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Massive Parallelization of a Linear Scaling DFT Code OpenMX
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Density functional theory (DFT)
Quantum mechanical modeling method used to investigate the electro-
nic structure of many-body systems in physics and chemistry.
Petaflops era and beyond
O The K computer with approximately 700,000 cores.
Q Exaflops machines with millions of cores expected to arrive by 2020.
OpenMX (Open source package for Material eXplorer) """ sPeimcssuarecs
Q Linear scaling DFT code.
QO Large-scale calculations demanded.

Purpose

Purpose

Develop a domain decomposition method for enabling large-scale DFT

calculations with hundreds of thousands of atoms and cores.
Objectives

O Approximately the same computational amount for each process.

QO Locality held: nearby atoms assigned to the same process.

Q Inter-process communications minimized.

Q Applicable to any numbers of atoms and processes.

Q Applicable to any distribution patterns of atoms in space.

O Computationally inexpensive.

1. Atom Decomposition Method
Two key ideas: (i) the modified recursive bisection method for recur-
sively decomposing the domain by constructing a binary tree, and (ii)
the moment of inertia tensor for finding a principal axis of each sub-
domain to reorder the atoms based on their projection on the axis and
divide them into two sub-domains to fit the binary tree structure.
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Fig. 1: The modified recursive bisection method with the binary tree for 19 processes.
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Fig. 2: The moment of inertia tensor for 3D-to-1D atom reordering.
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Fig. 3: Example of the atom decomposition method with 26 atoms.

(¢) Multiply-connected carbon nanotube: 8 MPI processes.

(a) Diamond: Top view. (b) Diamond: Side view.

(d) Multiply-conneeted carbon nanotube: 16 MPI processes,

Fig. 4: Atom decomposition with 16,384 diamond atoms and 19 processes, and CNTs.
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2. Grid Decomposition Method
Define four data structures to make data locality consistent with that of
the clustered atoms for minimizing inter-process communications.
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Fig. 5: Data structures and the calculation flow.

Structure C

3. 3D Adaptive Order-Aware Decomposition Method for 3D FFT
Automatically decompose in 1D, 2D, or 3D depending on the pro-
cess number while giving priority to lower order.
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Fig. 6: The decomposition method in 2D
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Fig. 7: Comparison with other methods.
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Fig. 8 : Strong scaling on the K computer: 131,072 diamond atoms (left) and 13,000 and
26,000 atoms in the DNA structure (right) with OpenMX and O(N) Krylov subspace method.

Summary

Parallel Efficiency (%)
Elapsed Time (Second)

16383 32768 65536

Number of Cores

131072

Our method
Q Atom decomposition method + Grid decomposition method.
O 3D adaptive order-aware decomposition method for 3D FFT.
Q The parallel efficiency at 131,072 cores is 67.7% compared to the
baseline of 16,384 cores with 131,072 diamond atoms.
Ongoing and future work
Q Tune subroutines to enhance single-node performance.
QO Generalize the decomposition method for N-D FFT.
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