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概要：従来，照度差ステレオなどの明るさ解析では，線形のカメラ応答関数を仮定していたために，事前にカメ
ラ応答関数を校正したり，線形の応答関数を持つ特殊なカメラを利用したりする必要があった．これに対して
我々は，カメラ応答関数の自動較正を伴う照度差ステレオを提案している．しかしながら，我々の従来手法は，
ランバート物体を仮定しているために，鏡面反射を生じるような非ランバート物体に適用することが出来なかっ
た．そこで本研究では，未知かつ非線形な応答関数を持つカメラで撮影された画像から，非ランバート物体の
法線とカメラ応答関数を同時に推定する手法を提案する．本研究の基本的な着想は，いわゆるロバスト推定の
枠組みに基づいて，鏡面反射成分などを外れ値として扱うことにある．実画像を用いた実験を行い，カメラ応
答関数が未知かつ非線形であっても，提案手法が非ランバート物体の法線を頑健に推定出来ることを確認した．

1. Introduction

Photometric stereo is a technique to estimate surface orienta-
tions of a static object from a set of images captured by a fixed
camera [12]. It assumes the object follows Lambertian reflectance
model, illuminated by known varying light sources. A number of
techniques have been developed to overcome such assumptions
and allow photometric stereo in more general circumstances, un-
known light sources and non-Lambertian surfaces.

Another common assumption that often presumed in the com-
puter vision algorithms, include photometric stereo, is input im-
ages must be captured by a camera with linear response func-
tion, i.e. the image intensity is proportional to the irradiance re-
ceived by the camera sensor. Unfortunately, the response func-
tions of the consumer cameras are generally nonlinear and un-
known. Moreover, a camera setting such as white balance af-
fects the response function. Therefore, the radiometric calibra-
tion is required to be preprocessed to cancel the effect of non-
linear response function before the images can be used in any
physics-based analysis of the scene. We proposed a photometric
stereo with auto-radiometric calibration technique by exploiting
data that inherents in the photometric stereo images to recover the
response function [8]. However, this technique assumes an object
with Lambertian reflection property so the estimated shape and
response function are distorted by specular highlights observed
in non-Lambertian surfaces. Moreover, we cannot directly apply
the specular detection techniques to this case because of nonlin-
ear response function.

In this paper, we propose an auto-radiometric calibration pho-
tometric stereo technique for non-Lambertian surface. Because
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many non-Lambertian surfaces behave like Lambertian surface
at the area with no highlight, we can treat a highlight pixel as
an outlier which deviates from the Lambert model. Therefore, it
would be possible to simultaneously estimate the shape of a non-
Lambertian surface and the response function of a camera by in-
corporating what so-called robust estimation techniques such as
RANSAC [2] into the auto-radiometric calibration technique. We
conducted a number of experiments to demonstrate that our pro-
posed method can accurately estimate the shape of given objects
with non-Lambertian surface and the response function regard-
less of its nonlinearity.

The contribution of this work is to achieve an auto-radiometric
calibration in photometric stereo technique that can handle non-
Lambertian surface. Our method requires neither radiometric cal-
ibration nor additional images for the calibration; it allows pho-
tometric stereo for more real-world materials,e.g. ceramics, and
plastics. The shape estimation can be performed without worry-
ing about the nonlinearity of the response function in a camera.

The rest of this paper is organized as following. Section 2
briefly describes the related works. A photometric stereo method
to simultaneously recover surface normals of a non-Lambertian
object and an inverse response function is explained in Section
3. The experimental results are shown in Section 4 followed by
conclusion remarks in Section 5.

2. Related Works

This work relates to radiometric calibration and specularity re-
moval. The most widely used technique for radiometric calibra-
tion was proposed by Mitsunaga and Nayar [7]. They make use
of multiple images taken with different known exposure times.
The ratios between pixel intensity and exposure time are used to
estimate a response function. However, this method requires a lot
of additional images and considered time-consuming. Shiet al
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[11] proposed a radiometriccalibration technique that uses input
images for color photometric stereo. This method makes use of
the linearity of RGB color in the same pixel along an input im-
age set to estimate a response function. However, this method
cannot recover the response function from a gray object and can-
not be used with grayscale input images. Mongkulmannet al [8]
proposed an auto radiometric calibration method for grayscale
photometric stereo. This method estimates surface normals and
response function simultaneously using consistency between ir-
radiance calculated from response function and irradiance calcu-
lated from surface property. However, it requires specular-free
input images. Thus, we cannot apply this technique to a non-
Lambertian object without the removal of specular component
first. Otherwise, the estimated response function is distorted by
specularity.

To solve specularity problem in photometric stereo, one can
regard specular pixel as an outlier and exclude it from surface es-
timation. Coleman and Jain [6] took this approach and proposed
a photometric stereo technique for non-Lambertian surface us-
ing four light sources. They estimated four candidate albedos at
a certain location from four possible triplets selected from four
light sources. If all of the candidate albedos do not consistent, it
is because of specularity. The smallest albedo is used for surface
estimation. Barsky and Petrou [1] modified this method to detect
both highlights and shadows by using temporal pixel intensity and
linear dependency. Unfortunately, these techniques assume input
images are captured by a camera with linear response function.
Therefore, we cannot directly apply these methods as an individ-
ual step before the automatic response function technique due to
the nonlinearity of response function.

Our proposed method extends the Mongkulmann’s photomet-
ric stereo framework [8] to handle a non-Lambertian surface. Un-
like the previous work, our proposed method avoids using specu-
lar pixel intensities in the estimation by integrating what so-called
robust estimation such as RANSAC [2] to determine specular re-
gion and estimate response function at the same time. RANSAC
has been used by several works to handle specular highlights in
face recognition task [10] and to remove specularity from non-
Lambertian surfaces in photometric stereo [5] [4]. Mukaigawaet

al [9] uses RANSAC to classify diffuse and specular region using
images taken under different light sources.

3. Proposed Method

3.1 Conventional Photometric Stereo
Firstly, we briefly explain the classic photometric stereo

method [12]. It assumes a target object follows the Lambertian
model illuminated under varying directional light sources. The
irradiance at the pointp observed under thed-th directional light
source is represented as

Epd = ldnp, (1)

wherenp denotes the normal vector at the pointp scaled by its
albedo andld denotes thed-th light source direction scaled by
its intensity (d = 1,2, ...,D). Conventionally, eq.(1) can be ex-
pressed in the matrix form as


Ep1

...

EpD

 =


l1x l1y l1z

...
...

...

lDx lDy lDz




npx

npy

npz

 ,
Ep = Lnp, (2)

whereld = (ldx, ldy, ldz)T andnp = (npx,npy,npz)T .
Given light source directions and intensities are known, the sur-

face normals and its albedo can be estimated from at least three
images by least square method:

n̂p =
(
LTL

)−1
LTEp. (3)

This is equivalent to

n̂p = arg min
np

D∑
d=1

(
Epd − nT

pld
)2
. (4)

The surface normal and albedo are computed from the estimated
scaled surface normal ˆnp asn̂p/|n̂p| and|n̂p| respectively.

3.2 Simultaneous Estimation of Surface Normals and In-
verse Response Function

We briefly explain a photometric stereo technique for estimat-
ing surface normals and inverse response function at the same
time. The radiometric response functionf maps an irradiance
E to a pixel intensityI . Because response function is a mono-
tonic increasing function, we can find an inverse functiong = f −1

which maps a pixel intensity back to its corresponding irradiance.
We normalize the range of irradiance and pixel intensity to [0, 1]
without loss of generality.

We assume the inverse response functiong can be represented
asK-degree polynomials similar to [7],

E = g(I ) =
K∑

k=0

ckI k, (5)

whereck is the coefficient of thek-th polynomial. With boundary
conditionE(0) = 0 andE(1) =

∑K
k=0 ck = 1, we can derive the

relationship between irradianceE and pixel intensityI as,

E = c1I +
K∑

k=2

ckI k,

= I +
K∑

k=2

ck

(
I k − I

)
. (6)

Then, we can formulate a linear least square problem to find
the appropriate surface normals and the coefficients

({n̂p}, {ĉk}) = arg min
({np},{ck})

P∑
p=1

D∑
d=1

Epd − nT
pEd +

K∑
k=2

ck

(
Ek

pd − Ipd

)2 , (7)

subjects to the monotonicity constraint,

K∑
k=2

ck(1− kIk−1) < 1. (8)

whenE > 0.
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Fig. 1 The overviewof our proposed method; (1)s ramdom pixels are sampled.t pixel intensities from
each sampled pixel are used. (2) Inverse response function is estimated and the input images are
calibrated using the estimated function. (3) Specular regions are detected and removed. The dif-
fuse pixels are considered inliers. (4) The estimated response function and the estimated shape are
evaluated. Step 1-4 are repeated for some iterations to obtain the best specular-free images. (5)
The specular-free images are used to estimate response function and shape.

3.3 Extension for Non-Lambertian Surface
This subsection explains the method to handle specularity ob-

served on non-Lambertian surface.
We iteratively estimate the response function and surface nor-

mals. In each iteration,s random pixels are sampled andt pixel
values from each sampled pixel are selected. Then, the selected
pixel values are used to estimate a candidate inverse response
function and the input images are radiometrically calibrated using
the estimated function. Here, we assume the response function is
accurately estimated so we perform specular removal at this step
to extract the diffuse regions. Then, the diffuse regions are used
to estimate surface normals. The accuracy of the estimated re-
sponse function is evaluated to consider the one that matches the
input images the best. Finally, the diffuse areas from the itera-
tion with the best response function are used to reestimate the
response function and surface normals.

The detailed algorithms are given as following.
Step 1. Pixels Random Selection

We select a number of pixel values to estimate a candidate in-
verse response function. Given the whole set of images are af-
fected by the same response function, we can use only a small
subset of pixel intensities to estimate the response function. Let
K denotes the degree of polynomials. Firstly,s pixels are ran-
domly selected. Then, the number of required pixel intensitiest

for a selected pixelp is determined. Since there are 3 unknowns
for surface normals for each pixel selected, namelynpx, npy, and
npz, plusK − 1 unknowns for the coefficients of inverse response
function, thereforet can be written as,

t =

⌈
3× s+ K − 1

s

⌉
. (9)

For each selected pixel,t pixel intensities from the same pixel
along the set of images are randomly selected.

Although we did not mention for the sake of simplicity, shad-
ows and saturated pixel intensities are removed from the estima-
tion by thresholding. The pixels which have number of pixel in-
tensities less than three after the removal are also excluded from
the selection.
Step 2. Estimation of a Candidate Inverse Response Function

A candidate inverse response functiong is estimated using the

selected pixel intensities. If all of the selected pixel intensities do
not consist of specular component, we can determine an inverse
response function with eq.(7) subjects to the constraint eq.(8).
Then, the input images are mapped by the estimated inverse re-
sponse functiong into the irradianceEobserved.
Step 3. Specular Region Detection and Removal

The specular regions are detected and removed in this step. We
utilize a simple pixel intensity comparison which is similar to the
one in Barsky [1]. Given specular region is observed within some
limited light directions, we can regards a specular pixel intensity
as an outlier that does not satisfy the Lambertian model. We apply
RANSAC here to iteratively determine the largest subset of pixel
intensities that do not contain specularity. Then the appropriate
surface normals is estimated from the diffuse pixel intensities.

Assume that the set of images is radiometrically calibrated and
converted into their corresponding irradianceE. For each point
p, three irradiance values,Epi, Ep j, andEpk where 1≤ i, j, k ≤ D,
are randomly selected. If the selected irradiance values contain
only diffuse component, this becomes the classic photometric
stereo case. A unique surface normalsnp can be determined
by eq.(4). Consequently, we can estimate the irradianceEestimated

pd

from thed-th light sourceld and the estimated surface normals
np; the estimated irradiance must be equals to its corresponding
observed irradianceEobserved

pd . On the other hand, if the selected
irradiance values contain a specular component, the estimated
surface normals becomes distorted and theEestimated

pd becomes in-
consistent to theEobserved

pd . Therefore we measure the goodness
of the estimated surface normals by the number of inliers whose
estimated irradiance equals to the observed one. The irradiance
Eobserved

pd is considered an inlier if following condition is satisfied,

|Eestimated
pd − Eobserved

pd | ≤ τsE
observed
pd , (10)

whereτs is a threshold.
The combinations of three irradiance values,Epi, Ep j, andEpk,

are selected iteratively to obtain a distribution of surface normals.
Then, the surface normalsnp is estimated from the inliers of the
iteration with highest number of inliers. The specular detection
and surface estimation are performed on every foreground pixel
to acquire the surface normalsn.
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Step 4 Evaluationof the Candidate Inverse Response Func-
tion

The accuracy of the estimated inverse response function is
evaluated. If the inverse response functiong and the surface nor-
malsn are accurately estimated, the irradianceEobservedwhich
mapped by the inverse responseg must consistent with the irra-
diance calculated from the surface property. Hence, we calculate
the irradianceEestimatedwith the surface normalsn. We deter-
mine the supporting inliers with the same criterion to the specular
detection. The irradianceEobserved

dp supports the estimated inverse
response function if it satisfies eq.(10).

The step 1 to 4 are repeated for many iterations to get a num-
bers of candidate inverse response functions. The inliers for the
inverse response function with the largest number of supports are
considered diffuse pixel intensities by consensus.
Step 5 Estimation of the response function and surface shape

In this step, the diffuse pixels are used to estimate the inverse
response function and the surface normals. The eq.(7) and (8)
are used once again to reestimate the coefficients of the inverse
response function̂ck and the surface normals ˆn from the diffuse
pixel intensities.

4. Experiments

We verify our proposed by experiments using both synthetic
images and real objects. We used MATLAB implementation of
the trust region reflective quadratic programming for the opti-
mization. We decide the number of iterations for surface estima-
tion and response function estimation as suggested in Fischler[2],

number of iterations=

⌈
log(1− ρ)
log(1− wn)

⌉
, (11)

whereρ is probability that all selected pixelintensities are inliers
at least once,w is probability that a selected pixel intensity is an
inlier andndenotes sampling size. we setw = 0.8 empirically and
n = ts for the estimation of response function, we setw = 3/D
andn = 3 for the specular detection. We setρ = 0.99,τ = 0.06,
s = 1, and degree of polynomialsK = 6 are selected empirically
for both synthetic images and real objects cases.

4.1 Synthetic Images
We evaluate the performance of our proposed method by com-

paring the result with that of the classic photometric stereo[12]
and result from auto-radiometric calibration photometric stereo
for Lambertian surface[8] using synthetic images. The synthetic
images were a sphere with uniform albedo and specular fac-
tor. We randomly picked ten light directions around the ob-
ject. We applied two response functions, namely agfa-scala-
200xCDStandard1 and agfapan-apx-400CD, from the DoRF
database[3] to the rendered images to emulate the effect of non-
linear response function.

Figure 4 shows the color coded normal map for the ground
truth (a), the estimated ones from our proposed method (b), the
estimated ones from the auto-radiometric calibration photometric
stereo without specular detection (d), and the estimated ones from
classic photometric stereo (f). Although the estimated surface
from the auto-radiometric calibration photometric stereo without
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Fig. 2 Response functions used in theexperiments. (top) Agfapan-apx-
400CD (bottom) Agfa-scala-200xCDStandard

specular detection is similar to the ground truth, the distorted ar-
eas due to specularity can be easily spotted in the disparity map
(e). Figure 5 shows the result from the images taken with a dif-
ferent response function.

We plotted the estimated inverse response function in Figure 6.
The plotted function and RMS error were computed using the pix-
els with intensities less than the ninetieth percentile of the largest
pixel intensities. This is because the number of bright diffuse
pixels is small due to specularity so the estimated function where
the pixel intensity is near 1 cannot be constrained well and there-
fore is not accurate. Moreover, the error propagates to the scale
of the estimated response function because we formulate the rela-
tionship between irradiance and pixel intensity with the boundary
conditionE(0) = 0 andE(1) = 1. Therefore, our algorithm has a
kind of ambiguity in the scale of the estimated response function.
This ambiguity does not affect the estimated surface normals but
it affects the overall scale of the estimated albedos instead.

Table 1 shows quantitative results: the average of the angular
error of estimated normals maps compared to the ground truth,
and the root mean square error of the scaled estimated functions
to the compared to the ground truth. The errors from our method
are decreased as there is no distortion due to specularity. The root
mean square errors show that our method can accurately estimate
the shape of the inverse radiometric response function.

4.2 Real Images
We evaluate the performance of our proposed method by com-

paring the result with that of the classic photometric stereo[12]
and result from auto-radiometric calibration photometric stereo
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Fig. 3 Synthetic images: Sphere

(a)

(b)

(d)

(f)

(c)

(e)

(g)
Fig. 4 Estimated normal maps of thesynthetic images: sphere (agfapan).

(a) the ground truth, (b) normals map from our proposed method
and its different to ground truth, (d) normals map from the auto-
radiometric calibration photometric stereo without specular removal,
(f) normals map from the classic photometric stereo. (c) (e) (g) show
angular difference of the estimated normal maps to the ground truth.

Table 1 Estimation results for the synthetic sphere. Average of the angu-
lar error of estimated normal map, and the RMS error of estimated
response function.

Surface Surface Surface Inverse
normal normal normal response
(classic) (auto-calib.) (ours) function

Sphere(agfapan) 15.3◦ 0.6◦ 0.2◦ 0.001
Sphere(agfascala) 4.24◦ 0.7◦ 0.3◦ 0.004

for Lambertian surface[8] using the imagesof real objects. The
target objects are TOMATO, and FISH. They are made of shiny
plastic, and ceramic with glossy paint respectively. We cap-
tured 20 images of the objects by a Point Grey’s Flea cam-
era with two nonlinear response functions, namely, agfa-scala-

(a)

(b)

(d)

(f)

(c)

(e)

(g)
Fig. 5 Estimated normal maps of thesynthetic images: sphere (agfascala).

200xCDStandard and agfapan-apx-400CD. We computed the
ground truth by using classic photometric stereo with specular
removal on the images captured with a linear response function.

Same as the synthetic images, we show the color coded normal
map for our proposed method, the auto-radiometric calibration
photometric stereo with no outlier removal, and the classic pho-
tometric stereo method. Our proposed method can remove the
specular regions and estimate the surface shape that similar to the
ground truth. Moreover, the shadows and holes in the bottom
part of FISH were removed correctly (figure 10). The edge of the
hole is accurately estimated compared to the result from classic
photometric stereo (f) and the auto-radiometric calibration photo-
metric stereo (d). In addition, our proposed method can estimate
the inverse response functions that are similar to the ground truth
(fig. 12). Similar to the experiments with synthetic images, the
estimated functions contain a kind of ambiguity in scale.

Table 2 shows quantitative results: the average of the angular
error of estimated normals maps compared to the ground truth,
and the root mean square error of the scaled estimated functions.
Similar to the experiments with synthetic images, the angular
errors slightly decreased for our proposed method compared to
the auto-radiometric calibration photometric stereo without out-
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Fig. 6 Estimated inverse responsefunction. The graph is plotted using the
first ninetieth percentile of pixel intensities. (a) agfapan-apx-400CD
(b) agfa-scala-200xCDStandard.

(a)

(b)
Fig. 7 Real images: (a) TOMATO (b) FISH

Table 2 Estimation results for the real images sphere whenτs = 0.6. Av-
erage of the angular error of estimated normal map, and the RMS
error of estimated response function.

Surface Surface Surface Inverse
normal normal normal response
(classic) (auto-calib.) (ours) function

FISH(agfapan) 17.90◦ 3.89◦ 2.22◦ 0.0063
FISH(agfascala) 6.91◦ 3.13◦ 2.40◦ 0.0055
TOMATO(agfapan) 17.90◦ 2.77◦ 1.80◦ 0.0075
TOMATO(agfascala) 5.56◦ 1.76◦ 1.69◦ 0.0086

(a)

(b)

(d)

(f)

(c)

(e)

(g)

Fig. 8 Estimated normal maps of thereal images: TOMATO (agfapan).

lier removal. The root mean square errors show that our proposed
method can estimate the shape of the inverse response function
accurately despite the observed intensities do not cover the whole
range of intensities.

5. Conclusion and Future Work

This paper presents an extension of photometric stereo with
auto-radiometric calibration for non-Lambertian surface. We uti-
lize RANSAC to integrate the specular detection technique to the
auto-radiometric calibration framework for photometric stereo.
Our proposed method allows surface modeling, response func-
tion estimation and outlier removal to be performed at the same
time. We experimentally show that our method can detect spec-
ular region and estimate the surface orientation accurately even
though the input images are captured by a camera with nonlinear
response function.

As for the future work, an extension for the unknown light
sources situation is still remain to be addressed.
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Fig. 10 Estimated normal maps of thereal images: FISH (agfapan).
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Fig. 11 Estimated normal maps of thereal images: FISH (agfascala).
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Fig. 12 The estimated response functions forTOMATO and FISH.
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