4倍精度基本線形代数ルーチン群 QPBLAS の紹介と アプリケーションへの応用

山田 進^{1,3,a)} 佐々 成正^{1,b)} 今村 俊幸^{2,3} 町田 昌彦^{1,3}

概要:計算機を用いた演算では,無限桁数の実数を有限桁で表現するための丸め誤差や,演算の際に桁落ち や積み残し等が発生するが,これまでの計算機の規模のシミュレーションでは倍精度演算を利用すること で,これらの影響はあまり問題にならなかった.しかし,「京」コンピュータのような超大規模な計算機の 性能を全て利用するような超大規模シミュレーションでは演算量が多くなるため,これらの影響によりシ ミュレーション結果の精度に問題が生じる可能性がある.そこで,我々は基本線形演算ライブラリ BLAS を Bailey の double-double アルゴリズムを利用して4倍精度化し QPBLAS として公開している.本発表 では,QPBLAS および QPBLAS を利用して開発した4倍精度固有値計算ライブラリ QPEigenK を紹介 し,その有効性や性能等を報告する.

1. はじめに

2012年9月より 10PFLOPS 超の計算性能を誇る「京」 コンピュータの一般利用が開始されたように,現在では超 大規模の計算機を一般のユーザが利用できるような環境に なりつつある.そして,このような大規模な計算機の性能 を有効に利用するため,シミュレーションモデルも大規模 化し,その計算量も増大している.計算機による演算では 無限桁の実数を有限で表現して演算を行うため,演算1回 ごとに誤差が混入するが,これまでのシミュレーションで はあまり問題にはならなかったが,上記のような超大規模 計算機の性能を有効に利用するようなシミュレーションを 実施した場合,計算回数がこれまでよりも多くなり,誤差 による影響が大きくなる可能性がある.そのため,得られ た計算結果の有効精度がほとんど無いということになるこ とも考えられる.実際,我々は地球シミュレータを利用し て 375,000 次元の実対称行列の全固有値・固有ベクトルを 計算したところ [1], その精度は数桁であった.そのため, このような計算機の大規模化が進む現状では,この精度の 問題を解決する必要がある.

この問題を解決する手段の1つに,計算で利用する計算

- ² 理化学研究所 計算科学研究機構 RIEKN AICS
- ³ CREST(JST)
- ^{a)} yamada.susumu@jaea.go.jp

精度をあげる方法がある.実際,現在の多くの Fortran コ ンパイラでは4倍精度実数変数である real*16 をサポート しており、これを用いることで容易に高精度計算が可能に なる.しかし,その計算速度は実数演算と比較し非常に多 くの計算時間がかかるため実用的ではない[2].そのため, 倍精度変数等を組み合わせて高精度の計算を実現する様々 な計算方法が提案されており,そのような計算方法を利用 したライブラリが数多く公開されている(一例として[3]). その 1 つに Devid H. Bailey が提案した二つの倍精度変数 を組み合わせて4倍精度変数を表現する double-double ア ルゴリズムがある [4]. この方法は倍精度実数 (real*8) の 演算を組み合わせるせることで4倍精度計算を実現する 方法である.実際,これまでにも多くの double-double ア ルゴリズムを利用したライブラリ等が開発・公開されてい る [4]. さらに, Krylov 部分空間法に用いることで条件数 の大きい行列を係数に持つ線形方程式を安定に計算するこ とに成功するなど [2],実用的なアルゴリズムである.そこ で原子力機構では,この double-double アルゴリズムを利 用した4倍精度 BLAS(QPBLAS)を開発し,また,これら を利用した4倍精度固有値計算ルーチン(QPEigenK)の開 発を行っている。

以下に本論分の構成を記す.第2章では double-double アルゴリズムの簡単な紹介およびこれを用いて開発した4 倍精度 BLAS の説明を行う.第3章では,これらを利用し て開発した4倍精度固有値計算ソルバに付いて説明し,そ の性能を報告する.第4章はまとめである.

日本原子力研究開発機構 システム計算科学センター JAEA CCSE, Kashiwanoha, Kashiwa, Chiba 277-8587, Japan

^{b)} sasa.narimasa@jaea.go.jp

2. 4 倍精度演算

2.1 Bailey の double-double アルゴリズム

Bailey の double-double アルゴリズムでは,4倍精度浮 動小数点変数 a を二つの倍精変数 a.hi(上位データ) および a.lo(下位データ)を用いてa = a.hi + a.loと表現し,4倍精 度演算を倍精度変数の演算で実現する方法である.このと き, a.hi および a.lo は通常の倍精度浮動小数点数であるた め仮数部の精度は52bitであり,2つの変数を利用すること で 104bit の精度で表現できる.しかし, real*16 の場合は 仮数部を 112bit で表現している. そのため, double-double アルゴリズムは real*16 と比較すると 8bit 分だけ精度が 劣る.しかし,計算時間は数倍早く実用的な方法である[5]. 図 1 に 4 倍精度加算演算および乗算を double-double アル ゴリズムを利用して計算するためのプログラムを示す.こ の図から加算および乗算の演算数はそれぞれ 11,24 であ ることが確認できる.そのため, doube-double アルゴリ ズムを用いて BLAS を4倍精度化する際に演算の ASUM (加算)やSCAL(乗算)のように1種類の四則演算しか用 いないものであれば,理論的に計算量は加算で11倍,乗 算で24倍の計算時間になることが予想される.

また,乗算のアルゴリズムにおいて134217729.0(=2²⁷+1) を利用する演算は上位26bitのデータと下位26bitのデー タに分割するオペレーションである(p1, p2 はそれぞれ ah の上位26bit,下位26bitのデータを格納している).

2.2 4倍精度線形代数ルーチン群 QPBLAS

2.2.1 QPBLAS の概要

原子力機構では基本線形代数ルーチン群(BLAS)を Baileyのdouble-doubleアルゴリズムを利用して4倍精度 化し,QPBLAS(Quadrature Precision BLAS)として公開 している[6].

これに含まれる 40 個のルーチンを表 1 に示す. BLAS, LAPACK はルーチン名の接頭辞に's'(single:単精 度) や'd'(double:倍精度) をつけてその精度を表している. そこで,本ルーチン群では表 1 にあるように接頭辞に double-double アルゴリズムを表す'dd' を付けて表して いる.

また, このルーチン群のインターフェイスは図2にある ように,基本的にBLASの倍精度ルーチンの本来の引数の 形に合わせている.しかし,本ルーチンでは4倍精度変数 を上位データと下位データの2つの倍精度変数で表現する ため,本ルーチンではBLASでの倍精度の引数1つ当たり 2つの倍精度の引数を指定することになる.

2.2.2 QPBLAS の計算性能

ここでは QPBLAS の代表的なルーチンである dddot(内 積計算), ddgemv(行列ベクトル積), および ddgemm(行列

```
subroutine dd_add(ch,cl,ah,al,bh,bl)
implicit none
double precision ch, cl, ah, al, bh, bl
double precision p1, p2, s1
p1 = ah + al
p2 = p1 - ah
cl = (ah -(p1-p2)) + (bh - p2)
ch = p1
cl = cl +al + bl
s1 = ch + cl
cl = cl - (s1 - ch)
ch =s1
end
```

(a) 4倍精度の加算
$$(C = A + B)$$

<pre>subroutine dd_mul(ch,cl,ah,al,bh,bl)</pre>
implicit none
double precision ch, cl, ah, al, bh, bl
double precision u1, p1, p2, r1, r2, s1
ch = ah *bh
u1 = 134217729.0*ah
p1 = u1 - (u1 - ah)
p2 = ah - p1
u1 = 134217729.0*bh
r1 = u1 - (u1 - bh)
r2 = bh - r1
cl = ((p1*r1-ch) + p1*r2 + p2*r1) + p2*r2
cl = cl + (ah * bl + al * bh)
s1 = ch + cl
cl = cl - (s1 - ch)
ch =s1
end

(b) 4倍精度の乗算 $(C = A \times B)$

図 1 Bailey の double-double アルゴリズムを用いた加算と乗算の プログラム

衣 I QPBLAS のルーナノー 見				
Level 1	Level2	Level3		
ddswap	ddgemv	ddgemm		
ddscal	ddsymv	ddsymm		
ddcopy	ddtrmv	ddsyr2k		
ddaxpy	ddtrsv	ddsyrk		
dddot	ddsyr	ddtrmm		
ddnorm2	ddsyr2	ddtrsm		
ddsum	ddgbmv	ddzhemm		
ddidmax	ddger	ddzher2k		
ddrot	ddsmbv	ddzherk		
ddrotg	ddtbmv			
ddrotm	ddtbsv			
ddrotmg	ddzgerc			
ddzdotc	ddzgeru			
ddzdotu	ddzhbmv			
	ddzhemv			
	ddzher			
	ddzher2			

表 1 QPBLAS のルーチン一覧

行列積)の性能を調査する.この性能調査では,Intel および AMD のプロセッサを利用した.プロセッサ用の詳細は表2に記す.このアルゴリズムは,計算順序を変化させる最適化を行うと,適正な計算ができない.そのため,強

IPSJ SIG Technical Report

call	dgemm(TRANSA,TRANSB,M,N,K,	
&	ALPHA,A,LDA,B,LDB,BETA,C,LDC)	
	(a) 倍精度 BLAS(DGEMM)	
call	ddgemm(TRANSA, TRANSB, M, N, K,	
0-	ALDIAN ALDIAL AN AL LDA DU DI	

& &	LDB, BETAH, BETAL, CH, CL, LDA, BH, BL,
	(b) 4倍精度 BLAS (DDGEMM)

図 2 BLAS と QPBLAS の行列行列積ルーチン (dgemm および ddgemm) のインターフェイス部分. QPBLAS において'*H' および'*L'が表す変数は4倍精度変数の上位データ,下位 データをそれぞれ表現している.

表 2 性能評価に使用した計算環境.

(a) Intel/ Windows			
Intel	AMD		
Processor	Intel Core2 Duo		
1 10005501	E8400 (3.0 GHz)		
OS	Windows XP Professional		
Compiler	Intel Fortran 10.0 IA32		

(b) AMD / Linux			
Processor	Dual Core AMD Opteron		
1 10005501	Processor 2800 (2.4GHz)		
OS	Cent OS 4.4		
Compiler	gfortran 4.1.0		

い最適化を用いる場合には計算順序を変化させないコンパ イルオプションを利用する必要があることに注意が必要で ある.

図 3(a) に DDDOT の計算時間を示す.この計算にお ける最適化オプションとして, Intel(Windows) では (/00, /02, /03) を, AMD(Linux) では (-00, -02, -03) を使 用して比較している.また,最適化の強さに合わせて,計 算順序を変化させないコンパイルオプションも利用してい る (Intel 版の/02, /03 の時に/0p(Lunix 版の-mp に対応) を使用している). この結果から DDDOT の計算時間は配 列(ベクトルの次元の増加に伴って線形に増加しているこ とおよび AMD を利用した方が若干高速であること確認で きる.また,DDOT との計算時間の比較を図 3(b) に示す. この結果から,ある程度の最適化を利用することで Intel では約14倍, AMD では約3倍の計算時間の増加になって いるが,今回結果は掲載していないが,DDOTの計算時間 は Intel の方が AMD より約4倍程度早い.このことから, DDDOT のアルゴリズムは AMD のプロセッサに適してい ると考えられる.

次に,DDGEMV(TRANS='N')の計算結果を図4に示す. この結果から,配列の次元に2乗で比例していること,お よび,最適化を行った場合,Intelの方が高速に計算できる ことが確認できる.また,DGEMV との比較においてIntel (最適化:O3)で約8倍,AMD は約6倍ではある.これ はDGEMVのAMDでの計算時間が大きいためである. 最後に,DDGEMM(TRANSA='N', TRANSB='N')の結果 を図5に示す.この結果から,配列の次元に3乗で比例し ていることが確認できる.こと,および,最適化を行った 場合,Intelの方が高速に計算できることが確認できる.ま た,DGEMM との比較の結果からGEMV との比較とほぼ 同様な結果(Intel(最適化:O3)で約8倍,AMD は約6 倍)であった.

さらに,行列行列積(GEMM)での計算速度(FLOPS)を 図 6に示す.この時の最適化はそれぞれO3(Intel)および O2(AMD)である.また,4倍精度ルーチンの計算速度は 倍精度演算を基に測定している.この結果からどちらのプ ロセッサでも4倍精度化することで計算性能が向上してい ることがわかる.これは,4倍精度化により演算の密度が 増加しているためであると考えられる.また,Intelの方が より高速であることが確認できる.

3. 4倍精度固有値計算ルーチン QPEigenK

3.1 QPEigenKの概要

我々はこれまでに大規模並列計算機用の固有値ソルバ を開発している[1],[7].これらのコードを用いて実際に 375,000次元の実対称行列の全固有値および固有ベクトル の計算に成功している.さらに,この成果を基に「京」コ ンピュータのアーキテクチャを考慮して開発した固有値 ソルバを開発し,EigenK として公開している^{*1}[8].この EigenK は実対称行列用およびエルミート行列用のアルゴ リズムとして,通常の固有値計算で利用されている様に八 ウスホルダー変換で行列を3重対角行列に変換し,分割統 治法で(3重対角行列の)固有値・固有ベクトルを求め,逆 変換で元の行列の固有ベクトルを求める方法を採用してい る.さらに,実対称行列用として5重対角行列を経由して 固有値計算を行うコードも用意している.このコード群は 既に「京」上でのシミュレーションに利用されている[9].

しかしながら,次節の大規模並列計算の結果から,行列 の次元が10万次元程度でも得られる固有値の精度は6桁 程度になることが示されており,「京」の性能を全て利用 するような規模の計算では,得られる結果の精度に問題が 出てくる可能性がある.そのため,高精度での計算が望ま れていた.そこで,このEigenKの実対称行列用3重対角 経由ソルバを基に QPBLAS を適用させ4倍精度化を行っ た[5].この際,BLAS だけではなく,lapack,scalapack お よび MPIの利用ているルーチンも4倍精度化している.

3.2 QPEigenK の計算性能調査

ここでは原子力機構の富士通 PRIMERGY BX900 を

 ^{*1} JST からの CREST 受託研究「超伝導新奇応用のためのマルチスケール・マルチフィジックスシミュレーションの基盤構築」(研究期間:平成 18 年 10 月~平成 24 年 10 月)によって開発されたものである.

利用して QPEigenK を計算した結果を紹介する.BX900 の性能等を表3に示す.本計算では最適化オプションと して-Kfastを使用するが,演算順序を変化させないため -Knoeval も同時に適用する.今回の計算では固有値の理 論解がわかる Frank 行列の全ての固有値・固有ベクトルを 計算した.誤差の指標としては

$$Error = \max_{i} \left\{ abs\left(\frac{\bar{\lambda}_{i} - \lambda_{i}}{\bar{\lambda}_{i}}\right) \right\},\,$$

を採用する.ここで, $ar{\lambda_i}$ および λ_i はそれぞれi 番目に大きい理論固有値,数値計算により得られた固有値である.

図 7 に倍精度固有値ソルバ EigenK および 4 倍精度固有 値ソルバ QPEigenK を用いて Frank 行列を計算した際の 行列サイズと固有値の精度の関係を示す.この結果から, 行列サイズが 50,000 次元の場合,倍精度演算では 6 桁程度 の精度しか得られないが,4 倍精度演算を行うことで 25 桁 程度の精度が得られることが確認できる.このことから, 計算機の大規模化に伴って行列が大規模化した場合,高精 度の固有値計算のためには4 倍精度演算が有力な1 つ手法

図 6 倍精度行列行列積 (dgemm) と4倍精度行列行列積(ddgemm) の計算性能の比較.

であると結論付けられる.

次に,図8に計算時間を表4に計算性能を示す.この 結果から,EigenK およびQPEigenK のどちらも行列の次 元が増加すると並列化の効果がより得られることが確認で きるが,QPEigenK の方がより効果が得られていることが 確認できる.これは4倍精度化による通信コストの増加率 よりも,計算コストの増加率が多く,通信の影響が少なく

	BX900	
Processor	Intel Xeon X5570	
1 10003501	Quad core (2.93GHz)	
Number of processors	2(8 cores)	
per each node	2 (0 00103)	
Number of total nodes	2134	
Network	InfiniBand QDR	
Bandwidth(inter-node)	8.0GB/s full-duplex	
Compiler	Fujitsu Fortran Compiler	
Compile option	-Kfast,noeval	
	SSL II V3.2	
Library	BLAS, LAPACK	
	ScaLAPACK	

図 7 EigenK および QPEigenK による Frank 行列の固有値の精 度比較.

(b) QPEigenK の計算時間

Vol.2012-ARC-202 No.23 Vol.2012-HPC-137 No.23 2012/12/14

表 4	固有値計算ルーチンの計算性能
	(a)EigenK の計算性能

Dim. of	GFLOPS(ピーク性能比)			
Matrix	128PE	256 PE	512PE	1024PE
1000	22.15	15.52	14.59	8.21
1000	(1.5%)	(0.5%)	(0.2%)	(0.1%)
2000	58.78	48.96	42.29	18.25
2000	(3.9%)	(1.6%)	(0.7%)	(0.2%)
5000	197.66	198.05	140.43	95.82
0000	(13.2 %)	(6.6%)	(2.3%)	(0.8%)
10000	343.88	456.97	397.58	294.34
10000	(22.9 %)	(15.2 %)	(6.6%)	(2.5%)
20000	489.97	754.80	887.58	860.45
20000	(32.7 %)	(25.2 %)	(14.8 %)	(7.2%)
50000	564.32	1041.76	1533.46	1980.84
	(37.6 %)	(34.7 %)	(25.6 %)	(16.5 %)
100000			1739.16	2882.22
100000	(— %)	(— %)	(29.0 %)	(24.0 %)

(b)QPEigenK の計算性能				
Dim. of	GFLOPS(ピーク性能比)			
Matrix	128PE	256 PE	512PE	1024PE
1000	123.00	107.72	100.86	53.44
1000	(8.2%)	(3.6%)	(1.7%)	(0.4%)
2000	213.51	235.85	247.20	137.52
2000	(14.2 %)	(7.9%)	(4.1 %)	(1.1%)
5000	332.11	487.13	628.77	459.97
5000	(22.1 %)	(16.2 %)	(10.5 %)	(3.8%)
10000	390.14	638.78	1009.21	1069.57
10000	(26.0 %)	(21.3 %)	(16.8 %)	(8.9%)
20000	407.00	726.30	1302.51	1867.36
20000	(27.1 %)	(24.2 %)	(21.7 %)	(15.6 %)
50000	_	765.74	1386.80	2582.56
	(-%)	(25.5 %)	(23.1 %)	(21.5 %)

なったためである.また,50,000次元の行列を1024個の コアで計算した場合,ピーク性能比はEigenKで16.5%, QPEigenKで21.5%であることからも,4倍精度化により 計算性能が向上していることが確認できる*2.そのため, この条件の場合,QPEigenKの計算時間はEigenKの約12 倍であり,加算と乗算が1:1の割合で存在すると仮定し たときの計算量の増加率である17.5(=(11+24)/2)倍より も高速である.ただし,EigenKで100,000次元の行列を 計算した際の性能は24.0%であり,50,000次元を計算した 際のQPEigenKの性能を上回る.これは,今回のテスト における行列を分割する際のブロックサイズがQPEigenK に適していなかったためであると考えているが,この点に ついての詳細は今後調査する予定である.

4. まとめ

本研究では原子力機構で開発した4倍精度 BLAS および

^{*2} 前章と同様に4倍精度演算の計算速度は倍精度演算を基準に測定している.

これを利用して開発した4倍精度固有値ソルバQPEigenK について紹介を行った.これらのルーチンの4倍精度化に はBaileyのdouble-doubleアルゴリズムを利用して開発し ている.QPBLASの代表的なルーチンの性能評価から,倍 精度版と比較して10倍程度の計算時間の増加で4倍精度 演算が可能であることを確認した.また,倍精度固有値ソ ルバでは50,000次元のFrank行列の固有値の精度が6桁 程度しかないのに対して,QPBLASを実際に利用して開 発した4倍精度固有値ソルバQPEigenKを用いることで 計算時間は約10倍以上増加したが25桁程度の精度で計算 できることを確認した.この結果から,今後大規模化する 計算機の性能をフルに利用するようなシミュレーションで は,誤差の累積のため計算結果の信頼性に問題が生じるか もしれないが,これらのルーチンを利用することで回避す ることが可能になると思われる.

4 倍精度基本線形計算ライブラリ QPBLAS は http://ccse.jaea.go.jp/ja/download/qpblas.html において 2 条項 BSD ライセンスで公開している [6].また, QPEigenK は公開のための整備を行っているため現在 のところ一般ユーザの利用はできないが,基になった 「京」コンピュータ用固有値計算ライブラリ EigenK は http://ccse.jaea.go.jp/ja/download/eigenk.html において 2 条項 BSD ライセンスで公開している [8].

謝辞 本研究の一部は, CREST(JST) および科研費(基 盤研究(c)一般 23500056)の成果によるものです.

参考文献

- S. Yamada, T. Imamura, T. Kano, and M. Machida, High-Performance Computing for Exact Numerical Approaches to Quantum Many-Body Problems on the Earth Simulator, *Proc. of SC06* (2006)
- [2] 小武守恒,藤井昭宏,長谷川秀彦,西田晃:反復法ライ ブラリ向け4倍精度演算の実装とSSE2を用いた高速化, 情報処理学会論文誌 コンピューティングシステム, Vol. 1, No. 1, pp. 73-84 (2008)
- The MPACK; Multiple precision arithmetic BLAS (MBLAS) and LAPACK (MLAPACK) http://mplapack.sourceforge.net.
- [4] High-Precision Software Directory. http://crd-legacy.lbl.gov/~dhbailey/mpdist/.
- [5] T. Imamura, S. Yamada, M. Machida, Preliminary Report for a High Precision Distributed Memory Parallel Eigenvalue Solver, Poster Presentation in SC12 (2012). http://sc12.supercomputing.org/schedule/ event_detail.php?evid=post236.
- [6] QPBLAS 4倍精度 Basic Linear Algebra Subroutines(online), 入手先 (http://ccse.jaea.go.jp/ja/download/qpblas.html)
- (2012.11.05).
 [7] Imamura, T., Yamada, S., and Machida, M., "Development of a high performance eigensolver on the petascale next generation supercomputer system", Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.643-650 (2011). [CD-ROM]

- [8] 「京」コンピュータ用固有値計算ライブラリ EigenK(online), 入手先 (http://ccse.jaea.go.jp/ja/download/eigenk.html) (2012.11.05).
- [9] Y. Hasegawa, J. Iwata, M. Tsuji, D. Takahashi, A. Oshiyama, K. Minami, T. Boku, F. Shoji, A. Uno, M. Kurokawa, H. Inoue, I. Miyoshi, M. Yokokawa, Firstprinciples calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer, *Proc.* of SC11 (2011)