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Abstract: This study explores in detail the question of complex sentences in English-to-Japanese Statistical Machine Translation 
(SMT). Complex sentences pose the most difficulty to existing SMT systems, due to large word order differences between SVO 
and SOV languages. In order to overcome this problem, we take a “divide and rewrite” approach: a complex sentence is divided 
into simple clauses based on syntactic patterns; then simple clauses are translated and the results are pieced together to form the 
final output. 
  The main challenge of such “divide and rewrite” preprocessing approaches is the construction of syntactic patterns. While 
previous works focus on either automatic or manual methods, we pursue a semi-automatic approach. First, we automatically 
extract and cluster patterns of dependent clauses based on source-side parses. Our novel definition of pattern templates enables us 
to reduce all sources of syntactic variations into a small set of 100 clusters. Then it becomes feasible to perform a manual 
construction of corresponding target-side patterns. In our experiments, we demonstrate that this cost-effective approach covers 82 
percent of all complex sentences and improves BLEU by over 2 points over the baseline. 
Keywords: sentence pattern, complex sentence, functional word, machine translation 

 
 

1. Introduction     

   Complex sentences present significant challenges to 
existing Statistical Machine Translation (SMT) systems, 
especially for languages pairs with considerable 
re-ordering. A complex sentence is a sentence containing one or 
more subordinating (dependent) clauses. For a language pair 
such as English (SVO) and Japanese (SOV), the issue of 
long-distance word re-ordering, compounded with the 
possibility of intervening subordinating clauses, makes it hard to 
place the verb, for example, in the correct position.  
Much effort has been put into the re-ordering problem, with 
both preprocessing and integrated approaches being effective. 
The former “rewrites” the original input E to an alternative 
sentence E’ that is easier to handle (Xia and McCord, 2004), 
while the latter incorporates a reordering model directly into 
search (Chiang, 2005). Surprisingly, although SMT re-ordering 
is an active research area, only a few previous works focused on 
the related problem of complex sentence structure (Sudoh et. al., 
2010; Ramanathan et. al., 2011).  
In this paper, we adopt the preprocessing approach of (Sudoh et. 
al., 2010), where a complex sentence is divided into simple 
clauses and translated independently. This approach has proven 
very effective for language pairs such as English-Japanese. It 
requires a source-side (English) syntactic parser to identify 
clauses (via SBAR). Identified clauses are replaced by 
non-terminals as place-holders; after translation, the 
independent results are reconstructed using non-terminals.  
A limitation of this previous method is that it treats all kinds of 
dependent clauses in the same way. The corresponding 
target-side rules are learned automatically from word alignments, 
as in conventional phrase-based SMT (Koehn et. al., 2003). It is 
not clear whether noisy word alignments are reliable for 
extracting generalizable target-side rules. We believe it is much 
more desirable to process dependent clauses differently based on 
context. In fact, we find it is possible to manually-craft these 

contextual target-side rules based on the set of pattern clusters 
and function word indicators on the source-side.  
The main contribution of this paper is a semi-automatic and 
linguistically motivated methodology for developing effective 
“divide and rewrite” patterns for complex sentences. By 
semi-automatic, we mean that our source-side patterns are 
extracted and clustered automatically, while our target- side 
patterns are developed manually based on linguistic observation. 
This is in contrast to most preprocessing approaches, which 
extract patterns either fully automatically (Genzel, 2010; 
Visweswariah, 2011) or fully manually (Xu, 2009; Chao et. al., 
2007).  
A second contribution is a novel definition of pattern templates 
that proved effective for English- Japanese. Our source-side 
patterns are based on SBAR, it’s parents, sisters, daughters and 
related function words. Though simple, these patterns are easy 
to extract and cluster, leading to cost- effective manual analysis. 
The list of patterns useful for translation will be available at 
http://blind.review.  
Finally, we note that our emphasis is on clausal reordering in 
complex sentences. The numerous previous research on word 
ordering are orthogonal to our work here. Certainly high-level 
clausal rewrites and low-level word reordering can work in 
tandem.  
  A second contribution is a novel definition of pattern 
templates that proved effective for English-Japanese. Our 
source-side patterns are based on each subordinating clause, it’s 
parent, sisters, daughters and related function words. Though 
simple, these patterns are easy to extract and cluster, leading to 
cost-effective manual analysis. 
  Finally, we note that our emphasis is on clausal reordering in 
complex sentences. The numerous previous researches on word 
ordering are orthogonal to our work here. Certainly high-level 
clausal rewrites and low-level word reordering can work in 
tandem.  

ⓒ 2012 Information Processing Society of Japan

Vol.2012-NL-209 No.14
2012/11/23



IPSJ SIG Technical Report  
 

 2 
 

2. Divide and rewrite approach 

  This study deals with translation of complex sentences from 
English to Japanese by using the typical patterns extracted to 
divide and rewrite a complex sentence into simple structures. 
The Oxford Dictionary (2000) defines that a complex sentence 
is a sentence containing one or more subordinating clauses.   
  In order to examine and extract typical patterns of complex 
sentences, we produce a parse tree for each sentence in the 
training data using Berkeley Parser. Subordinating clauses, 
which are introduced by a (possibly empty) subordinating 
conjunction, are marked as “SBAR” 1 in a Berkeley parse tree. 
Subordinating clauses will be referred to as “SBAR”. 
  The data used for experiments is data from the magazine 
Hiragana Times 2. Hiragana Times is a bilingual magazine 
written in Japanese and English to introduce Japan to 
non-Japanese, covering a wide ranges of topics including culture, 
society, history, politics... The data contains 172,098 sentences 
crawled in October 2011.  
  Our approach for complex sentence simplification can be 
divided into two stages. In the preparation stage, we first extract 
source patterns (Section 3.1), cluster them into a manageable 
number (Section 3.2), and develop corresponding target patterns 
(Section 3.3). In the deployment stage, we simply look for 
source pattern matches in the input, translate the clauses, and 
recombine the results using target patterns. 

2.1 Extracting patterns of complex sentences 
  For each sentence in the training data we first produce a parse 
tree to examine its patterns. We assume that the structure of a 
subordinating clause in a complex sentence together with its 
functional words and its relations to other components in the 
sentence can be modeled to a set of manageable patterns. It is 
expected that these patterns will be used as useful clues either to 
divide and rewrite sentences or to create rules for the translation 
of particular patterns having ambiguity.  
  For each SBAR node in a parse tree, a pattern is extracted as 
follows: for the SBAR’s parent and sister nodes, the phrase 
names are extracted. This information would help to define 
where a SBAR belong to and which functions it may have. For 
SBAR’s child node that contains function words, all of the 
phrase name, the POS tag and the surface word are extracted. 
The function words are extracted because they are important 
elements, which can express the grammatical relationship 
between clauses in a sentence. Figures 1 and 2 illustrate how the 
pattern “(NP (NP) (SBAR (WHNP (WP who)) (S (VP))))” is 
extracted. 

                                                                    
1 http://bulba.sdsu.edu/jeanette/thesis/PennTags.html 
2 http://www.hiraganatimes.com/index-j.html 

 
 

Figure 1: Example of a complex sentence and its SBAR 
 
              

         
Figure 2: Example of an extracted pattern 

    
  In Figures 1 and 2, the pattern “(NP (NP) (SBAR (WHNP 
(WP who)) (S (VP))))” is extracted, the SBAR has a parent node 
as “NP” and a sister node as “(NP)”, the functional word of 
SBAR is “who”, and this SBAR has the structure as a verb 
phrase, “VP”. With the related information, the pattern can be 
described as a subordinating clause composed of the functional 
word “who” and having a child node that consists only of a verb 
phrase, “VP”. The clause modifies a noun phrase “(NP)” and 
belongs to a noun phrase “NP”. 
  By producing a parse tree for each sentence, each pattern is 
extracted as described above. Table 1 shows that we generated 
21k distinct patterns from our dataset of 70k complex sentences. 
 

Number of sentences  171,098 

Number of complex sentences 70,134 

Number of SBARs 114,840 

Number of distinct SBAR patterns 21,090 

Table 1 - Statistics of patterns in complex sentences in training 
data. 

2.2 Acquiring a compact set of typical patterns 
  The raw number of extracted source patterns is too large for 
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manual construction of corresponding target patterns. Thus an 
important question is, are there patterns that translate into 
similar structures? Is it possible to cluster them in an organized, 
easily-interpretable way? 

  
  Each pattern has its frequency number showing how many 
times it appears in the training data. There are patterns that 
appear much more than others. Though the number of all 
distinct patterns is 21,090, the top 10 distinct patterns, which 
have the highest frequencies, account for 25.8 percent of all the 
times when a SBAR is found (Table 2). Sequentially, the top 
100 and 200 distinct patterns account for 53 and 59 percent for 
instance.     
 
 
 

      
     Table 2: The top 10 patterns of highest frequencies 
  Actually, it is interesting to note that the patterns exhibit 
Zipf-like distributions. We can see cumulative frequency of all 
distinct patterns in Figure 3. The graph shows the number of 
distinct patterns on X-axis versus frequency on the Y-axis. It is 
clear that a only a small number of top-ranking patterns can 
model a big portion of all the patterns found in training data. 
 

 
FIGURE 3: Cumulative frequency of all distinct patterns (x 

axis: Number of distinct patterns; y axis: Cumulative 
frequency) 

 
  So, it is expected that a small number of patterns can be used 
to summarize most of complex sentences. How such a 
manageable set of typical patterns would be extracted? 
  Examining the extracted patterns, we found that there are 
patterns that share similar structure and features. These patterns 
can be grouped together as one cluster; this will help to 

summarize the extracted pattern in an interpretable and 
organized way.  
  We define the following criteria for grouping together source 
patterns: Their SBAR nodes must have (1) a child node 
containing the same function words, (2) the same parent node 
label, which would tell where they belong to and what kind of 
function they may have, and (3) a matching non-terminal 
structure. 
 

TABLE 3: Examples of distinct patterns grouped together 
(underlined elements must be shared)  
  Table 3 shows an example of distinct patterns that are 
grouped together into one grouped pattern. Each distinct pattern 
has its frequency ranked as seen in the left column of the table. 
In this case, in each pattern, one SBAR child node contain the 
same functional word “who”, the basic structure of each SBAR 
contains a verb phrase component as “(VP)”, and all the SBAR 
in each pattern belongs to a noun phrase “NP”, modifying a 
noun phrase “(NP)”.  
  We give a note about functional words here. We have a list of 
all function words, which are related to SBAR and often 
considered as subordinating conjunctions (e.g. “after”, 
“although”, “as”, “because”, “before”, “if”, “though”, “unless”, 
“what”, “when”, “who”,…). We can consider and analyze all 
patterns with their function words. As for function words like 
“of”, we do not consider this kind of function words because it 
is not related (or connected) directly to a SBAR. 
  The result of grouping similar pattern together is that we get 
an organized compact set of typical patterns in complex 
sentences. The set includes 100 typical pattern clusters, which 
cover 82% of all the patterns extracted in complex sentences in 
the training data. (See Appendix 1 for the whole list of the 
typical patterns.). For the reason we decided the number of 
pattern clusters to 100, as shown in Figure 3, we plotted all the 
patterns and cumulative frequency and the patterns have a 
Zipf-like distribution. It means that a number of the top high 
frequency patterns can cover a big number of all sentences. For 
example, looking at the coverage of the top ranking patterns, we 
can see that the top 100 patterns have the coverage 82%, while 
the top 200 increase this number to 85%, and the top 300 can 
cover 87% of all sentences. So, 100 is a good and convenient 
start to summarize patterns, we can edit further, for instance, 
300 top patterns for higher coverage.  
We describe the algorithm to classify similar patterns together 
into one group as follows. 
A SBAR normally have the basic structure as follows.  

i.  (SBAR (functional words X) (S (NP) (VP))) or  

Rank SBAR Pattern  Freq. 

1 (NP (NP) (SBAR (WHNP (WP who)) (S (VP)))) 6880 

21 (NP (NP) (,) (SBAR (WHNP (WP who)) (S (VP)))) 646 

151 (NP (NP) (,) (SBAR (WHNP (WP who)) (S 
(ADVP) (VP)))) 

51 

557 (NP (NP) (ADJP) (SBAR (WHNP (WP who)) (S 
(VP)))) 

13 
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ii.  (SBAR (functional words X) (S (VP))) 
Subsequently, each pattern of SBAR normally has the basic 
structure as follows. 

i.   (PARENT (SISTER)* (SBAR (functional words X) 
(S (NP) (VP)))) or 
ii.  (PARENT (SISTER)* (SBAR (functional words X) (S 
(VP))))  

Each of the basic structures above can have various modifying 
parts such as adverbs, prepositions, parenthetical phrases... For 
examples (SBAR (functional words X) (S  (NP) (VP))) would 
have additional modifying parts as (SBAR (functional words X) 
(S (ADVP) (PP) (NP) (VP))), while (PARENT (SISTER)* 
(SBAR (function words X) (S  (VP)))) would have additional 
modifying parts as (PARENT (ADVP) (PP) (SISTER)* (SBAR 
(function words X) (S (VP))))... 
 
Pseudo-code to group similar patterns together:  
 

for pattern_k = ‘(PAR (SIS)* (SBAR (functionwords X)(S (VP))))’  do 
add(.*)→(PAR(.*)(SIS)*(.*)(SBAR(.*)(function_wordsX)(.*)(S(.* )(VP)

(.* )))) 
pattern_string=(PAR(.*)(SIS)*(.*)(SBAR(.*)(function_wordsX)(.*)(S(.*

 )(VP)(.* ))) 

       regular_exp_pattern_k = Regexp.new(pattern_string) 
      for i in 0 ... set_of_patterns.size do 
         if regexp_No.k =~ pattern[i] then 
             group pattern[i] into the same group of pattern_k  
             delete pattern[i] out of set_of_patterns 

 
  When grouping patterns, we use regular expression and we 
order the top 100 patterns in the way that conflicting match 
problems are solved. For example, concerning the following 
patterns: 
i. (PARENT (SISTER)* (SBAR (function words X) (S (NP) 
(VP)))) or 
ii. (PARENT (SISTER)* (SBAR (function words X) (S (VP)))) 
Both of them can match with patterns like “(PARENT 
(SISTER)* (SBAR (function words X) (S (ADVP) (NP) 
(VP)))) ”. 
  We order so that the pattern “ (SBAR (function words X) (S 
(NP) (VP))))” would be checked and processed before “ (SBAR 
(function words X) (S(VP)))) ”. Also, once a pattern is found 
matched with any in the clusters it will be deleted, so it would 
not matched with any other pattern cluster. 
  All the patterns in one cluster will have the same reordering 
because they share the same main structure, the different parts 
they have are mainly modifying parts like prepositions, and 
adverbs. 

2.3 Using patterns to simplify and rewrite 
2.3.1 Dividing and rewriting sentences based on patterns 
There are several considerations when developing target-side 
patterns. First, one needs to decide which part of the pattern 
should be separated for translation. For example with patterns 
such as ‘(NP (NP) (SBAR (WHNP (WP who)) (S (VP))))’, the 
whole node (include “who”) should be translated to Japanese as 

a unit. On the other hand, for patterns such as ‘(VP (VB*) 
(SBAR (IN that) (S (SBAR) (NP) (VP)))’, only the SBAR part 
‘(S (SBAR) (NP) (VP))’ needs to be translated (without “that”). 
(VB* stands for VP clusters, i.e., VB, VBP, VPZ, VPD…) 
  In order to do that, we decide whether a separated part can be 
treated as an independent structure in relation to other 
components; or the separated part is treated as an integral part in 
relation to other components in a sentence. (Here an integral 
part means a part that must be considered together with other 
related parts in certain context. Whereas an independent 
structure is a unit that can convey an independent meaning, it 
has independent relations with other components of the same 
level in a sentence. ) 
  So, for each separated part, related information including its 
parents and children are kept and used. Table 4.1 shows an 
example of 2 matched patterns in a sentence, information about 
each pattern and its related elements are kept to divide, rewrite 
and later reconstruct the sentence.   
  How patterns are used to rewrite a sentence is described as 
follows. 
First, the sentence is checked if it matches any of the patterns. 
The result is the sentence has 2 matches.  
 

Sentence:  
If the Sea Group wins it means there will be a good haul 
during the year. 
Match1:  
Pattern (VP (VB) (SBAR (S (NP) (VP)))) 
Part to be divided (SBAR (S (NP) (VP))): there will be a 
good haul during the year     
Parents: Match2; Children: no 

Match2:  
Pattern (S (SBAR (IN If)  (S (NP) (VP))) (NP) (VP)) 
Part to be divided  (S (SBAR (IN If) (S (NP) (VP))) (NP) 
(VP)):  If the Sea Group wins it means there will be a 
good haul during the year.             
Parents: Sentence; Children: Match1 

 
TABLE 4.1: A sentence with two matched patterns, each match 
keeps information about itself and the relation to other matches 
and the sentence. 
 
  Next, for each match the pattern is examined. Which part of 
the pattern will be divided and rewritten is decided based on the 
matched pattern. Regarding the matched pattern “(VP (VB) 
(SBAR (S (NP) (VP))))”, the part “(SBAR (S (NP) (VP))))”is 
divided and the sentence is rewritten using non-terminal 
symbols X0.  
  Then the pattern “(S (SBAR (IN if | If) (S (NP) (VP))) (NP) 
(VP))” is examined and the pattern is divided into two simple 
parts, which correspond to “(SBAR (IN if | If) (S (NP) (VP)))” 
and “(NP) (VP)” parts. 
The sentence and related parts are rewritten in Table 4.2 as 
follows. 
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Rewrite when process Match. 
1 

 when process Match. 2 

Sentence  If the Sea Group 
wins it means X0. 

 S1 { position_marker : 
S1, S1_1, S1_2} 

Match1 X0: there will be a 
good haul during the 
year 

X0: there will be a good 
haul during the year 

Match2  S1:  If the Sea 
Group wins it means 
X0. 

S1_1: If the Sea Group 
wins; S1_2: it means 
X0. 

 
TABLE 4.2: The patterns of Match1, 2 are processed in sequence. 
When a pattern is processed, its Parent (if exist) and the 
sentence will be updated. 
 
  Finally, the divided and rewritten parts are translated. The 
translation results are reconstructed using non-terminal symbols 
and information of the position marker. Table 4.3 illustrates the 
divided and rewritten parts are translated, and reconstructed. 
When all the patterns of Match1, 2 are processed in sequence 
and the sentence and related parts are updated we get the final 
parts for translation and reconstruction. 
   
Sentence:  
If the Sea Group wins it means there will be a good haul 
during the year. 
(position marker : S1, S1_1, S1_2) 
Divided & Rewritten:  
X0: there will be a good haul 
during the year 
S1_1: If the Sea Group wins 
 
S1_2: it means X0. 

Translation results: 
年度中に豊漁があるだろ 
 
海グループが勝てば 
 
それはX0を意味します。 

Reconstruct: 
海グループが勝てばそれは年度中に豊漁があるだろうを意味しま

す。 

 
TABLE 4.3: The divided and rewritten parts are translated, 
non-terminal symbols (e.g. X0) are replaced by translation 
results, and position marker is used to reconstruct the parts.  
 
   We present the pseudo-code to divide, rewrite and 
reconstruct a sentence having matched patterns as follows. 
 

#get relations among matched parts (order all matches in 
sequence 0,1,...,n) 
    find the relations (Parents, Children ) among matches : 
    if match_i include match_j then  
      match_i.Child = match_j, match_j.Parents = match i 
    if match_i. Parent = nil then  
      set match_i.Parents = Sentence 
#divide, translate (process each match in sequence 0,1,2,..,n) : 
    for match_i do:  

      if pattern is decided as an ‘integral part’: 
          seperate the related part: X_i = separated_part; 

          update sentence, X_i’s Parents;  

          translate X_i → X_i_ja (Japanese translation); 
      if pattern is considered as an ‘independent structure’: 
          separate the related part: S_i=separated_part;  
          save the relative position of S_i in position_holder; 
          divide S_i (if necessary) to simpler parts as S_i* 
          (e.g. S_i.1, S_i.2,… );  
          save the position of S_i* to position holder; 
          update sentence, S_i’s Parents with S_i, S_i*;  
          translate S_i* → S_i*.ja 
      translate   rewritten_sentence → sentence.ja  
#reconstruct: 
     replace non-terminal symbols X_i in sentence.ja with  
     X_i_ja 
     use position_holder {S_i, S_i*}to reconstruct S_i*.ja to 
     S_i.ja;  
     put S_i.ja to sentence 
 
 
2.3.2 Creating rules for patterns with multiple translations 
 
  The second consideration is that there may be patterns that 
have multiple translations in the target language. By examining 
different sample sentences containing the same pattern, we 
found that a number of patterns have multiple translations in the 
target language. One example is the case of patterns “(S (SBAR 
(IN Since | since) (S (NP) (VP))) (NP) (VP))”, “(VP (VB*) (NP) 
(SBAR (IN since) (S (NP) (VP))))”, the meaning of the function 
word ‘since’ can be either time-related or reason-related, and 
therefore translate to different Japanese patterns. The meaning 
of the functional word “since” in this pattern is defined with the 
meaning as “in the intervening period between (the time 
mentioned) and the time under consideration, typically the 
present” or the meaning as “for that reason that; because ” 
(Oxford Dictionary, 2000). Table 5 shows a list of patterns, 
which have multiple translations. 
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Table 5: Examples of patterns having multiple translations 
   It is necessary to identify a correct translation when a pattern 
has multiple translations. The information and features of nodes 
in the pattern can be used as clues to choose a correct 
translation. 
  For instance, the pattern “(VP (VB*) (NP) (SBAR (IN since) 
(S (NP) (VP))))”, the functional word “since” have two different 
translations in the target language. We observed that the tense in 
the node “(VB*)” and the node “(VP)” are important factors to 
affect the meaning of “since”. Indeed, out of 95 sample 
sentences, which have the tenses in the node “(VB*)” and the 
node ”(VP)” as present perfect tense and past tense, 90 
sentences have the meaning related to time. The present perfect 
tense and the past tense combination in the pattern actually 
expresses the time–related meaning of “since”. On the other 
hand, when the two nodes have the same tense as “simple 
present tense- simple present tense” or “simple past tense – 
simple past tense” then all 45 sample sentences have “since” 
translated as “for the reason” in the target language. For each 
pattern, it is possible to examine and extract the features of 
nodes. Tense in “VP” nodes, type and features of verbs and 
other nodes can help to identify a correct translation. 
 

3. Experiment 

  To train a translation model, we use Moses 3 as a decoder 
and GIZA++ 1.0.7 4 as an alignment tool. We use the bilingual 
general-domain magazine corpus which consists of around 
170,000 sentence pairs from Hiragana Times, and performed the 
standard preprocessing steps (e.g. sentence length filtering) in 
the Moses training pipeline. We split the parallel data into two 
parts: 1000 sentence pairs for testing and development (500 
pairs for testing, 500 for development), and the rest 171,098 
sentence pairs for training. We also used Google Translate as a 
second MT engine.   
  BLEU score is used to evaluate the translation results of test 
sentences with and without preprocessing. In testing, those 
sentences with patterns matched are divided and rewritten for 
translation. The complex sentences that have matched patterns 
will be preprocessed (e.g. divided and rewritten into simple 
parts). Simple sentences and complex sentences which do not 
have matched patterns would not be preprocessed at all. Around 
80% of all complex sentences have matched patterns with the 
pattern set we extracted. Actually, there are 232 complex 
sentences found in the test data of 500, and 185 complex 
sentences  (covering 79.74 percent) have patterns matched with 
those of the typical pattern set. 

3.1 Experiment results 
  Table 6 shows the score for the translation results of test data 
when preprocessing is performed and when no preprocessing is 
performed. In the table, the columns without* indicate scores of 
the whole test data set, the *columns indicate BLEU score for 
only complex sentences. With the proposed method, we get an 
                                                                    
3 http://www.statmt.org/moses 
4 http://code.google.com/p/giza-pp/ 

improvement of 2.23 point in BLEU score, if considering only 
complex sentences, the increase is over 3 points with Moses. 

 Moses  Moses* Google Google* 

w/o preprocessing 15.26 12.84 24.36 15.61 

w/ preprocessing 17.49  15.97 24.73 16.43 
   TABLE 6: BLEU scores using Moses and Google Translate. 
  
  With Google Translate, significant improvements are shown 
clearly at long and/or complicated sentences. In sentences, 
where there are more than one dependent clauses, SMT systems 
fail to recognize the borders of these clauses, therefore create 
wrong word order if no preprocessing is performed.   
  In addition, we implemented the word-level reordering 
preprocessing rules of Xu et al. [14] on top of our system. This 
led to very promising results, with a further BLEU increase of 2 
points. When the two methods are applied together, the 
clause-level reordering would help to simplify sentences, while 
the word-level reordering rules would help to overcome the 
restriction of relative distance reordering in Moses decoder. So, 
the combination of different reordering approaches, at 
clause-level or at word-level would be important to achieve a 
significant improvement. 

3.2 Analysis 
  We observed that test sentences of which the translations 
have been improved mainly fall to the kind of long complex 
sentences, complex sentences which have more than one 
subordinating clauses, complex sentences which have a specific 
expression, or complex sentences which have more complicated 
structures.  
  Table 7 shows examples of improved translations. For each 
cell the first English sentence is the one to be translated, the 
following two Japanese sentences are, in sequence, translations 
by MT system when no preprocessing is performed and when 
our proposed preprocessing is performed, the last one in the cell 
is the reference translation. 
  

1. When I went to the hospital near the supermarket, a 
woman who was very beautiful looked at me and said hello. 
私はスーパーマーケットの近くに病院、非常に美しかった私

を見て挨拶した女性に行ったとき。( without preprocessing) 

 私はスーパーマーケット近くの病院に行ったとき、とても美

しかった女性は私を見て挨拶した。(with preprocessing) 
 
私はスーパーの近くにある病院に行った時、とても美しい女

性が私を見て挨拶した。(Reference translation) 
2. She said that he gave the boys and the girls who lived 
next door delicious red apples. 
彼女は、彼が少年と隣の美味しい赤いリンゴに住んでいた女

の子を与えたと述べた。 
彼女は彼が男の子と隣に住んでいた女の子美味しい赤いリン

ゴを与えたと述べた。 
彼女は彼が隣に住んでいた男の子と女の子たちに美味しくて

赤いりんごをあげたと言った。 
3. I can say for sure that you made a big mistake at the job 
interview . 
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私はあなたの就職の面接で大きなミスを犯していることを確

認のために言うことができます。 
私は確かにあなたは就職の面接で大きなミスを犯した言うこ

とができます。 

少なくとも、あなたは就職面接で、大きな失敗をしたと言え

ます。 
    TABLE 7: Examples of translation results 
  Sentence No.1 and sentence No.2 show translations are 
improved when complex sentences may have more than one 
subordinating clauses, MT systems failed to produce a correct 
word order for the target side because it could not recognize the 
correct borders of different clauses in a sentence. In both cases, 
MT systems get correct translations of phrases in the sentences, 
yet order them wrong.  
  The adverb phrase “for sure ” in sentence No.3 is translated 
incorrectly when no preprocessing is performed, yet when 
preprocessing is done, the “that ...” clause is separated and the 
sentence’s structure become short and simple, so the MT 
systems can handle it.  
  On the other hand, complex sentences that have simple 
structures get good quality translations even when no 
preprocessing is done. Table 8 shows examples of sentences 
which preprocessing does not help to improve translations. 
 
Do you think that it is a right action? 
あ な た は 、 こ れ が 正 し い 行 動 だ と 思 い ま す か ？ (without 
preprocessing) 
あ な た は 、 こ れ は 正 し い 動 作 と 思 い ま す か ？  (with 
preprocessing) 
それは正しい行動だとあなた  は  思いますか？ (Reference 
Translation) 
 
Punctuality is one of the disciplines you should observe in 
Japanese society. 
時間厳守は、日本の社会の中で遵守すべき分野の一つです。 
時間厳守は、あなたは日本社会で守るべき規律の一つです。 
時間厳守は、日本社会の中での常識の一つといえます。 
 
 
TABLE 8: Translations with no improvement when preprocessing 
 

4. Conclusion and perspectives 

  We addressed the problem of complex sentences in MT by 
proposing a “divide and rewrite” approach. Our semi-automatic 
method automatically discovers a small set of typical source 
SBAR patterns, enabling us to craft linguistically-motivated 
target-side rules. We demonstrate that with merely 100 patterns, 
our approach covers 82 percent of complex sentences and 
improves BLEU by over 2 points over the baseline.  
  We would like to do further evaluation on other (in particular, 
out-of-domain) datasets to test and justify the efficiency of the 
set of typical patterns. Besides, the extracted typical patterns and 
related rules are expected to work well on not only 
English-Japanese translation but also English to other 
languages.  
  We plan to perform further experimentation on combination 

with word-based reordering patterns because this approach 
process and divide sentences at clause-level. It would be 
desirable to find out a combining model for a further substantial 
improvement.  
  We would like to develop alternative machine-learning based 
methods for clustering source patterns. This is because after 
patterns have been sorted into clusters, we further observed that 
there are clusters that share common features and behaviors. 
Therefore, we would like to learn the rules automatically to 
increase the number of patterns and raise the range of complex 
sentences, which would match with the patterns.  
 
Appendix 
LIST OF 100 TYPICAL CLUSTERS OF PATTERNS 
 
1. (S (SBAR (IN [A|a]fter) (S (NP) (VP))) (NP) (VP))   
2. (S (SBAR (IN [A|a]lthough) (S (NP) (VP))) (NP) (VP) ) 
3. (S (SBAR (IN [A|a]s) (S (NP) (VP))) (NP) (VP) ) 
4. (S (SBAR (IN [B|b]ecause) (S (NP) (VP))) (NP) (VP) ) 
5. (S (SBAR (IN [B|b]efore) (S (NP) (VP))) (NP) (VP)) 
6. (S (SBAR (RB [E|e]ven) (IN if) (S (NP) (VP))) (NP) (VP)) 
7. (S (SBAR (RB [E|e]ven) (IN though) (S (NP) (VP))) (NP) (VP)) 
8. (S (SBAR (IN [I|i]f) (S (NP) (VP))) (NP) (VP) ) 
9. (S (SBAR (IN [I|i]f) (S (NP) (VP))) (VP) ) 
10. (S (SBAR (IN [I|i]n) (NN order) (S (VP))) (NP) (VP)) 
11. (S (SBAR (IN [O|o]nce) (S (NP) (VP))) (NP) (VP)) 
12. (S (SBAR (IN [S|s]ince) (S (NP) (VP))) (NP) (VP)) 
13. (S (SBAR (IN [T|t]hough) (S (NP) (VP))) (NP) (VP)) 
14. (S (SBAR (IN [U|u]nless) (S (NP) (VP))) (NP) (VP) ) 
15. (S (SBAR (WHNP (WP [W|w]hat)) (S (VP))) (VP))            
16. (S (SBAR (WHNP (WP [W|w]hat)) (S (VP))) (NP) (VP)) 
17. (S (SBAR (WHNP (WP [W|w]hat)) (S (NP) (VP))) (VP)) 
18. (S (SBAR (WHADVP (WRB [W|w]hen)) (S (VP))) (NP) (VP)) 
19. (S (SBAR (WHADVP (WRB [W|w]hen)) (S (NP) (VP))) (NP) (VP) ) 
20. (S (SBAR (WHADVP (WRB [W|w]henever)) (S (NP) (VP))) (NP) (VP)) 
21. (S (SBAR (IN [W|w]hile) (S (VP))) (NP) (VP)) 
22. (S (SBAR (IN [W|w]hile) (S (NP) (VP))) (NP) (VP)) 
 
23. (VP (VB*) (NP) (SBAR (IN as) (S (NP) (VP)))) 
24. (VP (VB*) (SBAR (IN as) (IN if) (S (NP) (VP)))) 
25. (VP (VB*) (NP) (SBAR (IN although) (S (NP) (VP)))) 
26. (VP (VB*) (SBAR (IN after) (S (NP) (VP))))  
27. (VP (VB*) (SBAR (IN because) (S (NP) (VP))))  
28. (VP (VB*) (NP) (SBAR (IN before) (S (NP) (VP)))) 
29. (VP (VB*) (ADJP) (SBAR (IN for) (S (NP) (VP)))) 
30. (VP (VB*) (NP) (SBAR (IN in) (NN order) (S (VP)))) 
31. (VP (VB*) (SBAR (IN if) (S (NP) (VP)))) 
32. (VP (VB*) (ADJP) (SBAR (IN if) (S (NP) (VP)))) 
33. (VP (VB*) (SBAR (IN like) (S (NP) (VP)))) 
34. (VP (VB*) (ADJP) (SBAR (IN that) (S (NP) (VP)))) 
35. (VP (VB*) (SBAR (IN since) (S (NP) (VP)))) 
36. (VP (VB*) (SBAR (IN so) (IN that) (S (NP) (VP)))) 
37. (VP (VB*) (NP) (SBAR (IN though) (S (NP) (VP)))) 
38. (VP (VB*) (NP) (SBAR (IN unless) (S (NP) (VP)))) 
39. (VP (VB*) (NP) (SBAR (IN until) (S (NP) (VP)))) 
40. (VP (VB*) (NP) (SBAR (IN while) (S (NP) (VP)))) 
41. (VP (VB*) (NP) (SBAR (IN while) (S (VP)))) 
42. (VP (VB*) (SBAR (WHADVP (WRB when)) (S (NP) (VP))))  
43. (VP (VB*) (SBAR (IN that) (S (NP) (VP)))) 
44. (VP (VB*) (SBAR (WHADVP (WRB where)) (S (NP) (VP)))) 
45. (VP (VB*) (SBAR (WHADVP (WRB how)) (S (VP)))) 
46. (VP (VB*) (SBAR (WHADVP (WRB how)) (S (NP) (VP))))  
47. (VP (VB*) (SBAR (WHNP (WP what)) (S (NP) (VP)))) 
48. (VP (VB*) (SBAR (WHNP (WP what)) (S (VP)))) 
49. (VP (VB*) (SBAR (WHNP (WDT whatever)) (S (NP) (VP)))) 
50. (VP (VB*) (SBAR (IN whether) (S (NP) (VP)))) 
51. (VP (VB*) (SBAR (WHADVP (WRB why)) (S (NP) (VP)))) 
52. (ADJP (ADJP) (SBAR (IN as) (S (NP) (VP)))) 
53. (ADVP (ADVP) (SBAR (IN as) (S (NP) (VP))))   
54. (ADJP (ADJP) (SBAR (IN than) (S (NP) (VP)))) 
55. (ADJP (JJ) (SBAR (S (NP) (VP)))) 
56. (ADJP (JJ) (SBAR (IN that) (S (NP) (VP)))) 
57. (ADJP (ADJP) (SBAR (IN that) (S (NP) (VP)))) 
58. (ADVP (ADVP) (SBAR (IN that) (S (NP) (VP)))) 
59. (ADVP (ADVP) (SBAR (IN than) (S (NP) (VP)))) 
60. (ADVP (RB) (SBAR (IN that) (S (NP) (VP)))) 
61. (NP (NP) (SBAR (S (NP) (VP)))) 
62. (NP (DT) (NN) (SBAR (S (NP) (VP)))) 
63. (NP (DT) (NN) (SBAR (IN that) (S (NP) (VP)))) 
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64. (NP (NP) (SBAR (IN that) (S (NP) (VP)))) 
65. (NP (DT) (JJ) (NN) (SBAR (IN that) (S (NP) (VP)))) 
66. (NP (NN) (SBAR (IN that) (S (NP) (VP)))) 
67. (NP (NP) (SBAR (WHNP (IN that)) (S (NP) (VP)))) 
68. (NP (NP) (SBAR (WHNP (WDT that)) (S (ADVP) (VP)))) 
69. (NP (NP) (SBAR (WHADVP (WRB when)) (S (NP) (VP)))) 
70. (NP (NP) (SBAR (WHADVP (WRB where)) (S (NP) (VP)))) 
71. (NP (NP) (SBAR (WHNP (WDT which)) (S (NP) (VP)))) 
72. (NP (NP) (SBAR (WHNP (WDT which)) (S (VP)))) 
73. (NP (NP) (SBAR (WHPP (IN in) (WHNP (WDT which))) (S (NP) 

(VP)))) 
74. (NP (NP) (SBAR (WHNP (WP who)) (S (NP) (VP)))) 
75. (NP (NP) (SBAR (WHNP (WP whom)) (S (NP) (VP)))) 
76. (NP (NP) (SBAR (WHNP (WP who)) (S (VP)))) 
77. (NP (NP) (SBAR (WHNP (WDT that)) (S (VP)))) 
78. (NP (NP) (SBAR (WHADVP (WRB why)) (S (NP) (VP)))) 
79. (NP (NP) (SBAR (IN for) (S (NP) (VP))))  
80. (NP (NNS) (SBAR (IN that) (S (NP) (VP)))) 
81. (PP (IN) (SBAR (WHADVP (WRB how)) (S (VP))))     
82. (PP (IN) (SBAR (WHADVP (WRB how)) (S (NP) (VP)))) 
83. (PP (IN) (SBAR (WHNP (WP what)) (S (NP) (VP)))) 
84. (PP (IN) (SBAR (WHNP (WP whatever)) (S (NP) (VP)))) 
85. (PP (IN) (SBAR (WHNP (WP what)) (S (VP)))) 
86. (PP (IN) (SBAR (WHADVP (WRB when)) (S (NP) (VP)))) 
87. (PP (IN) (SBAR (IN whether) (S (NP) (VP)))) 
88. (PP (IN) (SBAR (WHADVP (WRB where)) (S (NP) (VP)))) 
89. (PP (TO) (SBAR (WHNP (WP what)) (S (NP) (VP)))) 
90. (S (SBAR (IN If) (S (NP) (VP))) (S) (CC) (S) )                  
91. (S (SBAR (WHADVP (WRB When)) (S (NP) (VP))) (S) (CC) (S) ) 
92. (S (NP) (VP (VB*) (SBAR (S (NP) (VP)))) ) 
93. (S (NP) (VP (VB*) (SBAR (IN that) (S (S) (CC) (S)))))   
94. (S (NP) (VP (VB*) (SBAR (S (S) (CC) (S)))))              
95. (S (NP) (VP (VB*) (SBAR (IN that) (S (SBAR) (NP) (VP)))))  
96. (SBAR (SBAR (WHNP (WP who)) (S (VP))) (CC) (SBAR (WHNP (WP 

who)) (S (VP)))) 
97. (SBAR (SBAR (IN that) (S (NP) (VP))) (CC) (SBAR (IN that) (S (NP) 

(VP)))) 
98. (SBAR (SBAR (S (NP) (VP))) (CC) (SBAR (IN that) (S (NP) (VP)))) 
99. (SBAR (SBAR (WHADVP (WRB when)) (S (NP) (VP))) (CC) (SBAR 

(WHADVP (WRB when)) (S (NP) (VP)))) 
100. (SBAR (SBAR (IN whether) (S (NP) (VP))) (CC) (RB)) 
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