
IPSJ SIG Technical Report

 1

 Patterns for Simplifying Complex Sentences in English-Japanese
Machine Translation

Chinh To Kevin Duh Mamoru Komachi Shuhei Kondo Yuji Matsumoto
Nara Institute of Science and Technology

Abstract: This study explores in detail the question of complex sentences in English-to-Japanese Statistical Machine Translation
(SMT). Complex sentences pose the most difficulty to existing SMT systems, due to large word order differences between SVO
and SOV languages. In order to overcome this problem, we take a “divide and rewrite” approach: a complex sentence is divided
into simple clauses based on syntactic patterns; then simple clauses are translated and the results are pieced together to form the
final output.
 The main challenge of such “divide and rewrite” preprocessing approaches is the construction of syntactic patterns. While
previous works focus on either automatic or manual methods, we pursue a semi-automatic approach. First, we automatically
extract and cluster patterns of dependent clauses based on source-side parses. Our novel definition of pattern templates enables us
to reduce all sources of syntactic variations into a small set of 100 clusters. Then it becomes feasible to perform a manual
construction of corresponding target-side patterns. In our experiments, we demonstrate that this cost-effective approach covers 82
percent of all complex sentences and improves BLEU by over 2 points over the baseline.
Keywords: sentence pattern, complex sentence, functional word, machine translation

1. Introduction

 Complex sentences present significant challenges to
existing Statistical Machine Translation (SMT) systems,
especially for languages pairs with considerable
re-ordering. A complex sentence is a sentence containing one or
more subordinating (dependent) clauses. For a language pair
such as English (SVO) and Japanese (SOV), the issue of
long-distance word re-ordering, compounded with the
possibility of intervening subordinating clauses, makes it hard to
place the verb, for example, in the correct position.
Much effort has been put into the re-ordering problem, with
both preprocessing and integrated approaches being effective.
The former “rewrites” the original input E to an alternative
sentence E’ that is easier to handle (Xia and McCord, 2004),
while the latter incorporates a reordering model directly into
search (Chiang, 2005). Surprisingly, although SMT re-ordering
is an active research area, only a few previous works focused on
the related problem of complex sentence structure (Sudoh et. al.,
2010; Ramanathan et. al., 2011).
In this paper, we adopt the preprocessing approach of (Sudoh et.
al., 2010), where a complex sentence is divided into simple
clauses and translated independently. This approach has proven
very effective for language pairs such as English-Japanese. It
requires a source-side (English) syntactic parser to identify
clauses (via SBAR). Identified clauses are replaced by
non-terminals as place-holders; after translation, the
independent results are reconstructed using non-terminals.
A limitation of this previous method is that it treats all kinds of
dependent clauses in the same way. The corresponding
target-side rules are learned automatically from word alignments,
as in conventional phrase-based SMT (Koehn et. al., 2003). It is
not clear whether noisy word alignments are reliable for
extracting generalizable target-side rules. We believe it is much
more desirable to process dependent clauses differently based on
context. In fact, we find it is possible to manually-craft these

contextual target-side rules based on the set of pattern clusters
and function word indicators on the source-side.
The main contribution of this paper is a semi-automatic and
linguistically motivated methodology for developing effective
“divide and rewrite” patterns for complex sentences. By
semi-automatic, we mean that our source-side patterns are
extracted and clustered automatically, while our target- side
patterns are developed manually based on linguistic observation.
This is in contrast to most preprocessing approaches, which
extract patterns either fully automatically (Genzel, 2010;
Visweswariah, 2011) or fully manually (Xu, 2009; Chao et. al.,
2007).
A second contribution is a novel definition of pattern templates
that proved effective for English- Japanese. Our source-side
patterns are based on SBAR, it’s parents, sisters, daughters and
related function words. Though simple, these patterns are easy
to extract and cluster, leading to cost- effective manual analysis.
The list of patterns useful for translation will be available at
http://blind.review.
Finally, we note that our emphasis is on clausal reordering in
complex sentences. The numerous previous research on word
ordering are orthogonal to our work here. Certainly high-level
clausal rewrites and low-level word reordering can work in
tandem.
 A second contribution is a novel definition of pattern
templates that proved effective for English-Japanese. Our
source-side patterns are based on each subordinating clause, it’s
parent, sisters, daughters and related function words. Though
simple, these patterns are easy to extract and cluster, leading to
cost-effective manual analysis.
 Finally, we note that our emphasis is on clausal reordering in
complex sentences. The numerous previous researches on word
ordering are orthogonal to our work here. Certainly high-level
clausal rewrites and low-level word reordering can work in
tandem.

ⓒ 2012 Information Processing Society of Japan

Vol.2012-NL-209 No.14
2012/11/23

IPSJ SIG Technical Report

 2

2. Divide and rewrite approach

 This study deals with translation of complex sentences from
English to Japanese by using the typical patterns extracted to
divide and rewrite a complex sentence into simple structures.
The Oxford Dictionary (2000) defines that a complex sentence
is a sentence containing one or more subordinating clauses.
 In order to examine and extract typical patterns of complex
sentences, we produce a parse tree for each sentence in the
training data using Berkeley Parser. Subordinating clauses,
which are introduced by a (possibly empty) subordinating
conjunction, are marked as “SBAR” 1 in a Berkeley parse tree.
Subordinating clauses will be referred to as “SBAR”.
 The data used for experiments is data from the magazine
Hiragana Times 2. Hiragana Times is a bilingual magazine
written in Japanese and English to introduce Japan to
non-Japanese, covering a wide ranges of topics including culture,
society, history, politics... The data contains 172,098 sentences
crawled in October 2011.
 Our approach for complex sentence simplification can be
divided into two stages. In the preparation stage, we first extract
source patterns (Section 3.1), cluster them into a manageable
number (Section 3.2), and develop corresponding target patterns
(Section 3.3). In the deployment stage, we simply look for
source pattern matches in the input, translate the clauses, and
recombine the results using target patterns.

2.1 Extracting patterns of complex sentences
 For each sentence in the training data we first produce a parse
tree to examine its patterns. We assume that the structure of a
subordinating clause in a complex sentence together with its
functional words and its relations to other components in the
sentence can be modeled to a set of manageable patterns. It is
expected that these patterns will be used as useful clues either to
divide and rewrite sentences or to create rules for the translation
of particular patterns having ambiguity.
 For each SBAR node in a parse tree, a pattern is extracted as
follows: for the SBAR’s parent and sister nodes, the phrase
names are extracted. This information would help to define
where a SBAR belong to and which functions it may have. For
SBAR’s child node that contains function words, all of the
phrase name, the POS tag and the surface word are extracted.
The function words are extracted because they are important
elements, which can express the grammatical relationship
between clauses in a sentence. Figures 1 and 2 illustrate how the
pattern “(NP (NP) (SBAR (WHNP (WP who)) (S (VP))))” is
extracted.

1 http://bulba.sdsu.edu/jeanette/thesis/PennTags.html
2 http://www.hiraganatimes.com/index-j.html

Figure 1: Example of a complex sentence and its SBAR

Figure 2: Example of an extracted pattern

 In Figures 1 and 2, the pattern “(NP (NP) (SBAR (WHNP
(WP who)) (S (VP))))” is extracted, the SBAR has a parent node
as “NP” and a sister node as “(NP)”, the functional word of
SBAR is “who”, and this SBAR has the structure as a verb
phrase, “VP”. With the related information, the pattern can be
described as a subordinating clause composed of the functional
word “who” and having a child node that consists only of a verb
phrase, “VP”. The clause modifies a noun phrase “(NP)” and
belongs to a noun phrase “NP”.
 By producing a parse tree for each sentence, each pattern is
extracted as described above. Table 1 shows that we generated
21k distinct patterns from our dataset of 70k complex sentences.

Number of sentences 171,098

Number of complex sentences 70,134

Number of SBARs 114,840

Number of distinct SBAR patterns 21,090

Table 1 - Statistics of patterns in complex sentences in training
data.

2.2 Acquiring a compact set of typical patterns
 The raw number of extracted source patterns is too large for

ⓒ 2012 Information Processing Society of Japan

Vol.2012-NL-209 No.14
2012/11/23

IPSJ SIG Technical Report

 3

manual construction of corresponding target patterns. Thus an
important question is, are there patterns that translate into
similar structures? Is it possible to cluster them in an organized,
easily-interpretable way?

 Each pattern has its frequency number showing how many
times it appears in the training data. There are patterns that
appear much more than others. Though the number of all
distinct patterns is 21,090, the top 10 distinct patterns, which
have the highest frequencies, account for 25.8 percent of all the
times when a SBAR is found (Table 2). Sequentially, the top
100 and 200 distinct patterns account for 53 and 59 percent for
instance.

 Table 2: The top 10 patterns of highest frequencies
 Actually, it is interesting to note that the patterns exhibit
Zipf-like distributions. We can see cumulative frequency of all
distinct patterns in Figure 3. The graph shows the number of
distinct patterns on X-axis versus frequency on the Y-axis. It is
clear that a only a small number of top-ranking patterns can
model a big portion of all the patterns found in training data.

FIGURE 3: Cumulative frequency of all distinct patterns (x

axis: Number of distinct patterns; y axis: Cumulative
frequency)

 So, it is expected that a small number of patterns can be used
to summarize most of complex sentences. How such a
manageable set of typical patterns would be extracted?
 Examining the extracted patterns, we found that there are
patterns that share similar structure and features. These patterns
can be grouped together as one cluster; this will help to

summarize the extracted pattern in an interpretable and
organized way.
 We define the following criteria for grouping together source
patterns: Their SBAR nodes must have (1) a child node
containing the same function words, (2) the same parent node
label, which would tell where they belong to and what kind of
function they may have, and (3) a matching non-terminal
structure.

TABLE 3: Examples of distinct patterns grouped together
(underlined elements must be shared)
 Table 3 shows an example of distinct patterns that are
grouped together into one grouped pattern. Each distinct pattern
has its frequency ranked as seen in the left column of the table.
In this case, in each pattern, one SBAR child node contain the
same functional word “who”, the basic structure of each SBAR
contains a verb phrase component as “(VP)”, and all the SBAR
in each pattern belongs to a noun phrase “NP”, modifying a
noun phrase “(NP)”.
 We give a note about functional words here. We have a list of
all function words, which are related to SBAR and often
considered as subordinating conjunctions (e.g. “after”,
“although”, “as”, “because”, “before”, “if”, “though”, “unless”,
“what”, “when”, “who”,…). We can consider and analyze all
patterns with their function words. As for function words like
“of”, we do not consider this kind of function words because it
is not related (or connected) directly to a SBAR.
 The result of grouping similar pattern together is that we get
an organized compact set of typical patterns in complex
sentences. The set includes 100 typical pattern clusters, which
cover 82% of all the patterns extracted in complex sentences in
the training data. (See Appendix 1 for the whole list of the
typical patterns.). For the reason we decided the number of
pattern clusters to 100, as shown in Figure 3, we plotted all the
patterns and cumulative frequency and the patterns have a
Zipf-like distribution. It means that a number of the top high
frequency patterns can cover a big number of all sentences. For
example, looking at the coverage of the top ranking patterns, we
can see that the top 100 patterns have the coverage 82%, while
the top 200 increase this number to 85%, and the top 300 can
cover 87% of all sentences. So, 100 is a good and convenient
start to summarize patterns, we can edit further, for instance,
300 top patterns for higher coverage.
We describe the algorithm to classify similar patterns together
into one group as follows.
A SBAR normally have the basic structure as follows.

i. (SBAR (functional words X) (S (NP) (VP))) or

Rank SBAR Pattern Freq.

1 (NP (NP) (SBAR (WHNP (WP who)) (S (VP)))) 6880

21 (NP (NP) (,) (SBAR (WHNP (WP who)) (S (VP)))) 646

151 (NP (NP) (,) (SBAR (WHNP (WP who)) (S
(ADVP) (VP))))

51

557 (NP (NP) (ADJP) (SBAR (WHNP (WP who)) (S
(VP))))

13

ⓒ 2012 Information Processing Society of Japan

Vol.2012-NL-209 No.14
2012/11/23

IPSJ SIG Technical Report

 4

ii. (SBAR (functional words X) (S (VP)))
Subsequently, each pattern of SBAR normally has the basic
structure as follows.

i. (PARENT (SISTER)* (SBAR (functional words X)
(S (NP) (VP)))) or
ii. (PARENT (SISTER)* (SBAR (functional words X) (S
(VP))))

Each of the basic structures above can have various modifying
parts such as adverbs, prepositions, parenthetical phrases... For
examples (SBAR (functional words X) (S (NP) (VP))) would
have additional modifying parts as (SBAR (functional words X)
(S (ADVP) (PP) (NP) (VP))), while (PARENT (SISTER)*
(SBAR (function words X) (S (VP)))) would have additional
modifying parts as (PARENT (ADVP) (PP) (SISTER)* (SBAR
(function words X) (S (VP))))...

Pseudo-code to group similar patterns together:

for pattern_k = ‘(PAR (SIS)* (SBAR (functionwords X)(S (VP))))’ do
add(.*)→(PAR(.*)(SIS)*(.*)(SBAR(.*)(function_wordsX)(.*)(S(.*)(VP)

(.*))))
pattern_string=(PAR(.*)(SIS)*(.*)(SBAR(.*)(function_wordsX)(.*)(S(.*

)(VP)(.*)))

 regular_exp_pattern_k = Regexp.new(pattern_string)
 for i in 0 ... set_of_patterns.size do
 if regexp_No.k =~ pattern[i] then
 group pattern[i] into the same group of pattern_k
 delete pattern[i] out of set_of_patterns

 When grouping patterns, we use regular expression and we
order the top 100 patterns in the way that conflicting match
problems are solved. For example, concerning the following
patterns:
i. (PARENT (SISTER)* (SBAR (function words X) (S (NP)
(VP)))) or
ii. (PARENT (SISTER)* (SBAR (function words X) (S (VP))))
Both of them can match with patterns like “(PARENT
(SISTER)* (SBAR (function words X) (S (ADVP) (NP)
(VP)))) ”.
 We order so that the pattern “ (SBAR (function words X) (S
(NP) (VP))))” would be checked and processed before “ (SBAR
(function words X) (S(VP)))) ”. Also, once a pattern is found
matched with any in the clusters it will be deleted, so it would
not matched with any other pattern cluster.
 All the patterns in one cluster will have the same reordering
because they share the same main structure, the different parts
they have are mainly modifying parts like prepositions, and
adverbs.

2.3 Using patterns to simplify and rewrite
2.3.1 Dividing and rewriting sentences based on patterns
There are several considerations when developing target-side
patterns. First, one needs to decide which part of the pattern
should be separated for translation. For example with patterns
such as ‘(NP (NP) (SBAR (WHNP (WP who)) (S (VP))))’, the
whole node (include “who”) should be translated to Japanese as

a unit. On the other hand, for patterns such as ‘(VP (VB*)
(SBAR (IN that) (S (SBAR) (NP) (VP)))’, only the SBAR part
‘(S (SBAR) (NP) (VP))’ needs to be translated (without “that”).
(VB* stands for VP clusters, i.e., VB, VBP, VPZ, VPD…)
 In order to do that, we decide whether a separated part can be
treated as an independent structure in relation to other
components; or the separated part is treated as an integral part in
relation to other components in a sentence. (Here an integral
part means a part that must be considered together with other
related parts in certain context. Whereas an independent
structure is a unit that can convey an independent meaning, it
has independent relations with other components of the same
level in a sentence.)
 So, for each separated part, related information including its
parents and children are kept and used. Table 4.1 shows an
example of 2 matched patterns in a sentence, information about
each pattern and its related elements are kept to divide, rewrite
and later reconstruct the sentence.
 How patterns are used to rewrite a sentence is described as
follows.
First, the sentence is checked if it matches any of the patterns.
The result is the sentence has 2 matches.

Sentence:
If the Sea Group wins it means there will be a good haul
during the year.
Match1:
Pattern (VP (VB) (SBAR (S (NP) (VP))))
Part to be divided (SBAR (S (NP) (VP))): there will be a
good haul during the year
Parents: Match2; Children: no

Match2:
Pattern (S (SBAR (IN If) (S (NP) (VP))) (NP) (VP))
Part to be divided (S (SBAR (IN If) (S (NP) (VP))) (NP)
(VP)): If the Sea Group wins it means there will be a
good haul during the year.
Parents: Sentence; Children: Match1

TABLE 4.1: A sentence with two matched patterns, each match
keeps information about itself and the relation to other matches
and the sentence.

 Next, for each match the pattern is examined. Which part of
the pattern will be divided and rewritten is decided based on the
matched pattern. Regarding the matched pattern “(VP (VB)
(SBAR (S (NP) (VP))))”, the part “(SBAR (S (NP) (VP))))”is
divided and the sentence is rewritten using non-terminal
symbols X0.
 Then the pattern “(S (SBAR (IN if | If) (S (NP) (VP))) (NP)
(VP))” is examined and the pattern is divided into two simple
parts, which correspond to “(SBAR (IN if | If) (S (NP) (VP)))”
and “(NP) (VP)” parts.
The sentence and related parts are rewritten in Table 4.2 as
follows.

ⓒ 2012 Information Processing Society of Japan

Vol.2012-NL-209 No.14
2012/11/23

IPSJ SIG Technical Report

 5

Rewrite when process Match.
1

 when process Match. 2

Sentence If the Sea Group
wins it means X0.

 S1 { position_marker :
S1, S1_1, S1_2}

Match1 X0: there will be a
good haul during the
year

X0: there will be a good
haul during the year

Match2 S1: If the Sea
Group wins it means
X0.

S1_1: If the Sea Group
wins; S1_2: it means
X0.

TABLE 4.2: The patterns of Match1, 2 are processed in sequence.
When a pattern is processed, its Parent (if exist) and the
sentence will be updated.

 Finally, the divided and rewritten parts are translated. The
translation results are reconstructed using non-terminal symbols
and information of the position marker. Table 4.3 illustrates the
divided and rewritten parts are translated, and reconstructed.
When all the patterns of Match1, 2 are processed in sequence
and the sentence and related parts are updated we get the final
parts for translation and reconstruction.

Sentence:
If the Sea Group wins it means there will be a good haul
during the year.
(position marker : S1, S1_1, S1_2)
Divided & Rewritten:
X0: there will be a good haul
during the year
S1_1: If the Sea Group wins

S1_2: it means X0.

Translation results:
年度中に豊漁があるだろ

海グループが勝てば

それはX0を意味します。

Reconstruct:
海グループが勝てばそれは年度中に豊漁があるだろうを意味しま

す。

TABLE 4.3: The divided and rewritten parts are translated,
non-terminal symbols (e.g. X0) are replaced by translation
results, and position marker is used to reconstruct the parts.

 We present the pseudo-code to divide, rewrite and
reconstruct a sentence having matched patterns as follows.

#get relations among matched parts (order all matches in
sequence 0,1,...,n)
 find the relations (Parents, Children) among matches :
 if match_i include match_j then
 match_i.Child = match_j, match_j.Parents = match i
 if match_i. Parent = nil then
 set match_i.Parents = Sentence
#divide, translate (process each match in sequence 0,1,2,..,n) :
 for match_i do:

 if pattern is decided as an ‘integral part’:
 seperate the related part: X_i = separated_part;

 update sentence, X_i’s Parents;

 translate X_i → X_i_ja (Japanese translation);
 if pattern is considered as an ‘independent structure’:
 separate the related part: S_i=separated_part;
 save the relative position of S_i in position_holder;
 divide S_i (if necessary) to simpler parts as S_i*
 (e.g. S_i.1, S_i.2,…);
 save the position of S_i* to position holder;
 update sentence, S_i’s Parents with S_i, S_i*;
 translate S_i* → S_i*.ja
 translate rewritten_sentence → sentence.ja
#reconstruct:
 replace non-terminal symbols X_i in sentence.ja with
 X_i_ja
 use position_holder {S_i, S_i*}to reconstruct S_i*.ja to
 S_i.ja;
 put S_i.ja to sentence

2.3.2 Creating rules for patterns with multiple translations

 The second consideration is that there may be patterns that
have multiple translations in the target language. By examining
different sample sentences containing the same pattern, we
found that a number of patterns have multiple translations in the
target language. One example is the case of patterns “(S (SBAR
(IN Since | since) (S (NP) (VP))) (NP) (VP))”, “(VP (VB*) (NP)
(SBAR (IN since) (S (NP) (VP))))”, the meaning of the function
word ‘since’ can be either time-related or reason-related, and
therefore translate to different Japanese patterns. The meaning
of the functional word “since” in this pattern is defined with the
meaning as “in the intervening period between (the time
mentioned) and the time under consideration, typically the
present” or the meaning as “for that reason that; because ”
(Oxford Dictionary, 2000). Table 5 shows a list of patterns,
which have multiple translations.

ⓒ 2012 Information Processing Society of Japan

Vol.2012-NL-209 No.14
2012/11/23

IPSJ SIG Technical Report

 6

Table 5: Examples of patterns having multiple translations
 It is necessary to identify a correct translation when a pattern
has multiple translations. The information and features of nodes
in the pattern can be used as clues to choose a correct
translation.
 For instance, the pattern “(VP (VB*) (NP) (SBAR (IN since)
(S (NP) (VP))))”, the functional word “since” have two different
translations in the target language. We observed that the tense in
the node “(VB*)” and the node “(VP)” are important factors to
affect the meaning of “since”. Indeed, out of 95 sample
sentences, which have the tenses in the node “(VB*)” and the
node ”(VP)” as present perfect tense and past tense, 90
sentences have the meaning related to time. The present perfect
tense and the past tense combination in the pattern actually
expresses the time–related meaning of “since”. On the other
hand, when the two nodes have the same tense as “simple
present tense- simple present tense” or “simple past tense –
simple past tense” then all 45 sample sentences have “since”
translated as “for the reason” in the target language. For each
pattern, it is possible to examine and extract the features of
nodes. Tense in “VP” nodes, type and features of verbs and
other nodes can help to identify a correct translation.

3. Experiment

 To train a translation model, we use Moses 3 as a decoder
and GIZA++ 1.0.7 4 as an alignment tool. We use the bilingual
general-domain magazine corpus which consists of around
170,000 sentence pairs from Hiragana Times, and performed the
standard preprocessing steps (e.g. sentence length filtering) in
the Moses training pipeline. We split the parallel data into two
parts: 1000 sentence pairs for testing and development (500
pairs for testing, 500 for development), and the rest 171,098
sentence pairs for training. We also used Google Translate as a
second MT engine.
 BLEU score is used to evaluate the translation results of test
sentences with and without preprocessing. In testing, those
sentences with patterns matched are divided and rewritten for
translation. The complex sentences that have matched patterns
will be preprocessed (e.g. divided and rewritten into simple
parts). Simple sentences and complex sentences which do not
have matched patterns would not be preprocessed at all. Around
80% of all complex sentences have matched patterns with the
pattern set we extracted. Actually, there are 232 complex
sentences found in the test data of 500, and 185 complex
sentences (covering 79.74 percent) have patterns matched with
those of the typical pattern set.

3.1 Experiment results
 Table 6 shows the score for the translation results of test data
when preprocessing is performed and when no preprocessing is
performed. In the table, the columns without* indicate scores of
the whole test data set, the *columns indicate BLEU score for
only complex sentences. With the proposed method, we get an

3 http://www.statmt.org/moses
4 http://code.google.com/p/giza-pp/

improvement of 2.23 point in BLEU score, if considering only
complex sentences, the increase is over 3 points with Moses.

 Moses Moses* Google Google*

w/o preprocessing 15.26 12.84 24.36 15.61

w/ preprocessing 17.49 15.97 24.73 16.43
 TABLE 6: BLEU scores using Moses and Google Translate.

 With Google Translate, significant improvements are shown
clearly at long and/or complicated sentences. In sentences,
where there are more than one dependent clauses, SMT systems
fail to recognize the borders of these clauses, therefore create
wrong word order if no preprocessing is performed.
 In addition, we implemented the word-level reordering
preprocessing rules of Xu et al. [14] on top of our system. This
led to very promising results, with a further BLEU increase of 2
points. When the two methods are applied together, the
clause-level reordering would help to simplify sentences, while
the word-level reordering rules would help to overcome the
restriction of relative distance reordering in Moses decoder. So,
the combination of different reordering approaches, at
clause-level or at word-level would be important to achieve a
significant improvement.

3.2 Analysis
 We observed that test sentences of which the translations
have been improved mainly fall to the kind of long complex
sentences, complex sentences which have more than one
subordinating clauses, complex sentences which have a specific
expression, or complex sentences which have more complicated
structures.
 Table 7 shows examples of improved translations. For each
cell the first English sentence is the one to be translated, the
following two Japanese sentences are, in sequence, translations
by MT system when no preprocessing is performed and when
our proposed preprocessing is performed, the last one in the cell
is the reference translation.

1. When I went to the hospital near the supermarket, a
woman who was very beautiful looked at me and said hello.
私はスーパーマーケットの近くに病院、非常に美しかった私

を見て挨拶した女性に行ったとき。(without preprocessing)

 私はスーパーマーケット近くの病院に行ったとき、とても美

しかった女性は私を見て挨拶した。(with preprocessing)

私はスーパーの近くにある病院に行った時、とても美しい女

性が私を見て挨拶した。(Reference translation)
2. She said that he gave the boys and the girls who lived
next door delicious red apples.
彼女は、彼が少年と隣の美味しい赤いリンゴに住んでいた女

の子を与えたと述べた。
彼女は彼が男の子と隣に住んでいた女の子美味しい赤いリン

ゴを与えたと述べた。
彼女は彼が隣に住んでいた男の子と女の子たちに美味しくて

赤いりんごをあげたと言った。
3. I can say for sure that you made a big mistake at the job
interview .

ⓒ 2012 Information Processing Society of Japan

Vol.2012-NL-209 No.14
2012/11/23

IPSJ SIG Technical Report

 7

私はあなたの就職の面接で大きなミスを犯していることを確

認のために言うことができます。
私は確かにあなたは就職の面接で大きなミスを犯した言うこ

とができます。

少なくとも、あなたは就職面接で、大きな失敗をしたと言え

ます。
 TABLE 7: Examples of translation results
 Sentence No.1 and sentence No.2 show translations are
improved when complex sentences may have more than one
subordinating clauses, MT systems failed to produce a correct
word order for the target side because it could not recognize the
correct borders of different clauses in a sentence. In both cases,
MT systems get correct translations of phrases in the sentences,
yet order them wrong.
 The adverb phrase “for sure ” in sentence No.3 is translated
incorrectly when no preprocessing is performed, yet when
preprocessing is done, the “that ...” clause is separated and the
sentence’s structure become short and simple, so the MT
systems can handle it.
 On the other hand, complex sentences that have simple
structures get good quality translations even when no
preprocessing is done. Table 8 shows examples of sentences
which preprocessing does not help to improve translations.

Do you think that it is a right action?
あ な た は 、 こ れ が 正 し い 行 動 だ と 思 い ま す か ？ (without
preprocessing)
あ な た は 、 こ れ は 正 し い 動 作 と 思 い ま す か ？ (with
preprocessing)
それは正しい行動だとあなた は 思いますか？ (Reference
Translation)

Punctuality is one of the disciplines you should observe in
Japanese society.
時間厳守は、日本の社会の中で遵守すべき分野の一つです。
時間厳守は、あなたは日本社会で守るべき規律の一つです。
時間厳守は、日本社会の中での常識の一つといえます。

TABLE 8: Translations with no improvement when preprocessing

4. Conclusion and perspectives

 We addressed the problem of complex sentences in MT by
proposing a “divide and rewrite” approach. Our semi-automatic
method automatically discovers a small set of typical source
SBAR patterns, enabling us to craft linguistically-motivated
target-side rules. We demonstrate that with merely 100 patterns,
our approach covers 82 percent of complex sentences and
improves BLEU by over 2 points over the baseline.
 We would like to do further evaluation on other (in particular,
out-of-domain) datasets to test and justify the efficiency of the
set of typical patterns. Besides, the extracted typical patterns and
related rules are expected to work well on not only
English-Japanese translation but also English to other
languages.
 We plan to perform further experimentation on combination

with word-based reordering patterns because this approach
process and divide sentences at clause-level. It would be
desirable to find out a combining model for a further substantial
improvement.
 We would like to develop alternative machine-learning based
methods for clustering source patterns. This is because after
patterns have been sorted into clusters, we further observed that
there are clusters that share common features and behaviors.
Therefore, we would like to learn the rules automatically to
increase the number of patterns and raise the range of complex
sentences, which would match with the patterns.

Appendix
LIST OF 100 TYPICAL CLUSTERS OF PATTERNS

1. (S (SBAR (IN [A|a]fter) (S (NP) (VP))) (NP) (VP))
2. (S (SBAR (IN [A|a]lthough) (S (NP) (VP))) (NP) (VP))
3. (S (SBAR (IN [A|a]s) (S (NP) (VP))) (NP) (VP))
4. (S (SBAR (IN [B|b]ecause) (S (NP) (VP))) (NP) (VP))
5. (S (SBAR (IN [B|b]efore) (S (NP) (VP))) (NP) (VP))
6. (S (SBAR (RB [E|e]ven) (IN if) (S (NP) (VP))) (NP) (VP))
7. (S (SBAR (RB [E|e]ven) (IN though) (S (NP) (VP))) (NP) (VP))
8. (S (SBAR (IN [I|i]f) (S (NP) (VP))) (NP) (VP))
9. (S (SBAR (IN [I|i]f) (S (NP) (VP))) (VP))
10. (S (SBAR (IN [I|i]n) (NN order) (S (VP))) (NP) (VP))
11. (S (SBAR (IN [O|o]nce) (S (NP) (VP))) (NP) (VP))
12. (S (SBAR (IN [S|s]ince) (S (NP) (VP))) (NP) (VP))
13. (S (SBAR (IN [T|t]hough) (S (NP) (VP))) (NP) (VP))
14. (S (SBAR (IN [U|u]nless) (S (NP) (VP))) (NP) (VP))
15. (S (SBAR (WHNP (WP [W|w]hat)) (S (VP))) (VP))
16. (S (SBAR (WHNP (WP [W|w]hat)) (S (VP))) (NP) (VP))
17. (S (SBAR (WHNP (WP [W|w]hat)) (S (NP) (VP))) (VP))
18. (S (SBAR (WHADVP (WRB [W|w]hen)) (S (VP))) (NP) (VP))
19. (S (SBAR (WHADVP (WRB [W|w]hen)) (S (NP) (VP))) (NP) (VP))
20. (S (SBAR (WHADVP (WRB [W|w]henever)) (S (NP) (VP))) (NP) (VP))
21. (S (SBAR (IN [W|w]hile) (S (VP))) (NP) (VP))
22. (S (SBAR (IN [W|w]hile) (S (NP) (VP))) (NP) (VP))

23. (VP (VB*) (NP) (SBAR (IN as) (S (NP) (VP))))
24. (VP (VB*) (SBAR (IN as) (IN if) (S (NP) (VP))))
25. (VP (VB*) (NP) (SBAR (IN although) (S (NP) (VP))))
26. (VP (VB*) (SBAR (IN after) (S (NP) (VP))))
27. (VP (VB*) (SBAR (IN because) (S (NP) (VP))))
28. (VP (VB*) (NP) (SBAR (IN before) (S (NP) (VP))))
29. (VP (VB*) (ADJP) (SBAR (IN for) (S (NP) (VP))))
30. (VP (VB*) (NP) (SBAR (IN in) (NN order) (S (VP))))
31. (VP (VB*) (SBAR (IN if) (S (NP) (VP))))
32. (VP (VB*) (ADJP) (SBAR (IN if) (S (NP) (VP))))
33. (VP (VB*) (SBAR (IN like) (S (NP) (VP))))
34. (VP (VB*) (ADJP) (SBAR (IN that) (S (NP) (VP))))
35. (VP (VB*) (SBAR (IN since) (S (NP) (VP))))
36. (VP (VB*) (SBAR (IN so) (IN that) (S (NP) (VP))))
37. (VP (VB*) (NP) (SBAR (IN though) (S (NP) (VP))))
38. (VP (VB*) (NP) (SBAR (IN unless) (S (NP) (VP))))
39. (VP (VB*) (NP) (SBAR (IN until) (S (NP) (VP))))
40. (VP (VB*) (NP) (SBAR (IN while) (S (NP) (VP))))
41. (VP (VB*) (NP) (SBAR (IN while) (S (VP))))
42. (VP (VB*) (SBAR (WHADVP (WRB when)) (S (NP) (VP))))
43. (VP (VB*) (SBAR (IN that) (S (NP) (VP))))
44. (VP (VB*) (SBAR (WHADVP (WRB where)) (S (NP) (VP))))
45. (VP (VB*) (SBAR (WHADVP (WRB how)) (S (VP))))
46. (VP (VB*) (SBAR (WHADVP (WRB how)) (S (NP) (VP))))
47. (VP (VB*) (SBAR (WHNP (WP what)) (S (NP) (VP))))
48. (VP (VB*) (SBAR (WHNP (WP what)) (S (VP))))
49. (VP (VB*) (SBAR (WHNP (WDT whatever)) (S (NP) (VP))))
50. (VP (VB*) (SBAR (IN whether) (S (NP) (VP))))
51. (VP (VB*) (SBAR (WHADVP (WRB why)) (S (NP) (VP))))
52. (ADJP (ADJP) (SBAR (IN as) (S (NP) (VP))))
53. (ADVP (ADVP) (SBAR (IN as) (S (NP) (VP))))
54. (ADJP (ADJP) (SBAR (IN than) (S (NP) (VP))))
55. (ADJP (JJ) (SBAR (S (NP) (VP))))
56. (ADJP (JJ) (SBAR (IN that) (S (NP) (VP))))
57. (ADJP (ADJP) (SBAR (IN that) (S (NP) (VP))))
58. (ADVP (ADVP) (SBAR (IN that) (S (NP) (VP))))
59. (ADVP (ADVP) (SBAR (IN than) (S (NP) (VP))))
60. (ADVP (RB) (SBAR (IN that) (S (NP) (VP))))
61. (NP (NP) (SBAR (S (NP) (VP))))
62. (NP (DT) (NN) (SBAR (S (NP) (VP))))
63. (NP (DT) (NN) (SBAR (IN that) (S (NP) (VP))))

ⓒ 2012 Information Processing Society of Japan

Vol.2012-NL-209 No.14
2012/11/23

IPSJ SIG Technical Report

 8

64. (NP (NP) (SBAR (IN that) (S (NP) (VP))))
65. (NP (DT) (JJ) (NN) (SBAR (IN that) (S (NP) (VP))))
66. (NP (NN) (SBAR (IN that) (S (NP) (VP))))
67. (NP (NP) (SBAR (WHNP (IN that)) (S (NP) (VP))))
68. (NP (NP) (SBAR (WHNP (WDT that)) (S (ADVP) (VP))))
69. (NP (NP) (SBAR (WHADVP (WRB when)) (S (NP) (VP))))
70. (NP (NP) (SBAR (WHADVP (WRB where)) (S (NP) (VP))))
71. (NP (NP) (SBAR (WHNP (WDT which)) (S (NP) (VP))))
72. (NP (NP) (SBAR (WHNP (WDT which)) (S (VP))))
73. (NP (NP) (SBAR (WHPP (IN in) (WHNP (WDT which))) (S (NP)

(VP))))
74. (NP (NP) (SBAR (WHNP (WP who)) (S (NP) (VP))))
75. (NP (NP) (SBAR (WHNP (WP whom)) (S (NP) (VP))))
76. (NP (NP) (SBAR (WHNP (WP who)) (S (VP))))
77. (NP (NP) (SBAR (WHNP (WDT that)) (S (VP))))
78. (NP (NP) (SBAR (WHADVP (WRB why)) (S (NP) (VP))))
79. (NP (NP) (SBAR (IN for) (S (NP) (VP))))
80. (NP (NNS) (SBAR (IN that) (S (NP) (VP))))
81. (PP (IN) (SBAR (WHADVP (WRB how)) (S (VP))))
82. (PP (IN) (SBAR (WHADVP (WRB how)) (S (NP) (VP))))
83. (PP (IN) (SBAR (WHNP (WP what)) (S (NP) (VP))))
84. (PP (IN) (SBAR (WHNP (WP whatever)) (S (NP) (VP))))
85. (PP (IN) (SBAR (WHNP (WP what)) (S (VP))))
86. (PP (IN) (SBAR (WHADVP (WRB when)) (S (NP) (VP))))
87. (PP (IN) (SBAR (IN whether) (S (NP) (VP))))
88. (PP (IN) (SBAR (WHADVP (WRB where)) (S (NP) (VP))))
89. (PP (TO) (SBAR (WHNP (WP what)) (S (NP) (VP))))
90. (S (SBAR (IN If) (S (NP) (VP))) (S) (CC) (S))
91. (S (SBAR (WHADVP (WRB When)) (S (NP) (VP))) (S) (CC) (S))
92. (S (NP) (VP (VB*) (SBAR (S (NP) (VP)))))
93. (S (NP) (VP (VB*) (SBAR (IN that) (S (S) (CC) (S)))))
94. (S (NP) (VP (VB*) (SBAR (S (S) (CC) (S)))))
95. (S (NP) (VP (VB*) (SBAR (IN that) (S (SBAR) (NP) (VP)))))
96. (SBAR (SBAR (WHNP (WP who)) (S (VP))) (CC) (SBAR (WHNP (WP

who)) (S (VP))))
97. (SBAR (SBAR (IN that) (S (NP) (VP))) (CC) (SBAR (IN that) (S (NP)

(VP))))
98. (SBAR (SBAR (S (NP) (VP))) (CC) (SBAR (IN that) (S (NP) (VP))))
99. (SBAR (SBAR (WHADVP (WRB when)) (S (NP) (VP))) (CC) (SBAR

(WHADVP (WRB when)) (S (NP) (VP))))
100. (SBAR (SBAR (IN whether) (S (NP) (VP))) (CC) (RB))

Reference
1) Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietria, and
Robert L. Mercer. The mathematics of statistical machine translation:
Parameter estimation. Computational Linguistics, 19(2):263-311, 1993.
2) David Chiang. A hierarchical phrase-based model for
statistical machine translation. In Proceedings of the Association
for Computational Linguistics ’05, pp. 263-270, 2005.
3) Dmitriy Genzel. Automatically learning source-side reordering rules
for large scale machine translation. In Proceedings of the 23rd
International Conference on Computational Linguistics, pp. 376-384,
2010.
4) Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical
phrase-based translation. In Procceedings of the 2003 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies , pp. 263-270, 2003.
5) Philipp Koehn, Amittai Axelrod, Alexandra Birch Mayne, Chris
Callision-Burch, Miles Osborne, and David Talbot. Edinburg system
description for the 2005 IWSLT speech translation evaluation. In
Proceedings of International Workshop on Spoken Language
Translation, 2005.
6) Philipp Koehn. Statistical Machine Translation. Cambridge
University Press, 2010. (pp. 127-148)
7) Adam Lopez. Statistical Machine Translation. Association for
Computing Machinery Computing Surveys, Vol.40, No. 3, Article 8,
August, 2008.
8) Ananthakrishnan Ramanathan, Pushpak Bhattacharyya, Kartik
Visweswariah, Kushal Ladha, and Ankur Gandhe. Clause-based
reordering constraints to improve statistical machine translation. In
Proceedings of the International Joint Conference on Natural Language
Processing (IJCNLP), pp.1351-1355, 2011.
9) Katsuhito Sudoh, Kevin Duh, Hajime Tsukada, Tsutomu Hirao and
Masaaki Nagata. In Proceedings of the Joint 5th Workshop on Statistical

Machine Translation and MetricsMATR, pp. 418-427, 2010.
10) Karthik Visweswariah, Rajakrishnan Rajkumar and Ankur Gandhe.
A word reordering model for improved machine translation. In
Proceedings of the 2011 Conference Empirical Methods in Natural
Language Processing, pp. 486-496, 2010.
11) Chao Wang, Micheal Collins, and Philipp Koehn. Chinese
syntactic reordering for statistical machine translation. In Proceedings
of the 2007 Conference Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pp.
737-745, 2007.
12) Fei Xia and Micheal McCord. Improving a statistical MT system
with automatically learned rewrite patterns. In Proceedings of the 20th
International Conference on Computational Linguistics, pp. 508-514,
2004.
13) Peng Xu, Jaeh Kang, Micheal Ringgaard and Franz Och. Using a
dependency parser to improve SMT for subject-object-verb languages.
In Proceedings of the 2009 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2009.
14) Kenji Yamada and Kevin Knight. A syntax-based statistical
machine translation model. In Proceedings of the Association for
Computational Linguistics ’05, pp. 523-530, 2001.
15) Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight.
Synchronous binarization for machine translation. In Proceedings of the
Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics, Main
Conference, pp. 256-263, 2006.

ⓒ 2012 Information Processing Society of Japan

Vol.2012-NL-209 No.14
2012/11/23

