{T}_{i-1}.$$
 (10)

X_jは、その軌跡の開始視点と終了視点を選び、上のようにして決まった両視点の姿勢を用いて、その2視点間でステレオ復元を行って決める.右カメラにしか観測されていない点を除き、左カメラの観測を優先して決める.いずれの場合でも、グローバルな基準座標系(*i* = 0の視点の左カメラのカメラ座標系)で表現し直して初期値とする. 左カメラで観測された点は上のように決めた T_iを用いて、 右カメラの場合にはさらに T を用いて座標変換する.

4.3 ロバストバンドル調整

点 X_j の視点 iの左カメラの画像座標について,観測値 (レンズ歪と内部パラメータの影響を除く正規化後のもの) を $[u_{ij}, v_{ij}]$,未知パラメータの推定値から計算されるその 推定 $[\hat{u}_{ij}, \hat{v}_{ij}]$,と書くとき,両者の差

$$\delta u_{ij} = \hat{u}_{ij} - u_{ij} \tag{11}$$

$$\delta v_{ij} = \hat{v}_{ij} - v_{ij} \tag{12}$$

の 2 乗和 $\delta u_{ij}^2 + \delta v_{ij}^2$ が再投影誤差となる.同様に右カメラ についても $(\delta u_{ij}', \delta v_{ij}')$ を定義する.

次のような観測された点についての再投影誤差の総和

$$f = \frac{1}{2} \sum_{(i,j)\in S} \delta u_{ij}^2 + \delta v_{ij}^2 + \sum_{(i,j)\in S'} (\delta u_{ij}')^2 + (\delta v_{ij}')^2$$
(13)

を,未知パラメータについて最小化するのが通常のバンド ル調整である.ただし S および S' は,それぞれ左右カメ ラの観測点の集合とする.ロバストバンドル調整にはいく つかのやり方が考えられるが,ここではロバスト関数 p を 用いて上のコストを次のように書き換える.

$$f = \frac{1}{2} \sum_{(i,j)\in S} \rho(\delta u_{ij}^2) + \rho(\delta v_{ij}^2) + \sum_{(i,j)\in S'} \rho((\delta u_{ij}')^2) + \rho((\delta v_{ij}')^2)$$
(14)

表記を単純化するため, $(i, j) \in S \cap S'$ の各インデックス および u, v座標を新しい通し番号 i = 1, ...で表すことに し,(14)式を

$$f(\mathbf{p}) = \frac{1}{2} \sum_{i} \rho(e_i^2) = \frac{1}{2} \sum_{i} \rho_i$$
(15)

と書き換える ($\rho_i \equiv \rho(e_i^2)$). ガウスニュートン法を導くた

図 1 $\rho(x^2)$ と x^2 の比較.サンプルごとの重みを与える $\rho'(x^2)$ も 同時に表示.c = 1の場合.

め, p まわりに微小量 δp についてテーラー展開し

$$f(\mathbf{p} + \delta \mathbf{p}) \approx f(\mathbf{p}) + \sum_{i} \rho'_{i} e_{i} \left(\frac{de_{i}}{d\mathbf{p}}\right)^{\top} \delta \mathbf{p} + \delta \mathbf{p}^{\top} \left[\sum_{i} \left(\frac{de_{i}}{d\mathbf{p}}\right) \left(\rho'_{i} + \rho''_{i} e_{i}^{2}\right) \left(\frac{de_{i}}{d\mathbf{p}}\right)^{\top}\right] \delta \mathbf{p} \quad (16)$$

を得る.ただし
 $\rho_i'=\rho'(e_i^2),\,\rho_i''=\rho''(e_i^2)$ である.勾配ベ
 クトルとヘッセ行列を

$$\mathbf{g} \equiv \sum_{i} \rho_{i}' e_{i} \left(\frac{de_{i}}{d\mathbf{p}}\right) \tag{17}$$

$$\mathbf{H} \equiv \sum_{i} \left(\rho_{i}' + \rho_{i}'' e_{i}^{2} \right) \left(\frac{de_{i}}{d\mathbf{p}} \right) \left(\frac{de_{i}}{d\mathbf{p}} \right)^{\top}$$
(18)

と定義する.ここではダンピング付(ガウス)ニュートン 法を採用し,反復計算におけるパラメータの更新を

$$(\mathbf{H} + \lambda \mathbf{I})\delta \mathbf{p} = -\mathbf{g} \tag{19}$$

の解によって与える.λは誤差が減少すれば10倍,増加 すれば1/10 する方法で制御した.

実験では ρ には Welsch の関数を用いた. すなわち

$$\rho(x;c) = \frac{c^2}{2} \left[1 - \exp\left(-\frac{x}{c^2}\right) \right]$$
(20)

である.cは最初大きな値を設定しておき,上の反復計算 を実施して収束後,cを小さな値に切り替えて再度,上の 反復計算を行う.これを2,3 度繰り返す.実験では,画像 の横幅を長さ1としたとき,c = 5, 0.05, 0.005の3段階に 切り替えた.

4.4 コスト関数のロバスト化について

(14) 式に示したように,コスト関数は,特徴点のx, y座 標ごとの誤差の2乗の関数(例えば $\rho(\delta u_{ij}^2)$)としたが,こ れは外れ値であるかそうでないかの切り分けを特徴点のx, y座標それぞれで行っていることに相当する.通常のロバ ストバンドル調整では,この切り分けを(少なくとも)画 像上の観測点単位で行い,例えば $\rho(\delta u_{ij}^2 + \delta v_{ij}^2)$ のように するのが普通である.その背景には,観測の誤りは特徴点 の対応付けによるので,例えばy座標のみが外れ値となる というような場合を考えにくいことがある.

図 2 左:実験システムの全体図.右:左カメラの様子.

それでも上のようにした理由は次のようなものである. 第一に計算が簡単になること,第二に上のようにしても推 定には悪影響を与えないと考えられることによる.

後者は具体的には次のようなことである.ある3次元点 を復元可能な最小の観測は,2枚の画像上に観測されてい る場合である,仮に点の空間座標のみが未知であると考え れば,4つの観測に対し未知数は3つあることになるので, 空間座標を定めた上でさらに1自由度分がカメラパラメー タの推定に寄与することになる.この場合に,もし観測点 単位で外れ値の判定を行ったとすると,2枚のいずれかの 画像上の観測が外れ値と判定されることで,実質的に観測 が1枚の画像上にしかないということになり得る.そうす ると、この点の空間座標は一意に定めることができず、全 体の系は縮退することになる(もしロバスト関数の代わり に明示的な観測の除去を行っていれば, ヤコビ行列が特異 となる). 上のように座標ごとに外れ値の切り分けを行う ことにすれば,そのような場合でも未知数3つに対応す る3つの観測は形式的にインライアとなり,空間座標を過 不足なく定めることができる.その点の空間座標は誤って 推定されているかもしれないが,カメラパラメータの推定 には何ら影響を及ぼさない.今精度よく推定したいのはカ メラパラメータのみであるので,このようにしても問題が ない.

5. 実験結果

上述の方法の有効性,特に時間軸方向の情報を利用する ことの有効性とそれは外れ値除去に効果があることによる というわれわれの予想を検証するため,実験を行った.

5.1 実験の方法

図 2 のように, ワゴン車のルーフにカメラを 2 台取り付け た.カメラは Point Grey Research 社の Grasshopper 2 を使 用し,レンズは FUJINON の HF16HA-1B(画角約 30 × 23 。)を用いた.画像は 640 × 480 画素とし, IEEE1394 経由 で PC に毎秒 30 フレームのレートで取り込まれる.実験 では 2 フレームおきに画像を取り出して用いた.つまり, 100 視点の場合 200 フレーム(約7秒弱の期間)の画像を 用いることになる.

左右のカメラ間の相対姿勢を推定する今の問題では,推 定精度の検証それ自体も難しい.色々なやり方が考えられ

図 3 左:検証用の対応点取得の様子(右カメラ).右:取得した対応点の軌跡.

るが,ここではエピポーラ条件を正確に満たすかどうかに よって精度を評価することとした.つまり,左右のカメラ の画像上で,専用のパタンを使って高精度に対応点

$$M \equiv \{ (\tilde{u}_i, \tilde{v}_i), (\tilde{u}'_i, \tilde{v}'_i) \mid i = 1, \dots, n \}$$
(21)

を n 個求め,各対応についてのエピポーラ線からの距離を 左右双方向に計算し,その平均をとった.つまり,左画像 の点を指定した右画像上のエピポーラ線およびその反対方 向のエピポーラ線

$$\mathbf{l}_{i} = \mathbf{E} \begin{bmatrix} \tilde{u}_{i} \\ \tilde{v}_{i} \\ 1 \end{bmatrix}, \qquad \mathbf{l}_{i}^{\prime} = \mathbf{E}^{\top} \begin{bmatrix} \tilde{u}_{i}^{\prime} \\ \tilde{v}_{i}^{\prime} \\ 1 \end{bmatrix}$$
(22)

を求め,それらについて

$$E_{epi} = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} \text{dist} \left[(\tilde{u}'_i, \tilde{v}'_i), \mathbf{l}_i \right]^2 + \text{dist} \left[(\tilde{u}_i, \tilde{v}_i), \mathbf{l}'_i \right]^2}$$
(23)

を計算した.ただし dist[p, l] は平面上の点 p と直線 l の距 離である.また上の式の画像座標は歪を除去した後のもの である.すなわち,観測された画像座標を K を使ってカ メラ座標に変換し,歪を除去した後,再度 K を使って画像 座標に直す.

エピポーラ幾何を精度評価に用いたのは,それがステレ オカメラの主な用途である密なマッチングの精度をまず最 初に左右するからである.

実験ではこのような対応点を図3のようにチェッカーパ タンを用いて求めた.また,奥行きを3段階に変え,また パタンを保持する高さも3段階に変えることで,点群が空 間で適当な広がりを持つようにした.実験では,車両走行 前と走行後に2セットこのような対応点組を得,それぞれ M_{before}, M_{after} と書く.これらは,車両走行に伴ってカ メラの姿勢が変動していないことを確認するために利用す る. M_{before} は1691組, M_{after} は1807組であった.

5.2 比較した方法

Tをセルフキャリブレーションのやり方で推定する方法 はいくつか考えられる.性能比較の目的で,上述のロバス トバンドル調整(ここでは Robust-BA と呼ぶ)の他に,ロ バスト化していないバンドル調整(BA と呼ぶ)と,左右

M_{before}	M_{after}						
0.312	0.455						
0.441	0.323						

のカメラの画像間での点対応のみを使う方法(Two-view と呼ぶ)の2つを用いた.BAは(13)式のコストを最小化 し,Tを推定する.Two-viewは,3節の方法で取り出した 特徴点軌跡のうち,左右のカメラの画像間で対応付けられ たものを取り出し,これを用いて,Tを推定する方法であ る.この場合対応点は実質的に2台の固定カメラについて のものと見なせ,2視点のSfMをバンドル調整で実行し, Tを推定する.左右のカメラの相対姿勢を推定するのに利 用できる情報は,(外れ値の存在を除けば)両カメラ間の対 応のみであり,Robust-BA,BAとTwo-view でここは変わ らないことに注意する.(つまり例えばRobust-BAが,左 右カメラ間の対応点の異なる集合を使っているということ はない.)

5.3 結果

まず M_{before} および M_{after} に対し, Two-view を用いて それぞれ T を推定した.推定した T を, M_{before} および M_{after} を使って E_{epi} を計算した結果を表 1 に示す.表は 行が T を推定するのに使ったデータを,列が推定した T の精度を評価するのに用いたデータを表す.推定と検証に 同じデータを用いた場合でも誤差が 0.3 画素あるが,これ はキャリブレーションパタン(図3)の特徴点抽出誤差に 由来すると考えられる.推定と検証に異なるデータを用い た場合の誤差(約0.4 から 0.5 画素)は,走行前後 M_{before} , M_{after} でそれほど値が変わらないことから,走行中にカメ ラの姿勢が変化するようなことはなかったことが確認でき る.さらにこの値(0.4-0.5 画素)が,セルフキャリブレー ションが目標とすべき値と言える.

路上を走行した連続画像を対象に, Robust-BA, BA, Two-view それぞれを適用した.実験では 100 視点分の画 像シーケンスを 26 個使った.うち 3 つのシーケンスのあ る視点における左右のカメラの特徴点追跡の様子および, Robust-BA による 3 次元復元結果を図 4 に示す. Robust-BA は大域最小解に収束したかどうかを判定するのは難し いが,3 次元復元の結果およびコスト関数の値から 26 シー ケンスすべて同様に収束した. *E*_{epi} を用いた精度評価の結 果を表 2 に示す.表では最も精度のよかったものを太字で 表している.

結果は,26シーケンス中19シーケンスで Robust-BA の 誤差が最も小さかった.いくつかのシーケンスで,BA や Two-view の精度が最良となったのは,これらのシーケン スで外れ値の混入がたまたま少ないか,ほとんどなかった 情報処理学会研究報告 IPSJ SIG Technical Report

図 4 上から順に各列は c, f, z 各シーケンスのある視点での左右のカメラの画像と特徴点の追 跡状況,および SfM 復元結果(点群と100 視点の位置). 左右は同じ復元を異なる視点 から見たもの.

ことによるものと考えられる.BAやTwo-viewの結果で, 良くなる場合はあるものの時に非常に大きな誤差を返して いることはこのことを裏付ける.これに対し Robust-BA の値は全シーケンスで安定しており,その値は0.5 画素前 後である.上述のように,キャリプレーションパタンを用 いたオフライン推定の結果に若干劣る程度と言え,その利 便性を考えれば十分実用的であると言える.

また,視点の数を10から500まで変化させた時の *E*_{epi}の変化を図5に示す.視点の数を増やすほど順調に精度が向上していることが分かる.ただし今の場合,*E*_{epi}の値そのものが誤差を含む*M*_{before}の対応点を用いて計算されているため,誤差はどこかで飽和するはずである.(ただし理論的には,推定精度は視点数に比例して向上し続けると考えられる.)

6. まとめ

車載カメラのセルフキャリプレーションの方法を示し, 実験評価を行った.意図した通り,車載カメラから得られ る画像の時間軸方向の対応付けを用いて,ロバストバンド ル調整に基づく全体最適化を行うことで,推定精度を向上 させられることが分かった.

参考文献

- Azarbayejani, A. and Pentland, A. P.: Recursive Estimation of Motion, Structure, and Focal Length, *IEEE Trans. PAMI*, Vol. 17, pp. 562–575 (online), DOI: http://dx.doi.org/10.1109/34.387503 (1995).
- [2] Bailey, T., Nieto, J., Guivant, J. E., Stevens, M. and Nebot, E. M.: Consistency of the EKF-SLAM Algorithm., *Proc. IROS*, IEEE, pp. 3562–3568 (2006).
- [3] Broida, T. J., Chandrashekhar, S. and Chellappa, R.: Recursive 3-D motion estimation from a monocular image sequence, *IEEE Transactions on Aerospace and Electronic Systems*, Vol. 26, No. 4, pp. 639–656 (1990).
- [4] Dang, T., Hoffmann, C. and Stiller, C.: Continuous Stereo Self-Calibration by Camera Prameter Tracking, *IEEE Trans. Image Processing*, Vol. 18, No. 7, pp. 1536– 1550 (2009).
- [5] Davison, A. J.: Real-Time Simultaneous Localisation and Mapping with a Single Camera, *Proc. ICCV*, pp. 1403– (online), available from (http://portal.acm.org/citation.cfm?id=946247.946734) (2003).
- [6] Hartley, R. and Zisserman, A.: Multi-View Geometry in

表 2 27 種類の異なる道路を走行した 100 視点分の画像列に対する推定結果.左右の表はそれ ぞれ *M_{before}*, *M_{after}*で検証したもの.100 視点分の SfM をロバストバンドル調整し たもの(Robust-BA), 同様にパンドル調整したもの(BA), 左右の画像間のみの対応 を使ってバンドル調整したもの(Two-View)の結果.点数(左右カメラ共有点)とは SfM の結果得られた空間中の点数(うち左右両カメラで観測された点数).一点あたりの 観測数とは空間中の点数を得られた全ての観測数で割ったもの.

	点数 (共有点)	観測/点	Robust-BA	BA	Two-view		Robust-BA	BA	Two-view
a	58335(3973)	3.06	0.727	0.831	0.599	a	0.750	0.961	0.664
b	63963(3917)	3.35	0.402	0.758	0.699	b	0.585	0.851	0.814
с	55713(3322)	3.00	0.471	0.779	1.59	с	0.598	0.931	1.76
d	72235(3610)	2.90	0.667	0.605	0.954	d	0.684	0.681	1.02
е	70785(3885)	3.06	0.532	0.735	0.489	е	0.585	0.730	0.542
f	61225(4045)	3.27	0.502	0.845	1.36	f	0.558	0.787	1.30
g	69775(3194)	3.14	0.530	1.09	1.18	g	0.701	1.19	1.13
h	61163(2194)	2.70	0.559	0.855	0.955	h	0.581	0.935	1.01
i	80936(2698)	2.83	0.543	0.994	1.00	i	0.550	0.912	1.07
j	74587(3911)	3.05	0.598	1.78	1.53	j	0.656	1.89	1.47
k	70033(2843)	2.72	0.456	0.746	1.04	k	0.595	0.707	1.18
1	66890(2671)	2.91	0.833	1.73	0.863	1	0.976	1.84	0.930
m	72644(3352)	3.02	0.623	0.738	0.697	m	0.665	0.686	0.789
n	68765(3889)	3.07	0.507	0.742	0.479	n	0.607	0.692	0.542
0	71097(4022)	3.21	0.579	0.410	0.590	0	0.694	0.525	0.671
р	76273(4476)	3.20	0.520	1.01	0.553	р	0.574	1.16	0.607
q	72755(3371)	3.01	0.483	0.778	0.716	\mathbf{q}	0.583	0.827	0.778
r	69758(3802)	3.18	0.489	1.35	0.691	r	0.574	1.27	0.769
\mathbf{s}	63782(3066)	2.93	0.658	0.874	0.683	\mathbf{s}	0.717	0.925	0.742
t	62374(3473)	2.95	0.458	0.668	0.535	\mathbf{t}	0.527	0.652	0.543
u	60846(3814)	3.11	0.604	0.497	0.553	u	0.693	0.535	0.609
v	64453(3672)	2.98	0.470	0.724	0.517	v	0.537	0.683	0.511
w	61807(3475)	2.96	0.533	0.997	1.01	w	0.655	0.932	1.03
x	79764(3208)	3.01	0.439	0.896	0.727	x	0.526	0.851	0.815
у	61734(2793)	2.91	0.653	0.475	0.729	У	0.675	0.576	0.730
\mathbf{z}	71209(3440)	3.16	0.425	0.737	0.476	\mathbf{z}	0.549	0.865	0.578

Computer Vision, Cambridge University Press (2000). Maybank, S. J.: Filter Based Estimates of Depth, Proc.

- [7] Maybank, S. J.: Filter Based Estimates of Depth, Proc. BMVC, pp. 349–354 (1990).
- [8] Nistér, D.: An Efficient Solution to the Five-Point Relative Pose Problem, *IEEE Trans. PAMI*, Vol. 26, pp. 756–777 (online), DOI: 10.1109/TPAMI.2004.17 (2004).
- [9] Strasdat, H., Montiel, J. M. M. and Davison, J.: Real-time Monocular SLAM: Why Filter?, *Proc. ICRA* (2010).
- [10] Sturm, P.: Critical motion sequences for monocular selfcalibration and uncalibrated Euclidean reconstruction, *Proc. CVPR* (1997).
- [11] Wiles, C. and Brady, M.: Ground Plane Motion Camera Models, Proc. ECCV (1996).
- [12] Zhang, Z.: A flexible new technique for camera calibration, *IEEE Trans. PAMI*, Vol. 22, No. 11, pp. 1330–1334 (2000).
- Broggi, A., Bertozzi, M. and Fascioli, A.: Self-calibration of a stereo vision system for automotive applications, *Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on*, Vol. 4, pp. 3698 – 3703 vol.4, DOI: 10.1109/ROBOT.2001.933193 (2001).
- [14] Nedevschi, S., Vancea, C., Marita, T. and Graf, T.: Online Extrinsic Parameters Calibration for Stereovi-

sion Systems Used in Far-Range Detection Vehicle Applications, *Intelligent Transportation Systems, IEEE Transactions on*, Vol. 8, No. 4, pp. 651–660, DOI: 10.1109/TITS.2007.908576 (2007).

[15] Zhang, Z., Luong, Q.-T. and Faugeras, O.: Motion of an uncalibrated stereo rig: self-calibration and metric reconstruction, *Robotics and Automation*, *IEEE Transactions on*, Vol. 12, No. 1, pp. 103 –113, DOI: 10.1109/70.481754 (1996).