
Regular Paper

Using Fault Injection to Analyze the Scope of Error Propagation in Linux

Takeshi Yoshimura,† Hiroshi Yamada††,††† and Kenji Kono†,†††

Operating systems (OSes) are crucial for achieving high availability of computer systems.
Even if applications running on an operating system are highly available, a bug inside the
kernel may result in a failure of the entire software stack. The objective of this study is
to gain some insight into the development of the Linux kernel that is more resilient against
software faults. In particular, this paper investigates the scope of error propagation. The
propagation scope is process-local if the error is confined in the process context that activated
it. The scope is kernel-global if the error propagates to other processes’ contexts or global
data structures. The investigation of the scope of error propagation gives us some insight into
1) defensive coding style, 2) reboot-less rejuvenation, and 3) general recovery mechanisms of
the Linux kernel. For example, if most errors are process-local, we can rejuvenate the kernel
without reboots because the kernel can be recovered simply by killing faulty processes. To
investigate the scope of error propagation, we conduct an experimental campaign of fault
injection on Linux 2.6.18, using a kernel-level fault injector widely used in the OS community.
Our findings are (1) our target kernel (Linux 2.6.18) is coded defensively. This defensive
coding style contributes to lower rates of error manifestation and kernel-global errors, (2) the
scope of error propagation is mostly process-local in Linux, and (3) global propagation occurs
with low probability. Even if an error corrupts a global data structure, other processes merely
access to them.

1. Introduction

Operating systems (OSes) are crucial for
achieving high availability of computer sys-
tems. Kernel-level failures are known to oc-
cur less frequently compared with application-
level failures, but they have a considerable im-
pact on the overall availability of software sys-
tems. Even if applications running on an OS
are highly available, bugs inside the kernel may
result in a failure of the entire software stack; no
application can continue to run on the crashed
kernel.
Modern OSes are far from bug-free. Rich

functionality of the OSes makes it harder to
eliminate all the bugs before shipping. Al-
though the advances in debugging tools, soft-
ware testing methodologies, static analysis,
and formal methods are tremendous, there
are many software faults in production-quality
OSes. According to Palix et al.1), the rate of
introduction of bugs continues to rise even in
Linux 2.6. Our investigation into the change
logs of Linux 2.6.24 and 2.6.25 also reveals that
there are critical bugs inside the kernel core
components.
The objective of this study is to gain some

† Keio University
†† Tokyo University of Agriculture and Technology
††† JST CREST

insight into design of the Linux kernel that is
resilient against software faults. To this end,
it is critically important to understand Linux
kernel behaviors under software faults. We in-
troduce the concept of the scope of error prop-
agation. The propagation scope is process-local
if the error is confined in the process context
that activated it. The scope is kernel-global if
the error propagates to other processes’ con-
texts or global data structures. To the best of
our knowledge, no existing work investigated
the scope of error propagation.
This distinction between process-local and

kernel-global errors is significant. If most er-
rors are process-local, the kernel can recover
from most errors simply by killing and revok-
ing the resources of the faulty process. This
implies that the Linux kernel can be partially
rejuvenated without rebooting the entire OS;
it can restart the killed process when the fault
is transient (e.g., timing bugs). If most errors
are kernel-global, the recovery becomes hope-
less because corrupted global data structures
must be recovered to continue processing. In
this case, a mechanism isolating propagated er-
rors should be developed rather than recovery
mechanisms.
To investigate the scope of error propagation,

a series of fault injection experiments is con-
ducted. The fault injector used in our experi-
ments is the existing one2) that is widely used

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 13

ComSys2012
2012/12/6

to evaluate the OS dependability in the OS re-
search community3)∼7). It focuses on the em-
ulation of low- and high-level software faults,
including ones specific to OS kernels.
The distinguished feature of our study is

threefold. First, we investigate the “scope” of
error propagation; an error caused by a software
fault propagates outside or confines within the
context of the faulty process. Second, we fo-
cus on low- and high-level software faults, while
the primary target of previous work8)∼10) is
low-level hardware faults such as flipping bits
in memory. Flipping bits in memory can in-
directly emulate low-level programming faults,
however, high-level programming faults such as
argument faults are neither emulated directly
nor considered enough. Third, we show the de-
tailed analysis of faults that are activated but
do not manifest themselves.
In our fault injection experiments, 864 faults

are injected into Linux 2.6.18 and 20% of the
injected faults are activated. Error propagation
is investigated by using a built-in kernel debug-
ger. The major findings include:
• Our target kernel (Linux 2.6.18) is coded

in a defensive way. It frequently checks
the integrity of function arguments, re-
turn values, and other important variables.
This style of defensive coding contributes
to lower rates of error manifestation (36%
of the fault activation) and kernel-global er-
rors (16% of the failures).

• The scope of error propagation is mostly
process-local in Linux (84% of the failures).
This implies that the Linux can be rejuve-
nated without reboots with high probabil-
ity. Since an error is not propagated to
other process contexts, the kernel can be
recovered to a consistent state simply by
revoking the context of a faulty process.

• Global propagation of errors occurs with
low probability. Interestingly, even if a
global data structure is corrupted, the cor-
rupted data cannot be accessed from the
other processes in our experiment. This is
because the faulty process crashes with a
lock acquired inside a critical section.

The rest of this paper is organized as fol-
lows. Section 2 describes related work. Sec-
tion 3 explains the software fault injector we
used. Section 4 describes our methodology of
the experimental campaign of fault injection.
Section 5 reports our experimental results. Sec-
tion 6 discusses the directions towards more re-

silient structure of the Linux kernel. Section 7
concludes this paper.

2. Related Work

Understanding the kernel behavior under
fault manifestation can be an aid for kernel de-
velopers to improve the kernel dependability or
develop the mechanisms for kernel recoveries.
OS kernel behavior under fault manifestation
has been widely examined.
Software-implemented fault injection (SWIFI)

has been conducted with emphasis placed on
the different aspects of fault manifestation to
better understand the kernel behavior under
fault manifestation. This work focuses on the
“scope” of error propagation (i.e., process-local
or kernel-global), while previous work focuses
on other aspects of error propagation than the
scope of error propagation. This work is ex-
tended from our previous work11),12) and re-
ports more detailed results.
Gu et al. 8) use SWIFI to characterize Linux

behaviors under error manifestation. Their
analysis shows that crash latencies are within
10 cycles in most cases and also shows how an
error propagates between OS subsystems. Our
concern in this paper is that an error propa-
gates beyond the boundary of the process con-
text. Pham et al.13) use SWIFI for their frame-
work that automates to validate the robustness
of virtualized environments based on KVM or
Xen hypervisors.
Chen et al.10) and another paper from Gu

et al.9) investigate behavioral difference caused
by different combinations of CPU architectures
and OSes (five combinations of CPU and OSes
are investigated in total). These studies indi-
cate a good insight into the design principles of
CPU architectures and OSes that are resilient
to faults. However, these studies do not address
the scope of error propagation. The fault mod-
els considered in these studies use device-level
transient faults, while the fault model used in
our study is low- and high-level programming
errors.
The techniques used in SWIFI are evolving.

G-SWFIT precisely emulates general software
faults by mutating binary executable code14).
According to the analysis by Controneo et
al.15), G-SWFIT improves the fault injection
accuracy. Unfortunately, G-SWFIT does not
emulate faults that are specific to Linux ker-
nels. So, we use another fault injector that is
widely used in the OS community.

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 14

ComSys2012
2012/12/6

Aside from fault injection studies, software
bugs in the production-quality OSes such as
Linux are extensively examined. Chou et al.16)

apply a static analyzer to Linux versions 1.0
through Linux 2.4.1 to study the trend of soft-
ware bugs in the Linux kernels. Palix et al.1)

are the most recent follow-up that investigates
Linux versions 2.6.0 to 2.6.33. The primary
goal of these studies is to identify the distri-
bution and lifetime of certain kinds of faults in
the Linux kernels.
To mitigate the impact of kernel failures, nu-

merous mechanisms for kernel recovery have
been proposed. Swift et al.3),4) propose a kernel
mechanism of managing and recovering from
device driver failures. Otherworld5) restarts the
kernel without discarding applications mem-
ory states when the kernel crashes. Phase-
based Reboot6) shortens downtime involved in
reboot-based recovery.

3. Fault Injector

We investigate the scope of error propagation
in a commodity OS kernel (i.e., Linux) under
software fault manifestation. To this end, an
experimental campaign of fault injection is con-
ducted in Linux to examine how it reacts to the
injected faults. The injector that is originally
obtained from the Nooks web site is ported to
the x86 Linux 2.6.18 kernel. This section briefly
describes the injector and the fault types it in-
jects.
3.1 Overview
The injector2) emulates low- and high-level

programming bugs specific to OS kernels. It
changes individual instructions in the kernel
text segment. These faults are intended to ap-
proximate the assembly-level manifestation of
real C-level programming errors. For exam-
ple, the injector emulates missing initialization
by deleting instructions that are responsible for
variable initialization. The details of the faults
are described in Section 3.2.
The injector is widely used to evaluate and

validate recovery mechanisms in the OS re-
search community. For example, it was used
to evaluate the fault tolerance of the file sys-
tem cache2), recovery mechanisms for device
drivers3),4), a kernel mechanism for applications
to survive OS crashes5), and a quick mechanism
for reboot-based recovery6).
The injector runs in the kernel and provides

a system call interface to specify the parame-
ters of fault injection. It rewrites the binary

code of the running kernel to inject each type
of fault. The injector disassembles the binary
of a randomly selected function in the kernel
text segment. Since the faults injected by our
injector are context-dependent, it analyzes the
disassembled code and searches for proper loca-
tions to which each type of fault can be injected.
3.2 Injected Faults
The injector emulates 10 types of faults.

These faults range from low-level hardware
faults to high-level software faults. Since our
primary concern is in programming errors, we
omitted 3 types of faults that emulate low-level
hardware faults. So, 7 types of faults are in-
jected in our experiments. For ease of under-
standing, Table 1 lists some examples of in-
jected faults at the C-language level, although
the injection is done at the binary level.
• INIT FAULT: INIT fault creates a situ-

ation where the initialization of variables
is missed. To create such a situation, the
injector deletes instructions responsible for
initializing a variable by copying a constant
value. More concretely, it deletes an in-
struction that assigns an immediate value
to the address lower than the stack pointer.

• DST&SRC FAULT: This fault corrupts
assignment statements. This creates a situ-
ation where the assignment is incorrect due
to a programming error. To do this, the
injector corrupts the value of the source or
the destination by flipping the bits of the
value.

• PTR FAULT: This fault emulates pointer
corruption by corrupting the addressing
bytes of instructions. The injector either
flips a bit within the addressing-form spec-
ifier byte (ModR/M) or the scale, index or
base (SIB) byte following the instruction
opcode.

• BRANCH FAULT: This fault emulates
an incorrect control flow by deleting a
jump instruction involved in the condi-
tional statement. By doing this, the injec-
tor emulates branch errors and error han-
dling faults.

• INVERSE FAULT: The injector also re-
verses the predicates of conditional state-
ments to inject incorrect control flows. For
example, this fault changes “je” into “jne”
to reverse the predicate.

• INTERFACE FAULT: This fault cor-
rupts one of the arguments passed to a pro-
cedure. To create this situation, the in-

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 15

ComSys2012
2012/12/6

Table 1 C-Language Level View of the Injected Software Faults.
This table shows examples of the injected faults at the C-language
level.

Fault Before After

INIT int x = 0; int x;

DST&SRC x += 1; x += 2;

PTR ptr = list->prev; ptr = list->next;

BRANCH if (x != 0) return; return;

INVERSE if (x == 0) if (x != 0)

INTERFACE func(1, 2, 3); func(1, 214, 3);

IRQ local_irq_restore(); deleted.

jector deletes an instruction that copies a
value at an address below the base pointer
to registers or memory. For example, the
injector can change the call foo(a, b) to
foo(X, b), where X is a corrupted value,
by deleting the instruction that copies a to
a register or memory.

• IRQ FAULT: When an IRQ fault is
injected, the injector creates a situation
where a kernel developer forgets to enable
interrupts after disabling them. The in-
jector removes local irq restore() calls.
When a call to local irq restore() is re-
moved, the interrupt mask is not restored
and thus the disabled interrupts continue
to be disabled.

4. Methodology

To investigate the scope of error propagation,
we track the Linux kernel behavior when an in-
jected fault is activated. The kernel version of
Linux we use is 2.6.18.8. 864 faults are injected
in our experiments. To track how the Linux
kernel reacts to the injected faults, we take the
following steps:
(1) Injecting a fault: We request the injector

to inject a fault. In our experiments, only the
text segment is modified to inject faults as our
target is programming errors. This does not
imply no data is corrupted in our experiments.
Data in heap or stack may be corrupted by the
injected erroneous instructions. To trace the
kernel execution after the fault is activated, we
set a breakpoint at the instruction to which a
fault is injected. When the breakpoint is hit,
the control is transferred to KDB, a built-in
kernel debugger for Linux. We do not inject
faults into the KDB code.
(2) Running a workload: The workload that

we use to activate injected faults is to restart all
the daemons. Since the daemons extensively
issue system calls, the kernel code runs very
frequently while the daemons are restarted.

(3) Tracing error propagation: After the
fault is activated, the CPU is set into the single-
step execution mode to take a trace of every in-
struction. Using the execution trace, the scope
of error propagation is analyzed in the same
way as taint analysis. If the injected fault pro-
duces an erroneous value, the value is marked
as an “error”. When the value marked as an
“error” is used to calculate another value, the
calculated value is also marked as an “error”.
If the value marked as an “error” is used in the
prediction of conditional branches, all the val-
ues updated in the taken clause are marked as
an “error”. If no value marked as an “error”
is written to a heap, the error is concluded to
be process-local. Otherwise, the error is con-
cluded to be kernel-global. The kernel execu-
tion is tracked until kernel failures (e.g., kernel
panic). If all the daemons are restarted suc-
cessfully, the error is classified into “not mani-
fested”.
Note that error propagation is investigated

at the assembly code level in our experiments,
although this section describes the analysis of
error propagation at the source code level for
readability. Error propagation can be analyzed
more precisely if it is analyzed at the assem-
bly level. For example, compilers generate op-
timized code that shares common expressions.
Supposed that there are two expressions: x =
a + b and y = (a + b) * c. If a fault is in-
jected into the former a + b, it propagates to
the latter.

5. Experiments

5.1 Experimental Setup
Our experimental campaign of fault injection

is carried out on VMWare Workstation 7.1.2
running onWindows 7. We run Fedora 8 (Linux
2.6.18.8) in a guest virtual machine that con-
sists of 1 CPU, 1 GB of memory and 20 GB
hard disk drive. The host CPU is 2.53 GB
Core2 Extreme CPU. The kernel configuration

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 16

ComSys2012
2012/12/6

0%

20%

40%

60%

80%

100%
B

R
A

N
C

H

D
S

T
&

S
R

C

IN
IT

IN
T

E
R

F
A

C
E

IN
V

E
R

S
E

P
T

R

IR
Q

to
ta

l

activated not activated

(a) Activated/Not Activated Faults

This figure shows the relative frequency with
which injected faults are activated or not.

0%

20%

40%

60%

80%

100%

B
R

A
N

C
H

D
S

T
&

S
R

C

IN
IT

IN
T

E
R

F
A

C
E

IN
V

E
R

S
E

P
T

R

IR
Q

to
ta

l

SEG_F
BUG_ON

Panic
Hang

FSV
not manifested

(b) Observed Failures

This figure shows the relative frequency of not-
manifested errors and the failure categories of
manifested errors

Fig. 1 Overall Fault Injection Results.

is default. Note that the failures encountered
in these experiments are triggered by injected
faults, not bugs in the Linux kernel, although
real bugs inside the kernel can trigger failures
during our experiments.
5.2 Overall Results
Figure 1 shows the overall results of our

fault injection experiments. In total, 864 faults
are injected and 20% of them are activated.
Figure 1(b) shows the failures which are ob-
served after the fault activations. Segmen-
tation failures (“SEG F” in Figure 1(b)) are
caused in 20% of the fault activations. They
occur when the kernel attempts to access il-
legal pages. Intentional kernel crashes caused
by BUG ON are observed in 6% (“BUG ON in Fig-
ure 1(b)). BUG ON denotes a situation where
Linux BUG ONmacro, similar to C assert, detects
an erroneous state in the kernel. The other fail-
ures are panic, hangs and fail silence violations
(“FSV” in Figure 1(b)). 64% of the activated
faults do not manifest themselves.
Figure 2(a) summarizes the result of the

scope analysis. 84% of the manifested errors
are process-local, while 16% of them are kernel-
global. This suggests that 84% of the kernel
failures can be recovered simply by revoking the
faulty process.
Figure 2(b) summarizes observed failures in

terms of their error propagation scope. These
segmentation failures occur in both propaga-
tion scopes with the highest probability out of
all the observed failures (56% of all the mani-
fested errors). All of the fail silence violations

and BUG ON are caused only by process-local er-
rors. This result implies that BUG ON effectively
prevents global propagation in the kernel as de-
scribed in Section 5.3.1.
5.3 Scope Analysis
This section shows the detailed analysis of

kernel traces. Error propagation are thoroughly
examined in terms of their scope.
5.3.1 Process-local errors
Table 2 shows typical examples of each failure

type caused by process-local errors. The table
lists an injected fault type, a memory address
where the fault is injected, the location at the
source code level, and the instructions and C-
code before/after the fault injection.
(a) Segmentation Failure: As shown in Fig-

ure 2(b), 56% of the process-local errors lead
to segmentation failures. Table 2(a) shows the
detail of a typical case that leads to a segmen-
tation failure. In this case, a null pointer is
passed to a function that expects the passed
pointer not to be null. This fault is injected by
INVERSE FAULT. More concretely, the code

if (sd->s_iattr) {
set_inode_attr(inode, sd->s_iattr);
...

is modified to

if (!sd->s_iattr) { // FAULT injected here
set_inode_attr(inode, sd->s_iattr);
...

In the original code, set inode attr is
called only when sd->s_iattr is not NULL.
However, set inode attr is called when
sd->s_iattr is NULL in the modified code. As

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 17

ComSys2012
2012/12/6

0%

20%

40%

60%

80%

100%
B

R
A

N
C

H

D
S

T
&

S
R

C

IN
T

E
R

F
A

C
E

IN
V

E
R

S
E

P
T

R

IR
Q

to
ta

l

process-local kernel-global

(a) Error Propagation Scope

This figure shows the relative frequency of
process-local or kernel-global errors.

0%

20%

40%

60%

80%

100%

process-local kernel-global total

segmentation failure
BUG_ON
panic

hang
FSV

(b) Failure Type by Scope

This figure shows the relative frequency with
which the kernel causes different failure cate-
gories after fault activations.

Fig. 2 Overall Result of Scope Analysis

a result, parameter iattr in set inode attr
becomes NULL as shown below. The derefer-
ence of iattr causes a segmentation fault.

void set_inode_attr(inode, iattr)
{

// Failure
inode->i_mode = iattr->ia_mode; // iattr is NULL

In this case, a null pointer is passed across
function calls but no global data structures are
updated with the incorrect null pointer. Thus,
the scope of error propagation is process-local.
The following is short descriptions of the

other typical process-local errors leading to seg-
mentation failures. First, a function that is ex-
pected to return a non-null pointer to the caller
is modified to return a null pointer. As a result,
the caller crashes because it dereferences the
returned null pointer with no checks. Second,
a pointer is initialized incorrectly and derefer-
enced later in the same function. Finally, a re-
turn address stored in a stack is destroyed. So,
a segmentation fault occurs when this function
returns. All of these errors do not propagate
outside the contexts of faulty processes.
(b) BUG ON: As shown in Figure 2(b),

19% of the process-local errors lead to BUG ON.
An example of this failure is caused by
IRQ FAULT, which removes the call to
local irq restore to forget to enable disabled
interrupts. After this fault is activated, the
kernel continues to run with the interrupts
disabled. Meanwhile, lookup bh lru(bdev,
block, size) is invoked. This function even-

tually calls check irqs on, which executes
BUG ON(irq disabled()). Since the interrupts
are disable here (if the fault is not injected, the
interrupts are enable here), BUG ON macro suc-
cessfully detects this incorrect status of inter-
rupts.
This experimental result suggests that

BUG ON macro is effective to prevent global er-
ror propagation. If BUG ON is not used to check
the status of interrupts, blocking functions are
called with the interrupts disabled and thus,
the deadlock or other serious situations would
be caused. In the current versions of Linux,
BUG ON macro is inserted manually according
to the developers’ experiences and intuitions.
We expect that more systematic methods are
required in order to help the developers insert
BUG ON macros correctly.
(c) Panic: As shown in Figure 2(b), 6%

of the process-local errors cause kernel panic.
Table 2(c) shows a typical example of panic.
In this case, a fault is injected into an inter-
rupt handler. More concretely, an argument to
function neigh update is corrupted and thus
the address of neigh->dev, which is calculated
from the corrupted argument, becomes an in-
correct value. As a result, the first access
to neigh->dev causes a segmentation failure.
Since this code is executed in an interrupt han-
dler, the kernel invokes panic instead of causing
a segmentation failure.
(d) Fail silence violation: There are 15% of

the process-local errors that lead to fail silence

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 18

ComSys2012
2012/12/6

Table 2 Faults causing process-local errors

(a) Segmentation Failure
Fault INVERSE FAULT
Memory Address sysfs_new_inode+0x5c

Code Location fs/sysfs/inode.c, line:134

Original Instruction je sysfs_new_inode+0x97

Modified Instruction jne sysfs_new_inode+0x97

Original Code if (sd->s_iattr) {

Modified Code if (!sd->s_iattr) {

(b) BUG ON

Fault IRQ FAULT
Memory Address kfree+0x5f

Code Location mm/slab.c line: 3463

Original Instruction push %esi popf

Modified nstruction nop nop

Original Code local_irq_restore(flags);

Modified Code deleted

(c) Panic

Fault INTERFACE FAULT
Memory Address neigh_update+0x1ed

Code Location
net/core/neighbour.c
line:894-895

Original Instruction mov 0xc(%ebp), %eax

Modified Instruction nop nop nop

Original Code
void (*update)(...) =
neigh->dev->
header_cache_update;

Modified Code
void (*update)(...) =
(struct netdevice *)(0x6)->
header_cache_update;

(d) Fail silence violation

Fault SRC&DST FAULT
Memory Address sock_alloc_fd+0xb

Code Location net/socket.c, line:380

Original Instruction mov %eax, %ebx

Modified Instruction mov %esp, %ebx

Original Code fd = get_unused_fd();

Modified Code get_unused_fd();

(e) Hang

Fault IRQ FAULT
Memory Address do_softirq+0x48

Code Location kernel/softirq.c, line:215

Original Instruction push %esi popf

Modified Instruction nop nop

Original Code local_irq_restore(flags);

Modified Code deleted

violation as shown in Figure 2(b). In our exper-
iments, Fail silence violations often derive from
kernel error detections. Despite their correct-
ness, the kernel starts to handle the detected
errors by the usual error processing manner.
Besides, such error processing tends to simply
abandon the current processing and return a
corresponding erroneous value (e.g., EINVAL),
therefore, global data structures are merely up-
dated before fail silence violations occur. In

our experiments, we do not observe any kernel-
global errors that lead to fail silence violations.
The following is a typical example of fail si-

lence violation. In this example, the injected
fault generates a situation in which there is no
unused network sockets. So, the Linux kernel
considers no network sockets can be created.
The following is simplified code for explanation.
The original code

int sock_alloc_fd(...) {
int fd;
fd = get_unused_fd(); // Fault injected here
...
return fd;

}

is modified to

int sock_alloc_fd(...) {
int fd;
get_unused_fd(); // "fd =" is removed
...
return fd;

}

In the modified code, fd is not initialized. In
our experiment, uninitialized fd happens to be
negative. As a result, sock alloc fd returns a
negative value to its caller. The caller is:

// sock_alloc_fd is called here
// retval becomes negative
retval = sock_alloc_fd(sock);
// Linux considers no socket
// can be allocated
if (retval < 0)

goto out_release;
...

out_release:
// socket is released and
// a negative value is returned
sock_release(sock);
return retval;

In the above code, the Linux kernel considers
there is no room to create a new socket because
sock alloc fd returns a negative value. As a
result, a process cannot create a new socket
even though there is enough room to create new
sockets.
(e) Hang: As shown in Figure 2(b), there

are 5% cases in which the Linux kernel hangs
up. The typical example is shown in Table 2(e).
In this example, IRQ FAULT is injected into
do softirq which schedules pending software
interrupts. When do softirq returns, the ker-
nel hangs immediately without dumping the
stack trace. So, we cannot trace the kernel be-
havior using KDB. Since we can not determine
from the source code which function is executed
after do softirq returns, further information
cannot be obtained in this case.

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 19

ComSys2012
2012/12/6

Table 3 A Kernel-global error

Fault INTERFACE FAULT
Memory Address rb_erase+0x1e9

Function lib/rbtree.c, line:178

Original Instruction mov 0x0(%ebp),%ebx

Modified Instruction nop nop nop

Original Code node = root->rb_node;

Modified Code node = parent->rb_right;

5.3.2 Kernel-global errors
16% of the errors are kernel-global as shown

in Figure 2(a), while all the other errors are
process-local. Some of the process-local er-
rors propagate across multiple function calls
but the propagations are limited to function
arguments, return values, and local variables.
This is probably because global data structures,
shared among multiple processes, are used to
store stable, consistent states rather than tran-
sient, temporary states. Experienced program-
mers like Linux developers write defensive code
that checks data integrity and/or confirms the
assumptions on function arguments. A data is
checked again and again before it is written to
global data structures.
Table 3 shows the detail of a represen-

tative kernel-global error. In this case, a
fault is injected into a function that man-
ages red-black trees, a type of self-balancing
binary search tree, used for storing sortable
key-value pairs. More specifically, INTER-
FACE FAULT is injected into the call to
rb erase color. Function rb erase color

takes three arguments: node, parent, and
root whose types are all struct rb node*.
By the INTERFACE FAULT, argument node
that should be root->rb node is modified to
parent->rb right. As you can imagine from
the arguments, rb erase color manipulates
tree structures in the heap. The incorrect argu-
ment leads to the corruption of the global tree
structures. When the kernel traverses a bro-
ken red-black tree, it crashes due to segmen-
tation fault. Since global data structures are
corrupted by injected faults, the scope of this
error is kernel-global.
There is one important thing to be noted.

The fault shown in Table 3 corrupts global data
structures, however, this error is never propa-
gated to other processes than the faulty one.
This is because the faulty process holds a lock
(more precisely, semaphore) for exclusive access
to global data structures. When a faulty pro-
cess causes a segmentation fault, it does not
release the lock. Since the other processes can-

Table 4 Summary of Not-Manifested Errors.
The table shows the number of errors for
each reason that activated errors do not man-
ifest themselves. We conclude that an error
does not manifest itself when one of these sit-
uation is observed during the tracing of error
propagation. The untraceable cases are dis-
cussed in detail.

Reason # of errors

Corrected 8
Not affecting 10
Error processing omitted 18
Incorrect warning 4
Almost correct operation 15
Aging 6
Lucky 40
Untraceable 11

Total 112

not acquire the lock, they cannot access to the
broken data structures; the corrupted data is
never propagated to the other processes.
5.4 Not-Manifested Errors
To understand Linux behaviors under soft-

ware faults, it is critically important to analyze
the reason why activated faults do not mani-
fest themselves. As pointed out in many liter-
atures, activated faults do not always manifest
themselves. In our campaign of fault injection,
These “not-manifested” errors are observed in
64% of the fault activations. If an error is cor-
rected during the execution, the analysis aids
in proposing defensive coding styles effective for
kernels.
In our experiments, we trace error propaga-

tion with the kernel debugger until the kernel
detects an error or we are sure of the error not
manifesting itself. Table 4 shows the summary
of the errors not manifested in our experiments.
In this table, these errors are classified into 8
cases, based on the reason why they do not
manifest themselves.
Corrected: “Corrected” indicates a situa-

tion in which an erroneous state is corrected
by the Linux kernel. A typical example of this
error is as follows. As shown in Table 5, a
fault is injected to remove the initialization of
oldpolicy. In the original code, oldpolicy is
initialized to -1. This error is corrected as fol-
lows.

int oldpolicy; // should be initialized to -1
...
if (unlikely(oldpolicy != -1)) {

policy = oldpolicy = -1; // error corrected

Not affecting: “Not affecting” indicates a
situation where an erroneous state is not used

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 20

ComSys2012
2012/12/6

Table 5 Examples of Not-Manifested Errors

(a) Corrected
Fault INIT FAULT
Memory Address sched_setscheduler+0x44

Code Location kernel/shed.c, line:4087

Original Instruction
movl $0xffffffff,

0xffffffec(%ebp)

Modified Instruction nop nop ... nop

Original Code int oldpolicy = -1;

Modified Code int oldpolicy;

(b) Not affecting

Fault INIT FAULT
Memory Address rebalance_tick+0xda

Code Location kernel/sched.c line: 2530

Original Instruction movl $0x0, 0xfffffff0(%ebp)

Modified nstruction nop nop ... nop

Original Code int all_pinned = 0;

Modified Code int all_pinned;

(c) Error processing omitted

Fault BRANCH FAULT
Memory Address follow_page+0xd8

Code Location mm/memory.c, line:935

Original Instruction je follow_page+0x1aa

Modified Instruction nop nop ... nop

Original Code if (!ptep) goto out;

Modified Code deleted

(d) Incorrect warning

Fault BRANCH FAULT
Memory Address net_tx_action+0x37

Code Location kernel/sched.c, line:2845

Original Instruction je net_tx_action+0x55

Modified Instruction nop nop

Original Code if (unlikely(!(x))) {

Modified Code deleted

(e) Almost correction operation

Fault INIT FAULT
Memory Address schedule+0xd2

Code Location kernel/sched.c, line:3341

Original Instruction
movl 0x3b9aca99,

0xffffffc4(%ebp)

Modified Instruction nop nop ... nop

Original Code
run_time =

NS_MAX_SLEEP_AVG;

Modified Code deleted

by the kernel. For example, a local variable
is corrupted but not used at all until the end
of the function after the injection, as described
in Table 5(b). In this example, local variable
all pinned, which is not initialized, is not used
in our experiments until the function returns.
Error processing omitted: “Error processing

omitted” indicates a situation where the code
for error processing is omitted. This error does
not manifest itself during the experiments un-
less the omitted error processing becomes nec-
essary. The detail of a typical example of this

case is shown in Table 5(c).
Incorrect warning: “Incorrect warning” in-

dicates a situation where warning messages are
displayed even though those messages should
not be displayed. This is caused by the omis-
sion of conditional jumps that judge if warn-
ing messages should be displayed. The detail is
shown in Table 5(d).
Almost correction operation: “Almost cor-

rection operation” indicates a situation where
the kernel behavior is slightly changed from
the expected one but the kernel continues to
run as normal. Most of these errors are re-
lated to scheduling parameters that affect the
scheduling behavior of the kernel. In the exam-
ple shown in Table 5(e), the code for initializ-
ing local variable run time is removed by fault
injection. Since run time is used to calculate
the sleeping time of processes, it changes the
scheduling behavior if set improperly. As shown
below, even if run time becomes erroneously
large, the kernel code corrects the value. As a
result, the kernel continues to run almost nor-
mally.

...
// Following statement removed
run_time = NS_MAX_SLEEP_AVE;
...
// prev->sleep_avg becomes incorrect here
prev->sleep_avg -= run_time;

// prev->sleep_avg corrected if necessary
if ((long)prev->sleep_avg <= 0)

prev->sleep_avg = 0;

Aging: “Aging” indicates a situation where
resource leakage occurs. Software aging is a se-
rious problem but the aging errors seem not to
manifest themselves during the short duration
of fault injection experiments.
Lucky: “Lucky” indicates a situation where

an error is activated but happens to cause noth-
ing wrong. For example, INIT FAULT removes
code for initializing a local variable to zero,
whose value happens to be zero. Another ex-
ample is from tty register driver, which is
used to register a new major device. A PTR
FAULT is injected into this function. In this
case, the major device number of the new de-
vice becomes an unexpected number but the
operation itself continues normally.
Untraceable: There are 11 cases in which we

cannot trace error propagation completely. The
faults are injected into the code for the socket
management, and corrupt packet headers to be
sent out to network. The actual operations of
sending out the packets are performed asyn-

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 21

ComSys2012
2012/12/6

chronously. So, we cannot trace the sending-out
operations with the kernel debugger. We care-
fully observe the network behavior of the target
machine but notice nothing in particular. This
is probably because the packets with incorrect
headers are destroyed somewhere deeper in net-
work drivers. As a result, this type of errors
does not manifest themselves.

6. Discussion

Our findings through the experiments are
threefold. First, the Linux kernel is coded in
a defensive way. This means that the Linux
kernel frequently checks the integrity of func-
tion arguments, return values, and other im-
portant variables. This defensive coding style
would have been introduced to ease debugging
and diagnosis of failures. A typical example
of the defensive coding in Linux is the use of
BUG ON macro, which checks the integrity of the
kernel internal states. The use of BUG ON aids
in early error detections to prevent error prop-
agation over the entire kernel. One interest-
ing direction towards more resilient Linux is to
develop a systematic method that determines
the locations where BUG ON macros are inserted
and conditions given to those macros. Current
static analysis tools are expected to give invalu-
able hints on the locations and conditions of
BUG ON macros.
Second, the scope of error propagation is

mostly process-local in Linux. As you can see
from our experimental results, most of the acti-
vated faults are process-local and do not prop-
agate outside the contexts of faulty processes.
This implies that the Linux can be rejuvenated
without reboots with high probability. If an er-
ror does not propagate outside the context of
the faulty process, the kernel states (including
global data structures and other processes’ con-
texts) are consistent. Thus, we can recover a
consistent kernel state simply by revoking the
context of the faulty process.
From our experiments, we have learned that

our definition of “process-local” and “kernel-
global” is somewhat ambiguous and there is
room for further discussion. For example, some
errors that cause software aging can be viewed
as kernel-global because a resource leakage of
a process affects all the other processes in the
system. On the other hand, those errors can be
viewed as process-local because no global data
structures are corrupted; all processes are view-
ing consistent image of global data structures.

Finally, the global propagation of errors oc-
curs in lower rates (16% of the failures). This
is probably due to the nature of the defensive
programming style in the Linux kernel. Data
integrity is checked again and again before the
data is written to global data structures.
One interesting finding in our investigation is

that even if a global data structure is corrupted,
the corrupted data cannot be accessed from the
processes other than the faulty process. This is
because global data structures are usually pro-
tected with an exclusive lock to avoid concur-
rent access to them. When a faulty process cor-
rupts a global data structure, it often causes a
segmentation fault before it exits the critical
section. As a result, no other processes can ac-
cess to the corrupted data structures.
This finding suggests that a new style of de-

fensive programming. If a faulty process is re-
voked with a lock acquired, other processes can-
not proceed because they cannot acquire the
lock. To avoid this, when a faulty process
with some locks acquired is revoked, the kernel
should release the locks. Note that this design
of the kernel increases the possibility that an
error is propagated outside the faulty process
context through corrupted global data struc-
tures. To prevent other processes from access-
ing corrupted data structures, when a process
enters a critical section previously locked by a
faulty process, it should check the integrity of
the global data structures. If the integrity is
confirmed, the process can proceed to access the
data structures. Otherwise, the process tries to
cure the corrupted data structures. If it suc-
ceeds, the process can proceed normally. If it
fails, the process gives up accessing the data
and calls panic to crash the kernel.

7. Conclusion

This paper investigates the Linux behavior
under software faults. Our objective of this
study is to gain some insight into 1) defensive
coding style, 2) reboot-less rejuvenation, and 3)
general recovery mechanisms of the Linux ker-
nel. In particular, this paper focuses on the
analysis on the scope of error propagation. If
an error propagates inside the context of the
faulty process, it is called process-local. If an er-
ror propagates outside the context of the faulty
process, it is called kernel-global. To this end,
we conduct an experimental campaign of fault
injection on Linux. Since our focus is on soft-
ware faults (in other words, software bugs),

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 22

ComSys2012
2012/12/6

we use an existing software fault injector es-
pecially designed for injecting kernel-level soft-
ware faults. It injects low- and high-level soft-
ware faults. It is widely used in the OS research
community. The major findings include:
• The Linux kernel is coded in a defensive

way. It frequently checks the integrity
of function arguments, return values, and
other important variables. This style of
coding contributes the resilience to acti-
vated faults. In particular, it contributes
to lower rates of error manifestation (36%
of the fault activation) and global propa-
gation (16% of the failures). In our experi-
ments, activated errors are often corrected
or mitigated to avoid serious failures. This
is because the Linux kernel checks data
integrity again and again before updating
global data structures.

• The scope of error propagation is mostly
process-local in Linux. This implies that
Linux can be rejuvenated without reboots
with high probability. If an error does not
propagate outside the context of a faulty
process, time-consuming reboots can be
avoided since we can recover from the fail-
ure simply by killing the faulty process.

• Global propagation of errors occurs with
low probability. Interestingly, even if a
global data structure is corrupted, the cor-
rupted data cannot be accessed from the
other processes if the faulty process is killed
within a critical section.

We believe our results of experimental fault
injection suggest many directions of further re-
search. As discussed in Section 6, we can take
various approaches to improve the dependabil-
ity of the Linux kernel. First, we expect that a
tool for effectively inserting BUG ON macros are
required. Second, the Linux kernel can be re-
juvenated without reboots with high probabil-
ity. A mechanism that distinguishes a situation
that can be recovered without reboots needs to
be developed. Finally, the kernel can be recov-
ered from kernel-global errors if we develop a
sophisticated mechanism of handling errors in
critical sections.

References

1) Palix, N., Thomas, G., Saha, S., Calvés, C.,
Lawall, J. and Muller, G.: Faults in Linux: Ten
Years Later, Proceedings of the ACM Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Sys-

tems (ASPLOS ’11), pp. 305–318 (2011).
2) Ng, W. T. and Chen, P. M.: The Systematic
Improvement of Fault Tolerance in the Rio File
Cache, Proceedings of the 29th Symposium on
Fault-Tolerant Computing (FTCS ’99), pp. 76–
83 (1999).

3) Swift, M. M., Bershad, B. N. and Levy, H. M.:
Improving the Reliability of Commodity Oper-
ating Systems, Proceedings of the 19th ACM
Symposium on Operating Systems Principles
(SOSP ’03), pp. 207–222 (2003).

4) Swift, M. M., Annamalai, M., Bershad, B. N.
and Levy, H. M.: Recoverying Device Drivers,
Proceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementation
(OSDI ’04), pp. 1–16 (2004).

5) Depoutovitch, A. and Stumm, M.: Otherworld
- Giving Applications a Change to Servive OS
Kernel Crashes, Proceedings of the 5th Euro-
pean Conference on Computer Systems (Eu-
roSys ’10), pp. 181–194 (2010).

6) Yamakita, K., Yamada, H. and Kono, K.:
Phase-based Reboot: Reusing Operating Sys-
tem Execution Phases for Cheap Reboot-based
Recovery, Proc. of the 41st Annual IEEE/I-
FIP International Conference on Dependable
Systems and Networks (DSN ’11), pp. 169–180
(2011).

7) Ng, W. T. and Chen, P. M.: The Design and
Verification of the Rio File Cache, IEEE Trans-
actions on Computers, Vol. 50, No. 4, pp. 322–
337 (2001).

8) Gu, W., Kalbarczyk, Z., Iyer, R.K. and Yang,
Z.: Characterization of Linux Kernel Behavior
under Errors, Proceedings of the 2003 IEEE In-
ternational Conference on Dependable Systems
and Networks (DSN ’03), pp. 459–468 (2003).

9) Gu, W., Kalbarczyk, Z. and Iyer, R. K.: Er-
ror Sensitivity of the Linux kernel Executing on
PowerPC G4 and Pentium 4 Processors, Proc.
the 4th IEEE International Conference on De-
pendable Systems and networks (DSN ’04), pp.
887–896 (2004).

10) Chen, D., Jacques-Silva, G. and Mealey, B.:
Error Behavior Comparison of Multiple Com-
puing System: A Case Study Ui Linux on
Pentium, Solaris on SPARC, and AIX and
POWER, Proc. of the 14th IEEE Pacific Rim
International Symposium On Dependable Com-
puting (PRDC ’08), pp. 339–346 (2008).

11) Yoshimura, T., Yamada, H. and Kono, K.:
Can Linux be Rejuvenated without Reboots?,
Proceedings of the IEEE 3rd International
Workshop on Software Aging and Rejuvenation
(WoSAR ’11) (2011).

12) Yoshimura, T., Yamada, H. and Kono, K.: Is
Linux Kernel Oops Useful Or Not?, Proceedings

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 23

ComSys2012
2012/12/6

of the 8th Workshop on Hot Topics in System
Dependability (HotDep’12) (2012).

13) Pham, C., Chen, D., Kalbarczyk, Z. and Iyer,
R. K.: CloudVal: A framework for validation of
virtualization environment in cloud infrastruc-
ture, Proc. of the 41st Annual IEEE/IFIP In-
ternational Conference on Dependable Systems
and Networks (DSN ’11), pp. 189–196 (2011).

14) Duraes, J. and Madeira, H. S.: Emulation
of Software Faults: A Field Data Study and
a Practical Approach, IEEE Transactions on
Software Engineering , Vol. 32, No. 11, pp. 849–
867 (2006).

15) Cotroneo, D., Lanzaro, A., Natella, R. and
Barbosa, R.: Experimental Analysis of Binary-
Level Software Fault Injection in Complex Soft-
ware, Proceedings of the IEEE 9th European
Dependable Computing Conference (EDCC
’12) (2012).

16) Chou, A., Yang, J., Chelf, B., Hallem, S. and
Engler, D.: An Empirical Study of Operating
Systems Errors, Proceedings of the 18th ACM
Symposium on Operating Systems Principles
(SOSP ’01), pp. 73–88 (2001).

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2012 Information Processing Society of Japan 24

ComSys2012
2012/12/6

