
Computer Security Symposium 2012
30 October – 1 November 2012

- 277 -

サインディクリプション方式の構成法について

満保 雅浩 †

†金沢大学
920-1192 石川県金沢市角間町

あらまし サインディクリプション方式では，暗号文を復号する際に同意しなくてはいけない条件
が暗号文の作成者により設定されており，その条件文への署名を生成することにより，復号が可
能となる．著者の知る限り，現在までに，サインディクリプション方式の一般的な構成法は知ら
れていない．本論文では，IDベース暗号からサインディクリプション方式を構成する方法を示し，
この構成に活用可能な IDベース暗号の性質について議論する．また，この性質を満たすWaters
IDベース暗号を用いた具体的な構成法も示す．

On the Construction of Signdecryption Schemes

Masahiro Mambo†

†Kanazawa University
Kakuma, Kanazawa 920-1192, JAPAN

Abstract Signdecryption is a promising cryptographic primitive which allows an encryptor of a
message to impose a decryptor to sign some document of encryptor’s selection while performing
the decryption. To the author’s knowledge, there is no known general construction for the
signdecryption scheme so far. In this paper, we present a general construction of signdecryption
schemes from identity-based encryption (IBE) schemes and discuss properties required for the
underlying IBE schemes. We also show a concrete example of the signdecryption scheme based
on the Waters IBE scheme possessing such a property.

1 Introduction

Signdecryption [6] is a promising cryptographic
primitive which allows an encryptor of a mes-
sage to impose a decryptor to sign some docu-
ment in order to perform the decryption. The
encryptor selects the document, information
appended to the ciphertext, and in some sit-
uation it can be viewed as agreement on the
condition of the posession and/or the use of
the message corresponding to the ciphertext.
In this sense we call the document ”condition”
and express it by a notation Cond. Such a
scheme to enforce signature generation in de-
cryption has several applications such as se-
cure software package delivery. To use soft-
ware package, a user is usually requested to

agree upon license agreement. A software pack-
age encrypted by a signdecryption scheme guar-
antees both of user’s agreement by enforcing
signature generation and access control by en-
crypting the software package without an in-
teraction between a software vendor and a user.
To the author’s knowledge, the notion of

signdecryption schemes was introduced in [6].
In addition to the definition of signdecryption
scheme, the paper showed a concrete signde-
cryption scheme called BasicSigndecrypt, which
combines the Boneh-Franklin identity-based en-
cryption scheme [1] and the Boneh-Lynn-Shacham
short signature scheme [2] and also makes use
of the approach for the Gentry certificate-based
encryption scheme [5], and mentioned the ex-
tension to FullSigndecrypt using Fujisaki-

- 278 -

Okamoto transformation [4]. However, no gen-
eral construction of signdecryption schemes is
known so far.
In this paper, we present a general construc-

tion of signdecryption schemes from identity-
based encryption (IBE) schemes and discuss
what kind of properties are necessary for the
underlying IBE scheme. We also show that
BasicSigndecrypt does not fully succeed in
enforcing signature generation. Based on the
observation, we define a relaxed form of sign-
decryption called semi-signdecryption and ex-
amine a method to positively use the semi-
signdecryption scheme such as BasicSign−
decrypt.

2 Preliminaries

2.1 Signdecryption Schemes

We give definition of signdecryption schemes
which is slightly modified from the one in [6].
A signdecryption scheme Γ consists of algo-
rithms, Γ = (Setup, KeyGen, KeyGenSig,
Encrypt, Signdecrypt, Sign, Veri, Decrypt):

• (param, paramsig)← Setup(1k): The setup
algorithm Setup takes as input a secu-
rity parameter k and outputs a param-
eter param for the whole signdecryption
scheme and a parameter paramsig for de-
cryptor’s signature scheme. Both of these
parameters may include the security pa-
rameter 1k.

• (skR, pkR) ← KeyGen(param, paramsig):
The receiver’s key generation algorithm
KeyGen takes as input the parameter param
and the parameter paramsig for decryp-
tor’s signature scheme and outputs secret
and public keys (skR, pkR), where skR =
(skR,enc, skR,sig) and pkR = (pkR,enc, pkR,sig).
The receiver’s secret and public keys for
encryption are denoted by skR,enc and pkR,enc,
respectively, and the receiver’s signing key
and the verification key for signature are
denoted by skR,sig and pkR,sig, respectively.
The key generation algorithm KeyGenSig

for the signature scheme is used for gener-
ating skR,sig and pkR,sig: (skR,sig, pkR,sig)
← KeyGenSig(paramsig).

• (C,Cond)← Encrypt(pkR, param,
paramsig, m, Cond): The encryption al-
gorithm Encrypt for the signdecryption
scheme takes as input the receiver’s public
key pkR = (pkR,enc, pkR,sig), the param-
eter param, the parameter paramsig for
receiver’s signature scheme, a message m
and a condition Cond and outputs a sign-
decryption ciphertext C together with the
condition Cond.

• (m,σ) or ⊥ ← Signdecrypt(skR, pkR,
param, paramsig, C, Cond): The sign-
decryption algorithm Signdecrypt takes
as input the receiver’s secret and public
keys skR = (skR,enc, skR,sig) and pkR =
(pkR,enc, pkR,sig), the parameter param,
the parameter paramsig for receiver’s sig-
nature scheme, the ciphertext C and the
condition Cond and outputs a pair of a
correct message m and a signature σ on
Cond or a special symbol ⊥ by executing
the following operations:

1) σ ← Sign(skR,sig, paramsig, Cond): The
signing algorithm Sign takes as input the
receiver’s secret key skR,sig, the parameter
paramsig for receiver’s signature scheme
and the condition Cond and outputs a sig-
nature σ.

2) Decrypt(skR,enc, pkR, param, paramsig,
σ, C,Cond)

=


m (Veri(pkR,sig, paramsig, σ,

Cond) = T) ,
⊥ (Otherwise) :

The decryption algorithm Decrypt takes
as input the receiver’s secret and public
keys skR,enc and pkR, the parameter param,
the parameter paramsig for receiver’s sig-
nature scheme, the signature and the con-
dition Cond and outputs a messagem from
C if the verification algorithm Veri tak-
ing pkR,sig, paramsig, σ and Cond as input
outputs a symbol T indicating a true sig-
nature and a special symbol ⊥, otherwise.
The output together with the signature σ
on Cond are used as an output of Signde−
crypt without any modification. Note that
although Decrypt is included as one of al-
gorithms of Γ, Decrypt can be viewed as

- 279 -

a part of Signdecrypt and one can omit
to explicitly express it as a separate al-
gorithm. The verification algorithm Veri

can be executed either implicitly or explic-
itly. In the implicit verification the IBE
decryption algorithm Decrypt is executed
without executing Veri while Decrypt is
executed after the execution of Veri in the
explicit verification.

When the output (C, cond) of Encrypt(pkR,enc,
pkR,sig, param, paramsig, m, Cond) is fed into
Signdecrypt as a part of the input, the al-
gorithm Signdecrypt(skR,enc, skR,sig, param,
paramsig, C, Cond) should output m in the
message space. Likewise, Veri(pkR,sig, paramsig,
Sign(skR,sig, paramsig, Cond), Cond) = T for
any Cond in the message space.

2.2 BasicSigndecrypt

BasicSigndecrypt is shown in [6] as an exam-
ple of signdecryption scheme. The following
scheme is a slightly modified version based on
the definition in 2.1.

BasicSigndecrypt

(param, paramsig)← Setup(1k):
On input 1k, generate two groups G1 and

G2 of prime order q and an admissible pairing
ê : G1×G1 → G2. Pick an arbitrary generator
g ∈ G1. Choose cryptographic hash functions
H1 : G2 → {0, 1}n for some integer n and H2 :
{0, 1}∗ → G1.
Set param = (G1, G2, ê, g, H1, H2) and

paramsig = (G1, G2, ê, g,H2). The message
space and the space for the condition areM =
{0, 1}n and COND = {0, 1}∗, respectively.

(skR, pkR)← KeyGen(param, paramsig):
On input (param, paramsig), run KeyGenSig

on input (G1,G2, ê, g,H2) to generate a public
key v ∈ G1 by v ← gs after randomly selecting
a secret key s ∈ Zq. The decryptor’s key pair
for the signature scheme is (skR,sig, pkR,sig) =
(s, v).
The output of KeyGen is (skR, pkR) = ((Λ, s),

(v, v)).

(C,Cond)← Encrypt(pkR, param, paramsig,
m, Cond):

To encrypt m ∈ M under the signdecryp-
tion condition Cond ∈ COND, a sender com-
putes Encrypt((v, v), param, paramsig, m,
Cond) by executing as follows. Compute h ←
H2(Cond) ∈ G1. Select a random r ∈ Zq. Set
a ciphertext C as C = (gr,m⊕H1 (ê(h, v)

r)).

(m,σ) or (m̃, σ̃)(̸= (m,σ))← Signdecrypt(skR,
skR, param, C,Cond):
To decrypt C = (U, V), a decryptor com-

putes Signdecrypt((Λ, s), (v, v), param, C,
Cond) by executing the following steps.

1. σ ← Sign(s, param,Cond):
Compute h←H2(Cond). Generates a sig-
nature σ by σ ← hs ∈ G1. Output of
Sign(s, param,Cond) is σ = hs.

2. m or m̃(̸= m)← Decrypt(Λ, (v, v), param,
σ,C, Cond):
The decryptor computes Decrypt(Λ, (v, v),
param, σ,C, Cond) as follows. m ← V ⊕
H1 (ê(σ,U)).

Output of Decrypt together with σ is the out-
put (m,σ) of Signdecrypt.

2.3 Identity-Based Encryption Schemes

An identity-based encryption (IBE) scheme Π
consists of algorithms, Π = (Setupibe, Extract,
Encryptibe, Decryptibe):

• (paramibe,msk)← Setupibe(1
k): The setup

algorithm Setupibe takes as input a secu-
rity parameter k and outputs a system
parameter paramibe and a master secret
key msk. The system parameter paramibe

usually contains a master public key mpk
corresponding tomsk. If we want to clearly
describe such relationship, we use the no-
tation (parammpk

ibe ,mpk) in place of paramibe.

parammpk
ibe is obtained by excluding mpk

out of paramibe.

• skID ← Extract(paramibe,msk, ID): The
key extraction algorithm Extract takes as
input the system parameter paramibe, the
master secret key msk and an arbitrary
ID ∈ {0, 1}∗ and outputs a private de-
cryption key skID corresponding to ID.

- 280 -

• Cibe ← Encryptibe(paramibe, ID,m): The
encryption algorithm Encrypt for the IBE
scheme takes as input the IBE parameter
paramibe and a message m and outputs an
IBE ciphertext Cibe.

• m or⊥← Decryptibe(paramibe, Cibe, skID):
The decryption algorithm Decrypt takes
as input the IBE parameter paramibe, the
IBE ciphertext Cibe and the decryption
key skID corresponding to ID and out-
puts m or a special symbol ⊥. The special
symbol ⊥ is output if the ciphertext Cibe

does not pass ciphertext integrity check.
Note that a wrong value m̃ ̸= m is output
instead of ⊥ if we deal with an IBE scheme
not incorporating any ciphertext integrity
check.

2.4 Waters IBE and IBS

Waters proposed an identity-based encryption
(IBE) scheme and an identity-based signature
(IBS) scheme [7], latter of which is converted
from the former in a straightforward way. The
Waters IBE secure against chosen-ciphertext
attack (CCA) can be converted from the fol-
lowingWaters BasicIBE by the Canetti-Halevi-
Katz conversion technique [3].

WatersBasicIBE

(paramibe,msk)← Setupibe(1
k):

On input 1k, generate two groups G and
GT of prime order q and an admissible pairing
ê : G× G → GT . Pick randomly an arbitrary
generator g ∈ G and g2 ∈ G, select a random
value α ∈ Zq and compute g1 = gα. Addi-
tionally, a random value u′ ∈ G and a ran-
dom n-length vector (u1, . . . , un) ∈ Gn Choose
a cryptographic hash function H : {0, 1}∗ →
{0, 1}n for some integer n.
Set paramibe = (G, GT , ê, g, g1, g2, u′,

(u1, . . . , un), H). The message space is M =
G. Set msk = gα2 ∈ G.

skID ← Extract(paramibe,msk, ID):
To compute private decryption key skID for

ID ∈ {0, 1}∗, the key extraction algorithm
Extract computes (v1, . . . , vn) ← H(ID) at
first and selects a random value r ∈ Zq. Then
Extract outputs skID = (skID,1, skID,2) =(
gα2

(
u′
∏

i:vi=1 ui
)r
, gr).

Cibe ← Encryptibe(paramibe, ID,m):
To encrypt m ∈ G under ID the IBE en-

cryption algorithm Encryptibe computes (v1,
. . ., vn) ← H(ID) at first and selets a rand
value t ∈ Zq. Then Encryptibe outputs an
IBE ciphertext Cibe = (Cibe,1, Cibe,2, Cibe,3) =(
ê(g1, g2)

tm, gt,
(
u′
∏

i:vi=1 ui
)t)

.

m or ⊥← Decryptibe(paramibe, Cibe, skID):
To decrypt Cibe = (Cibe,1, Cibe,2, Cibe,3) a de-

cryptor with a pair of secret decryption keys
skID = (skID,1, skID,2) computes

Cibe,1
ê (skID,2, Cibe,3)

ê (skID,1, Cibe,1)
= m.

WatersIBS

((paramsig, pksig), sksig) ← Setupsig(1
k):

Setupsig is the same as Setupibe and the
public parameter and public key (paramsig,
pkR,sig) is paramibe = ((G, GT , ê, g, g2, u

′,
(u1, . . . , un), H), g1). The message space is
M = {0, 1}∗. A secret signing key sksig of
signer is sksig = msk = gα2 ∈ G.

σ ← Signing(paramsig, pksig, sksig,m):
To sign m a signer with a secret key sksig

computes (m1, . . . ,mn) ← H(m) at first and
selects a random value r ∈ Zq. Then Signing

outputs a signature σ = (σ1, σ2) =(
gα2

(
u′
∏

i:vi=1 ui
)r

, gr
)
.

T or F ← Veri(paramsig, pksig, σ,m):
To verify a signature σ = (σ1, σ2) on mes-

sage m a verifier computes (m1, . . . ,mn) ←
H(m) at first and then checks

ê (σ1, g)

ê
(
σ2, u′

∏
i:mi=1 ui

) ?
= ê(g1, g2).

3 Semi-signdecryption schemes

In the definition of signdecryption given in [6]
a signature is not demanded as a part of the
output of Signdecrypt. In this context the
original BasicSigndectypt in [6] is not re-
quired to output a signature. Also its signa-
ture verfication is done implicitly. Note that
a slightly modified version in Sect. 2.2 needs
to output (m,σ) by following the definition in
Sect. 2.1. The original BasicSigndectypt in

- 281 -

[6] has a problem such that a legitimate de-
cryptor can decrypt ciphertexts without gen-
erating a signature σ on Cond as follows.

Given a ciphertext (U, V), a legitimate
decryptor with knowledge s computes
h ← H2(Cond) at first. Then the de-
cryptor computesm← V⊕H1 (ê(h,U

s)).

Since ê(σ,U) = ê(hs, U) = ê(h,U s), a correct
output m of BasicSigndectypt in [6] can be
derived by the computation described above.
Based on the observation about original

BasicSigndectypt, we can define semi-sign-
decryption schemes as a relaxed form of sign-
decryption schemes. A semi-signdecryption
scheme Γ(semi) consists of algorithms Γ(semi) =
(Setup, KeyGen, KeyGenSig, Encrypt, Sign−
decrypt, Sign, Veri, Decrypt) as defined for
the signdecryption scheme in Sect. 2.1 except
that the output of Signdecrypt does not con-
tain a signature. Furthermore, a legitimate
decryptor of Γ(semi) can correctly decrypt ci-
phertexts not only by generating a signature
on Cond but also by other method. In con-
trast, a legitimate decryptor of a signdecryp-
tion scheme Γ can correctly decrypt ciphertext
only by generating a signature on Cond.
As shown in the original BasicSigndectypt,

semi-signdecryption schemes with implicit sig-
nature verification do not guarantee enforce-
ment of signature generation on Cond. Even
though semi-signdecryption schemes with im-
plicit signature verification have such a flaw,
they can be positively utilized with assistance
of additional mechanisms. For example, in the
original BasicSigndectypt, suppose we can
add some hardware or software mechanism to
hide a part U of the ciphertext (U, V) from
a legitimate decryptor. Then the decryptor
cannot do the computation described above to
circumvent the signature generation.

4 Signdecryption from IBE

We show that signdecryption schemes can be
constructed from IBE schemes. Suppose an
IBE scheme Π = (Setupibe, Extract, Encryptibe,
Decryptibe) described in Sect. 2.3 is given. Then
a signdecryption scheme Γ = (Setup, KeyGen,

KeyGenSig, Encrypt, Signdecrypt, Sign, Veri,
Decrypt) can be constructed as follows:

• (parammpk
ibe , parammpk

ibe)← Setup(1k): The
setup algorithm Setup takes as input a
security parameter k of the IBE scheme,
executes (paramibe,msk) ← Setupibe(1

k)

and outputs a parameter parammpk
ibe for

the whole signdecryption scheme and a pa-
rameter parammpk

ibe for decryptor’s signa-
ture scheme.

• ((Λ,msk), (mpk,mpk))← KeyGen(parammpk
ibe ,

parammpk
ibe): The receiver’s key generation

algorithm KeyGen takes as input the pa-
rameters (parammpk

ibe , parammpk
ibe) and out-

puts secret and public keys (skR, pkR) =
((Λ,msk), (mpk,mpk)) where Λ is an empty
string.

The key generation algorithm KeyGenSig

for the signature scheme takes as input
the security parameter parammpk

ibe of the
IBE scheme and outputs a pair of sign-
ing and verification keys (skR,sig, pkR,sig)
= (msk,mpk) which are computed dur-
ing the execution of Setupibe(1

k) in the
setup algorithm Setup(1k): (msk,mpk)

← KeyGenSig(parammpk
ibe).

KeyGen also uses the output of Setupibe(1
k)

for determining a pair (skR,enc, pkR,enc) of
keys for encryption.

• (Cibe, Cond) ← Encrypt((mpk,mpk),

parammpk
ibe , parammpk

ibe , m, Cond): The en-
cryption algorithm Encrypt for the sign-
decryption scheme takes as input the re-
ceiver’s public key mpk, the parameter
parammpk

ibe for the whole scheme, the pa-

rameter parammpk
ibe for receiver’s signature

scheme, a messagem and a condition Cond,
executes the IBE encryption Cibe ← En−
cryptibe(paramibe, Cond,m) by treating
Cond as an ID and outputs Cibe as a sign-
decryption ciphertext together with the con-
dition Cond.

• (m, skCond) or⊥← Signdecrypt((Λ,msk),

(mpk,mpk), parammpk
ibe , parammpk

ibe , Cibe,
Cond): The signdecryption algorithm
Signdecrypt takes as input the receiver’s

- 282 -

secret key msk, the parameter parammpk
ibe

for the whole scheme, the parameter
parammpk

ibe for receiver’s signature scheme,
the ciphertext Cibe and the condition Cond
and outputs a correct message m or a spe-
cial symbol ⊥ by executing the following
operations:

1) skCond ← Sign(msk, parammpk
ibe , Cond):

The signing algorithm Sign takes as in-
put the receiver’s secret key msk, the pa-
rameter parammpk

ibe for receiver’s signature
scheme and the condition Cond, executes
the extraction of the IBE decryption key
skCond ← Extract(paramibe,msk,Cond)
by treating Cond as an ID and outputs
skCond as a signature σ on a message Cond.

2) Decrypt(Λ, (mpk,mpk), parammpk
ibe ,

parammpk
ibe , skCond, Cibe, Cond)

=


m

(
Veri(mpk, parammpk

ibe , skCond,

Cond) = T) ,
⊥ (Otherwise).

The decryption algorithm Decrypt takes
as input the receiver’s public key mpk,
the parameter parammpk

ibe , the parameter

parammpk
ibe for receiver’s signature scheme,

the signature skCond and the condition
Cond, executes the IBE decryption m or
⊥ ← Decryptibe(paramibe, Cibe, skCond)
and outputs a message m from Cibe if the
verification algorithm Veri taking mpk,
parammpk

ibe , skCond, Cond as input outputs
a symbol T indicating a true signature and
a special symbol ⊥, otherwise. The out-
put together with skCond is used as output
of Signdecrypt without any modification.

In the implicit verification the IBE de-
cryption algorithm Decryptibe is executed
without executing Veri.

Meanwhile, in the explicit verification, the
verification algorithm Veri executes the
probabilistic verification of the Naor-trans
formation. That is, after a message mveri

is selected uniformly at random from the
message
space, it is encrypted by the IBE scheme
as Cibe,veri← Encryptibe(paramibe, Cond,
mveri). Then the IBE decryption m′

veri

or ⊥ ← Decryptibe(paramibe, Cibe,veri,
skCond) is executed. Veri returns T ifm

′
veri

=mveri and F, otherwise. Note that in
these operations the IBE decryption is pos-
sible because paramibe, which is equal to
(parammpk

ibe , mpk), can be obtained from
the input of Veri and also from the input
of Decrypt.

5 Enforcing signature genera-
tion

As discussed in Sect. 3 not all IBE schemes
can be used for the construction described in
Sect. 4. If a decryptor of the IBE scheme,
who is given the master secret key msk, suc-
ceeds in the IBE decryption without generat-
ing a signature on Cond, one can obtain only
a semi-signdecryption scheme. Meanwhile, if
the decryptor under the same condition suc-
ceeds in the IBE decryption only by generating
a signature on Cond, the constructed scheme
is a signdecryption scheme. An example of
the latter type of IBE schemes is the Waters
IBE scheme described in Sect. 2.4. Since the
master secret key in his scheme is not α but
gα2 , it becomes difficult to decrypt ciphertexts
without generating a signature on Cond.
As an example of signdecryption scheme based

on such an IBE scheme, we show a signdecryp-
tion scheme based on WatersBasicIBE scheme.
An important point of this construction is that
a trusted center generates a secret random value
α and gives a user only gα2 as a secret sign-
ing key, which is the master secret key of the
WatersBasicIBE scheme.
As in [6] we omit to describe security anal-

ysis including security model, both of which
will be given in the full version.

WatersBasicIBE&IBStoSigndecryption

(parammpk
ibe , parammpk

ibe)← Setup(1k):
On input 1k, run Setupibe of the WatersBa-

sicIBE and set param=paramsig=parammpk
ibe =

(G, GT , ê, g, g2, u
′, (u1, . . . , un), H). The mes-

sage space and the space for the condition are
M = G and COND = {0, 1}∗, respectively.

(skR, pkR)← KeyGen(parammpk
ibe , parammpk

ibe):

On input (parammpk
ibe , parammpk

ibe), the trusted

- 283 -

center runs KeyGenSig on input (G, GT , ê, g,
g2, u′, (u1, . . . , un), H) to generate a public
key pkR,enc = pkR,sig = mpk = g1 ∈ G by
g1 ← gα after randomly selecting a secret key
α ∈ Zq of the trusted center and to generate
a secret key skR,sig = msk = gα2 ∈ G of a
receiver. The receiver’s key pair for the signa-
ture scheme is (skR,sig, pkR,sig) = (gα2 , g1).
The output of KeyGen is (skR, pkR) = ((Λ,

gα2), (g1, g1)).

(C,Cond) ← Encrypt(pkR, param
mpk
ibe ,

parammpk
ibe , m, Cond):

To encrypt m ∈ M under the signdecryp-
tion condition Cond ∈ COND, a sender com-
putes Encrypt((g1, g1), param

mpk
ibe , parammpk

ibe ,
m, Cond) by executing as follows. Compute
(v1, . . ., vn) ← H(Cond) ∈ G. Select a ran-
dom t ∈ Zq. Set a ciphertext C as C =

(C1, C2, C3) =
(
ê(g1, g2)

tm, gt,
(
u′
∏

i:vi=1 ui
)t)

.

(m, skCond) or ⊥ ← Signdecrypt(skR, pkR,

parammpk
ibe , parammpk

ibe , C,Cond):
To decrypt C = (C1, C2, C3), a decryptor

computes Signdecrypt((Λ, gα2), (g1, g1),

parammpk
ibe , parammpk

ibe , C, Cond) by executing
the following steps.

1. skCond ← Sign(gα2 , param
mpk
ibe , Cond):

Compute (v1, . . ., vn) ← H(Cond). Gen-
erates a signature skCond by skCond← Ex−
tract(parammpk

ibe , gα2 , Cond), where skCond

= (skCond,1, skCond,2) =
(
gα2

(
u′
∏

i:vi=1 ui
)r
,

gr) ∈ G2. Output of Sign(gα2 , param
mpk
ibe ,

Cond) is skCond =
(
gα2

(
u′
∏

i:vi=1 ui
)r
, gr).

2. m or ⊥← Decrypt(Λ, (g1, g1), param
mpk
ibe ,

skCond, C, Cond):
The decryptor computes Decrypt(Λ, (g1, g1),

parammpk
ibe , skCond, C, Cond) by

C1
ê (skCond,2, C3)

ê (skCond,1, C1)
= m.

If Veri(pkR,sig, param
mpk
ibe , skCond, Cond) is

explicitly executed, it is suffice to execute
the verification of the Waters IBS: First,
compute (v1, . . ., vn) ← H(Cond). Then
check

ê (skCond,1, g)

ê
(
skCond,2, u′

∏
i:vi=1 ui

) ?
= ê(g1, g2).

Output of Decrypt together with σ = skCond

is the output (m, skCond) of Signdecrypt.

The legitimate decryptor posessing skR,sig =
gα2 may try to avoid to generate a signature(
gα2

(
u′
∏

i:vi=1 ui
)r
, gr) ∈ G2 Since the de-

cryption formula can be alternatively expressed
as

C1
ê (g, C3)

r

ê (gα2 , C1) ê
((
u′
∏

i:vi=1 ui
)
, C1

)r = m,

the decryptor may use each component of tu-
ple (gr2,

(
u′
∏

i:vi=1 ui
)
, g, r) for the decryp-

tion. Apparently, one can compute a correct
signature

(
gα2

(
u′
∏

i:vi=1 ui
)r
, gr) from the tu-

ple. As long as a correct signature can be de-
rived from the input tuple of decryption, we do
not consider the decryption method as an al-
ternative decryption method not requiring sig-
nature generation.
We should further note that the signdecryp-

tion scheme based on Waters IBE, Waters-
BasicIBE&IBStoSigndecryption, has a key
generation mechanism different from both public-
key cryptography and identity based cryptog-
raphy. Since the trusted center knows the se-
cret key gα2 of a user, WatersBasicIBE&IBSto-
Signdecryption has a key escrow problem by
the trusted center as exisiting in the identity
based cryptography. However, unlike the iden-
tity based cryptography, the user’s public key
g1 = gα cannot be set as a fixed value like ID.
In this sense, BasicIBE&IBStoSigndecryption
seems to have negative properties of both cryp-
tographies. So far, it seemed to be considered
that this type of key generation mechanism
has no merit and hasn’t been studied. We can
consider BasicIBE&IBStoSigndecryption as
an example showing a merit of such a key gen-
eration mechanism.

6 Conclusion

We have studied signdecryption schemes. Af-
ter giving a refinement of their definition we
have shown that in BasicSigndecrypt [6], a
legitimate decryptor is able to avoid to gener-
ate a signature on the condition specified by
the encryptor. Based on the observation we

- 284 -

have introduced a notion semi-signdecryption,
which is a relaxed form of signdecryption and
can be used together with some additional pro-
tecting mechanism. Then we have proposed a
general construction of signdecryption schemes
from the IBE schemes. As an example of such
signdecryptions schemes we have shown a sign-
decryption scheme constructed from Waters-
BascisIBE and WatersIBS. Its security analy-
sis will be given in the full version.

References

[1] Dan Boneh and Matthew Franklin,
“Identity-Based Encryption from the
Weil Pairing,” SIAM J. of Computing,
Vol.32, No.3, pp.586-615, 2003.

[2] Dan Boneh, Ben Lynn and Hovav
Shacham, “Short Signatures from the
Weil Pairing,” Journal of Cryptology,
Vol.17, pp.297-319, 2004.

[3] Ran Canetti, Shai Halevi and Jonathan
Katz, “Chosen-Ciphertext Security from
Identity-Based Encryption,” C. Cachin
and J. Camenisch (Eds.), LNCS 3027,
Advances in Cryptology -Eurocrypt 2004,
Springer-Verlag, pp.207-222, 2004.

[4] Eiichiro Fujisaki and Tatsuaki Okamoto,
“Secure Integration of Asymmetric and
Symmetric Encryption Schemes,” M.
Wiener (Ed.), LNCS 1666, Advances in
Cryptology -Crypto ’99, Springer-Verlag,
pp.537-554, 1999.

[5] Craig Gentry, “Certificate-Based Encryp-
tion and the Certificate Revocation Prob-
lem,” E. Biham (Ed.), LNCS 2656, Ad-
vances in Cryptology -Eurocrypt 2003,
Springer-Verlag, pp.272-293, 2003.

[6] Masahiro Mambo, “On the Extension
of Cryptographic Schemes with Condi-
tions ∼Signdecryption∼,” Abstracts of
the 29th Symposium on Cryptography and
Information Security (SCIS 2012), 3A3-
3, February, 2012.

[7] Brent Waters, “Efficient Identity-Based
Encryption Without Random Oracles,”

R. Cramer (Ed.), LNCS 3494, Advances
in Cryptology -Eurocrypt 2005, Springer-
Verlag, pp.114-127, 2005.

