
IPSJ SIG Technical Report

Coding Ladder Lotteries

Tomoki Aiuchi1,2 Katsuhisa Yamanaka1,a) Takashi Hirayama1,b) Yasuaki Nishitani1,c)

Abstract: A ladder lottery, known as the “Amidakuji” in Japan, is a common way to choose a permutation randomly.
In this paper, we consider a problem of coding an optimal ladder lotteries. We first propose two codes for an optimal
ladder lottery. The more compact codes among them needs at most n + 2b − 1 bits, where n is the number of vertical
lines and b is the number of horizontal lines in an optimal ladder lottery. As a by-product of this result, we obtain an
upper bound on the number of optimal ladder lotteries with n vertical lines and b horizontal lines. Furthermore we
improve the code and experimentally show that the average length of the improved code is more compact.

Keywords: algorithm, encoding, decoding, ladder lottery, optimal ladder lottery

1. Introduction
Coding discrete objects is appealing theme to give a com-

pact representation of them in a computer. Recently graph cod-
ing are widely investigated. For instance, compact codings for
trees [2], [8], [10], [13], triangulations [1], [14], [15] and planar
graphs [3], [4], [11], [13] have been presented.

In this paper we consider a problem of coding ladder lotteries.
A ladder lottery, known as the “Amidakuji” in Japan, is a com-
mon way to choose a permutation randomly. Formally, a ladder
lottery L of a permutation π = (p1, . . . , pn) is a network with n
vertical lines (lines for short) and many horizontal lines (bars for
short) each of which connects two consecutive vertical lines. See
Fig. 1 for an example. The ith line from the left is called line i.
The top endpoints of lines correspond to π. The bottom endpoints
of lines correspond to the identical permutation (1, . . . , n). Each
number pi in π starts the top endpoint of line i, and goes down
along the line, then whenever pi comes to an endpoint of a bar, pi

goes horizontally along the bar to the other endpoint, then goes
down again. Finally pi reaches the bottom endpoint of line pi.
This path is called the route of number pi. We can regard a bar as
a modification of the current permutation, and a sequence of such
modifications in a ladder lottery always results in the identical
permutation (1, . . . , n).

A ladder lottery of a permutation π = (p1, . . . , pn) is optimal if
it consists of the minimum number of bars among ladder lotteries
of π. Let L be an optimal ladder lottery of π and b the number of
bars in L. Then we can observe that b is equal to the number of
“inversions” of π, which is a pair (pi, p j) in π with pi > p j and
i < j. The ladder lottery in Fig. 1 has thirteen bars, and permuta-
tion (6,4,3,5,2,1) has thirteen inversions: (6,4), (6,3), (6,5), (6,2),

1 Department of Electrical Engineering and Computer Science, Iwate Uni-
versity, Ueda 4-3-5, Morioka, Iwate 020-8551, Japan.

2 Currently he is a member of Leadkonan, Kitaoniyanagi 16-chiwari 164,
Kitakami, Iwate 024-0072, Japan.

a) yamanaka@cis.iwate-u.ac.jp
b) hirayama@kono.cis.iwate-u.ac.jp
c) nisitani@iwate-u.ac.jp

6 4 23 5

1 2 3 4 5

1

6

Fig. 1 An optimal ladder lottery of the permutation (6,4,3,5,2,1).

(6,1), (4,3), (4,2), (4,1), (3,2), (3,1), (5,2), (5,1), and (2,1), so the
ladder lottery is optimal.

In this paper we present several codes for optimal ladder lot-
teries with n lines and b bars. The length of the one of our codes
is n + 2b − 1 bits. We improve the code and experimentally show
that the average length of the improved code is compact.

The ladder lotteries are strongly related to primitive sorting net-
works, which are deeply investigated by Knuth [12]. A com-
parator in a primitive sorting network replaces pi and pi+1 by
min (pi, pi+1) and max (pi, pi+1), while a bar in a ladder lottery
always exchanges them.

Optimal ladder lotteries are also related to pseudoline arrange-
ments. A pseudoline is an x-monotone curve in the plane, and an
arrangement is a set of pseudolines in which every pair of pseu-
dolines intersects exactly once. Arrangements of pseudolines are
one of important and appealing objects in the area of geometry
and combinatorics. Arrangements of pseudolines are the topic
of a chapter in a representative handbook on computational ge-
ometry [9]. There is one-to-one correspondence between optimal
ladder lotteries of π = (n, . . . , 1), namely a reverse permutation,
and arrangements of n pseudolines [16].

Coding pseudoline arrangements has been investigated to ob-
tain upper bounds of the number of pseudoline arrangements.
Knuth [12] showed that an arrangement of n pseudolines can be
encoded into 0.792n2 bits in 1992. This result immediately im-

c⃝ 2012 Information Processing Society of Japan 1

Vol.2012-AL-142 No.10
2012/11/2

IPSJ SIG Technical Report

plies that the number of arrangements of n pseudolines is bounded
by 20.792n2

. Felsner [5], [6] improves the length to 0.697n2 bits.
Recently, Felsner and Valtr [7] improves to 0.657n2 bits.

In this paper we design codes for optimal ladder lotteries with n
lines and b bars. A class of optimal ladder lotteries with n lines is
a generalization of a class of arrangements of n pseudolines. For
an optimal ladder lottery, b ≤

(
n
2

)
holds, and b =

(
n
2

)
if and only if

the optimal ladder lottery corresponds to a reverse permutation,
that is the optimal ladder lottery correspond to a pseudoline ar-
rangement.

We first propose two codes. The more compact code among
them needs at most n+ 2b− 1 bits. By estimating an upper bound
on the number of every possible code, we obtain an upper bound
on the number of ladder lotteries with n lines and b bars. Our
bound is not tighter than the bound by [7] for arrangement of n
pseudolines. However, our bound can be applied for a class of op-
timal ladder lotteries with n lines and b ≤

(
n
2

)
bars, which includes

a class of arrangements of n pseudolines.
Furthermore, we improve the code and experimentally show

that the average length of the improved code is more compact,
and our codes contain no end-of-file.

Throughout of this paper, we assume that the end-of-file is pre-
pared as a special character.

The paper organized as follows. Sections 2 and 3 define a
route-based code and a line-based code for optimal ladder lot-
teries, respectively. In Section 4, we improve the line-based code
proposed in Section 3. In Section 5, we compare proposed codes
experimentally. Section 6 is a conclusion.

2. A Route-based Code
The coding idea for pseudoline arrangements by Felsner [5],

[6] can be applied for optimal ladder lotteries easily. In this sec-
tion we propose a code which is immediately derived from his
coding [5], [6].

The coding idea is to represent each route as a binary code.
The route turns left or right zero or more times. We encode the
directions (left or right) into a binary code.

Let L be an optimal ladder lotteries of a permutation π =
(p1, . . . , pn). We encode the route of pi with a binary code as
follows. Suppose the route of pi turns left or right t(i) times. We
note that t(i) ≤ n − 1 holds. Define di

j = ‘0’ if jth direction of
the route of pi is left, and di

j = ‘1’ if jth direction of the route
of pi is right. We construct a binary code di

1 . . . d
i
t(i) by arranging

di
js, and then append ‘0’s so that the length of the code becomes

n − 1 bits in total. We call the code a route-code of pi and denote
by R(i) = di

1 . . . d
i
n−1. Route-codes for the optimal ladder lottery

in Fig. 1 are R(1) = “11111”, R(2) = “11010”, R(3) = “01010”,
R(4) = “11000”, R(5) = “01000”, and R(6) = “00000”. The
underlined ‘0’s are appended zeros.

We define a code for L. A route-based code, denoted by RC,
for L is the code obtained by arranging route-codes of p1, . . . , pn

in this order. The length of RC is n(n − 1) bits. For instance,
a route-based code for the optimal ladder lottery in Fig. 1 is
“111111101001010110000100000000”. The underlined ‘0’s
are appended zeros.

Now we explain how to reconstruct the original ladder lottery

6 4 3 25

1 2 3 4 5

DV1 =(1,1,0,1,0,0)
1

6

DV2 =(1,1,1,1,0,0)
DV3 =(1,1,1,1,1,0)
DV4 =(1,1,1,1,0,0)
DV5 =(1,1,1,0,0,0)
DV6 =(1,1,0,0,0,0)
DV7 =(1,0,0,0,0,0)
DV8 =(0,1,0,0,0,0)
DV9 =(0,1,1,0,0,0)
DV10 =(0,1,1,1,0,0)
DV11 =(0,1,1,0,1,0)
DV12 =(0,1,0,0,1,0)

DV14 =(0,0,0,0,0,0)
DV13 =(0,1,0,0,0,0)

Fig. 2 Direction vectors in reconstruction.

from a route-based code.
Let RC be a route-based code for an optimal ladder lottery L

with n lines. Since we know the length of RC is n(n − 1) bits,
we can calculate the value of n by computing the length of RC
and hence recognize the boundary between any two consecutive
route-codes. Let focus on the first bit in each route-code. It rep-
resents the first direction of each route. Arranging the first bits in
route-codes, we define a direction vector DV1 = (d1

1 , . . . , d
n
1). For

example, DV1 for the ladder lottery in Fig. 1 is shown in Fig. 2.
Intuitively, DV1 represents the next direction of each route from
the top in a ladder lottery.

Now, we show that a bar can be reconstructed from DV1. In
DV1, j is flip if d j

1 = ‘1’ and d j+1
1 = ‘0’ holds. This represents

an intersection, namely a bar, of the two routes p j and p j+1. DV1

may contain multiple flips. We call the minimum flip the first flip.
Intuitively, the first flip in DV1 corresponds to the upper-left bar
in L.

Let j be the first flip. We can reconstruct the bar in which two
routes of p j and p j+1 intersects. Then we construct DV2 from
DV1 by passing through the bar. That is, we replace d j

1 with d j
2

and d j+1
1 with d j+1

2 , and swap d j
2 with d j+1

2 . DV2 represents the
next directions of routes after passing the bar corresponding to
the first flip in DV1. See Fig. 2. By repeatedly applying this pro-
cess for DV2, . . . ,DVb, we can reconstruct all bars. Fig. 2 shows
direction vectors constructed in a reconstruction. A direction vec-
tor may contain d j

n which is not defined in route-code of p j. For
convenience, we assume that d j

n = ‘0’. The last direction vector
contains only ‘0’s.

Now we show the correctness of the above reconstruction. A
problem is existences of appended ‘0’s. A ‘0’ in a direction vec-
tor means either a direction or the bottom endpoint of a route.
Can we recognize a correct meaning of any ‘0’?

Let DVi = (v1, . . . , vn) be a ith direction vector, i ≤ b. First we
show that a flip corresponds to a bar.
Lemma 2.1 Let v j be any flip in DVi. Then v j and v j+1 corre-
sponds to a bar.
Proof. Since v j is a flip, v j = ‘1’ and v j+1 = ‘0’. Hence a route
corresponding to v j goes from a line j to a line j + 1. Then

c⃝ 2012 Information Processing Society of Japan 2

Vol.2012-AL-142 No.10
2012/11/2

IPSJ SIG Technical Report

v j+1 = ‘0’ correspond to a direction. If v j+1 = ‘0’ corresponds
to a bottom endpoint of a route, then the two routes correspond-
ing to v j and v j+1 have no corresponding intersection, which is a
contradiction.

Lemma 2.1 implies that we correctly recognize a meaning of
any ‘0’ in the reconstruction. A ‘0’ for a first flip is always a
direction of a route.

Next we show an existence of a flip in DVi.
Lemma 2.2 DVi, i ≤ b, contains at least one flip.
Proof. We assume that there is no flip in DVi. If DVi contains
only ‘0’s, then all bars are reconstructed, thus i = b + 1 holds.
Otherwise there always exists some k such that v j = ‘0’ if j < k
and v j = ‘1’ if k ≤ j. We note that j = 0 holds if DVi contains
only ‘1’s. Then, the line n has a left endpoint of a bar, which is a
contradiction.

We obtain the following lemma for reconstruction.
Lemma 2.3 One can reconstruct the original ladder lottery from
a route-based code.
Proof. Immediate from Lemmas 2.1 and 2.2.

We have the following theorem.
Theorem 2.4 We can encode an optimal ladder lottery into a
code of length n(n − 1) bits. Coding and decoding can be done in
O(n2) time.
Proof. Coding can be done in O(n2) time in straightforward way.

In the reconstruction, we need to find the first flip in each di-
rection vector. This step takes O(n) time by a linear search on a
direction vector. Therefore, this straightforward way takes O(nb)
time for reconstruction. We improve the running time. The idea
is to maintain all flips by a list. First we construct a list consist-
ing of all flips in DV1 in O(n) time. Then we maintain the list
for DVi for i = 1, . . . , b. To construct DVi+1 from DVi, at most
two elements, which are the first flip and its next index in DVi,
are updated. Hence, an update for the list can be done in O(1)
time. Therefore, the running time to reconstruct all bars is O(b)
time. As an initialization, we calculate the value of n by read-
ing the whole of the code. This takes O(n2) time. Therefore, the
reconstruction can be done in O(n2) time.

3. A Line-based Code
We propose a new code for an optimal ladder lottery in this

section. This code focuses on lines in an optimal ladder lottery.
We represent each line as a sequence of endpoints of bars.

Let L be an optimal ladder lottery with n lines and b bars.
We denote by V(i) = (v1, . . . , v|V(i)|) a sequence of endpoints of
bars on a line i from the top to the bottom. We encode V(i)
with C(i) = (c1 . . . c|V(i)|) where c j = ‘0’ if v j is a right end-
point on i and c j = ‘1’ if v j is a left endpoint on i. We call
C(i) a line-code for a line i. Finally we concatenate line-codes
C(i) for i = 1, . . . , n in this order, and insert ‘0’ between any
consecutive two line-codes to represent a boundary. We call the
obtained code a line-based code, and denote by LC. For exam-
ple, line-codes in the ladder lottery in Fig. 1 are C(1) = “1”,
C(2) = “11011”, C(3) = “0100110”, C(4) = “110010”,
C(5) = “01001”, and C(6) = “00”. Its line-based code is
“1011011001001100110010001001000”. The underlined ‘0’s
represent boundaries between two consecutive line-codes.

Now we explain how to reconstruct the original optimal ladder
lottery from a line-based code. Let LC be a line-based code for
an optimal ladder lottery L.

In LC, a ‘0’ represents either a right endpoint of a bar or a
boundary of consecutive two line-codes. A key of reconstruc-
tion is to recognize boundaries in line-codes. If the boundaries
in LC are recognized, then it is easy to reconstruct each line i for
i = 1, . . . , n from the corresponding line-code. Fig. 3 shows an
example of reconstruction of the optimal ladder lottery in Fig. 1
from its line-codes. We explain how to recognize boundaries.

Since the line 1 contains only left endpoints, the first consecu-
tive ‘1’s followed by one ‘0’correspond to C(1) and the boundary
between C(1) and C(2). Now we assume that the boundary be-
tween line-codes C(i− 1) and C(i) is recognized and the line i− 1
is reconstructed. Then, we know the number of left endpoints
of bars on a line i − 1. Since it equals to the number right end-
points of bars on a line i, we obtain the number of ‘0’s in C(i).
Hence, the boundary between line-codes C(i) and C(i+ 1) can be
recognized in LC, and a line i is reconstructed from C(i).

We estimate the length of LC for an optimal ladder lottery with
n lines and b bars. Since LC contains 2 bits for each bar and 1 bit
for each boundary, its length is n + 2b − 1 bits.
Theorem 3.1 Let L be an optimal ladder lottery with n lines and
b bars. There exists a code for L of length n+ 2b− 1 bits. Coding
and decoding can be done in O(n + b) time.

As a byproduct, we obtain the following corollary.
Corollary 3.2 The number of optimal ladder lotteries with n
lines and b bars is at most

(
n+2b−1

b

)
.

Proof. A line-based code includes b ‘1’s. Hence the number of
every possible line-code for an optimal ladder lottery with n lines
and b bars is at most

(
n+2b−1

b

)
.

4. Improvements
In this section we design a new code by improving the line-

based code in the previous section. The lengths of the proposed
codes are at most n + 2b − 1 bits. On the other hand, we show
that the new codes are more compact than the original line-based
code by an experiment in the next section.

First, we introduce three improvement ideas. Based on these
ideas, we propose a new code.

Let L be an optimal ladder lottery with n lines and b bars, and
LC its line-based code.

Improvement 1
The first improvement idea is to save the line-code for the line

n. There are only right endpoints of bars on n, and the number
of right endpoints of bars on n is equal to the number of left end-
points of bars on n − 1. Hence, even if the line-code for n and its
preceding ‘0’ corresponding to the boundary in LC are omitted,
we can reconstruct the original optimal ladder lottery by comput-
ing the number of right endpoints on n from a line-code for n− 1.

Improvement 2
The following property of an optimal ladder lottery is useful

for saving bits.
Lemma 4.1 Let x, y be two consecutive bars with left endpoints

c⃝ 2012 Information Processing Society of Japan 3

Vol.2012-AL-142 No.10
2012/11/2

IPSJ SIG Technical Report

C(1)="1" C(2)="11011" C(3)="0100110" C(4)="110010" C(5)="01001" C(6)="00"

Fig. 3 An example of reconstruction from line-codes

(a)

lx rx

ly ry

i i+1

lx rx

ly ry

i i+1

x

y

lx rx

ly ry

i i+1

(b) (c)

x

y

x

y

Fig. 4 Possible situations for consecutive two bars.

on a line i and right endpoints on a line i + 1 in an optimal lad-
der lottery (See Fig. 4). We denote by lx, rx the left and the right
endpoints of x. Similarly, we denote by ly, ry the left and the right
endpoints of y. A configuration between the two bars is either of
three cases: (1) there is at least one right endpoint between lx and
ly and no endpoint between rx and ry (Fig. 4(a)), (2) there is no
endpoint between lx and ly and at least one left endpoint between
rx and ry (Fig. 4(b)), or (3) there is at least one right endpoint
between lx and ly and at least one left endpoint between rx and ry
(Fig. 4(c)).
Proof. We assume that there is no endpoint between lx and ly,
and no endpoint between rx and ry. By removing x and y, we
obtain a ladder lottery with the less number of bars, which is a
contradiction.

Lemma 4.1 gives an idea for saving bits. If there is no endpoint
between lx and ly, then there always exists at least one endpoint
between rx and ry (Fig. 4(b)). Hence we can save 1 bit among bits
representing endpoints between rx and ry.

For example, we obtain “101101100001001100000001000”
by applying this idea to LC for the ladder lottery in Fig. 1. The un-
derlined ‘0’s represent boundaries between two consecutive line-
codes.

Reconstruction of LC with this idea can be done in straight-
forward way. The line 1 is clearly reconstructed from the corre-
sponding line-code. Suppose a line i is reconstructed. Then we
can reconstruct the saved ‘1’s in a line-code for a line i + 1, by
checking the reconstructed line i.

Improvement 3
Along with improvement 2, we can save some bits for right

endpoints of bars on the line n − 1. Since the line n has no left
endpoint of any bar, any pair of consecutive two bars between
lines n − 1 and n always forms the configuration illustrated in

Fig. 4(a). Let x, y be any consecutive two bars with left endpoints
on the line n − 1 and right endpoints on the line n. We denote by
lx, rx the left and the right endpoints of x. Similarly, we denote
by ly, ry the left and the right endpoints of y. Since there is no
endpoint between rx and ry, there is at least one right endpoint of
a bar between lx and ly. Therefore we can save 1 bit among ‘0’s
representing the number of right endpoints between lx and ly. By
this improvement zero or more ‘0’ in the line-code for n − 1 is
saved.

For example, LC with improvement 3 for the ladder lottery in
Fig. 1 is “101101100100110011001000101000”. In this exam-
ple, one ‘0’ is saved in the line-code for the line 5. The underlined
‘0’s represent boundaries between two consecutive line-codes.

Reconstructing the original ladder lottery L from a line-based
code with improvement 3 is slightly complicated. If we apply
the decoding of a line-based code directly, we may fall into the
situation that some ‘0’s are insufficient. Basically, a decoding of
a line-based code with improvement 3 is similar for a line-based
code. However, we have to carefully decode the line-code for
n − 1 which may contain saved ‘0’s.

Without loss of generality, we suppose that a saved ‘0’ appears
immediately after each ‘1’ except the last ‘1’ in the line-code for
n − 1. See Fig. 5(a) for an example. In Fig. 5(a), each saved ‘0’
is represented by ‘0’ with a diagonal line, and the line-code for
n − 1 contains two saved ‘0’s.

Suppose we apply the same decoding of a line-based code to
a line-based code with improvement 3. If we know that the cur-
rently decoding line-code is for n − 1, then the line-code can be
decoded by finding saved ‘0’s, because any saved ‘0’ appears im-
mediately after each ‘1’ except the last ‘1’. Unfortunately, during
a reconstruction, we do not know the number of lines in L. Hence,
it seems to be difficult to know whether or not the currently de-
coding line-code is for n − 1.

Our idea of reconstruction is as follows. First, we reconstruct L
by the same decoding of a line-based code. If the reconstruction
is a failure, it implies that there are saved ‘0’s in the line-code
for n − 1. Hence, we retry the decoding for two line-codes for
n − 1 and n more carefully. Otherwise, L can be reconstructed
correctly.

The details are as follows. Let LC be a line-based code for L
and LC′ be a line-based code for L with improvement 3. We de-
note by C′(n−1) a line-code for n−1 in LC′. Let p be the position
of the last ‘1’ in LC′, and e be the number of ‘0’s succeeding ‘1’
in the position p.

c⃝ 2012 Information Processing Society of Japan 4

Vol.2012-AL-142 No.10
2012/11/2

IPSJ SIG Technical Report

n-2 n-1 n

0

0

0

0

0

1

0

0

1

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

0

0

C’(n-1) = "0010010100"

v

n-2 n-1 n

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

(a) (b)
Fig. 5 Illustration for improvement 3.

Let ℓ be the line whose line-code contains p. We can observe
that ℓ is the line n − 1 or less. If the line n − 1 contains no left
endpoint, then ℓ is les than n−1. Let v be the bottom left endpoint
on ℓ. Then v corresponds to the ‘1’ in p. See 5(a) for an example.

We assume that the same decoding for LC is performed for LC′

ignoring saved ‘0’s. After decoding the ‘1’ in p, we can compute
(1) the number of right endpoints on ℓ under v in the reconstructed
ladder lottery and (2) the number of right endpoints on ℓ + 1 in
the reconstructed ladder lottery. Let r be the sum of the two num-
bers (1) and (2). See Fig. 5(b) for an example. A ladder lottery
in Fig. 5(b) is obtained by decoding C′(n − 1) in Fig. 5(a) ignor-
ing saved ‘0’s (This reconstruction is a failure). Then we have
r = 7. We note that the value of (1) is greater than the number of
left endpoints under v in the original ladder lottery L if there is at
least one saved ‘0’.

By comparing e with r, we can determine whether or not a
saved ‘0’ is contained in C′(n − 1).
Lemma 4.2 We have the following three cases.
(a) If e > r + 1, then ℓ < n − 1 and there is no saved bit.
(b) If e = r + 1, then ℓ = n − 1 and there is no saved bit.
(c) If e < r+ 1, then ℓ = n− 1 and there is one or more saved bits.

Proof. We can observe that e is the sum of (i) the number of right
endpoints under v on ℓ in L and (ii) the number of right endpoints
on ℓ + 1 and (iii) the number of ‘0’s corresponding to boundaries
between lines i and i+1 for i = ℓ, . . . , n−1. Since ℓ ≤ n−1 holds,
e always counts the ‘0’ corresponding to the boundary between
n − 1 and n. r is greater than or equal to the sum of (i) and (ii).

Case (a): Since e > r + 1, then e counts two or more ‘0’s cor-
responding to boundaries. Therefore ℓ < n − 1 holds, and hence
there is no saved ‘0’.

Case (b): If ℓ < n − 1, then there is no saved bit. Then r is
equal to the sum of (i) and (ii), and (iii) is greater than 1. Hence
e > r + 1 holds, which is a contradiction, so ℓ = n − 1 holds.
By ℓ = n − 1, e counts only the ‘0’ representing the boundary
between n − 1 and n for (iii). Hence r is equal to the sum of (i)
and (ii). Therefore there is no saved bit.

Case (c): If ℓ < n − 1, then there is no saved bits. Then we
have e ≥ r + 1, which is a contradiction. Therefore ℓ = n − 1
holds. Since e counts, for (iii), only the ‘0’ corresponding to the
boundary between n− 1 and n, r is greater than the sum of (i) and
(ii). It implies that there is at least one saved bit.

For example, e < r + 1 holds for a ladder lottery in Fig 5.
By Lemma 4.2, we have the following decoding algorithm.

First, we decode LC′ by the same decoding of LC until p, then we
perform a suitable reconstruction by comparing e and r. For the
cases (a) and (b) in Lemma 4.2, we can reconstruct by the com-
pletely same decoding for LC. For the case (c), we reconstruct
C′(n − 1) again so that all saved bits are found.

Combining improvements 1-3
Now we show that the three improvements can be applied to a

line-based code simultaneously.
The three improvements have no duplicate of saved ‘0’s or ‘1’s.

Hence, we can apply improvements 1-3 to a line-based code. We
denote by IC a code obtained by applying improvements 1-3 to
a line-based code. We call IC an improved code for an optimal
ladder lottery. For example IC for the optimal ladder lottery in
Fig. 1 is “10110110000100110000001”. The underlined ‘0’s
represent boundaries between two consecutive line-codes. We
denote by CI(i) a line-code for a line i in IC. For example,
we have CI(1) = “1”, CI(2) = “11011”, CI(3) = “00010”,
CI(4) = “11000”, CI(5) = “001 and CI(6) = ε. for the ladder
lottery in Fig. 1.

Now we explain how to decode IC. A basic process is a similar
way for a line-based code with improvement 3. First, we apply
the same decoding of a line-based code with improvement 2 to
IC. If the decoding is a failure, we retry to decode CI(n − 1)
carefully. Otherwise, L can be reconstruct correctly.

Let q be the position of the last ‘1’ in IC, and f the number of
‘0’s succeeding ‘1’ in q. Let k be the line whose line-code con-
tains q. k is a line n − 1 or less. Let u be the bottom left endpoint
on k. Since CM(n) = ε is holds in IC, f is equal to the number of
right endpoints under u. We assume that the same decoding for a
line-based code with improvement 2 is performed for IC. After
decoding the ‘1’ in q, we can compute the number of right end-
points on k under u in the reconstructed ladder lottery. Let s be
the number. We note that saved left endpoints on k by improve-
ment 2 are recognized and reconstructed by the decoding for a
line-based code with improvement 2.

We have the following lemma.
Lemma 4.3 We have the following three cases.
(a) If f > s, then k < n − 1 and there is no saved bit.
(b) If f = s, then k = n − 1 and there is no saved bit.
(c) If f < s, then k = n − 1 and there is one or more saved bits.
Proof. The proof is similar to Lemma 4.2.

By Lemma 4.3, we have the decoding algorithm along with a
line-based code with improvement 3.
Theorem 4.4 Let L be an optimal ladder lottery with n lines and
b bars. We can compute a code IC in O(n + b) time, and recon-
struct L from IC in O(n + b) time.

c⃝ 2012 Information Processing Society of Japan 5

Vol.2012-AL-142 No.10
2012/11/2

IPSJ SIG Technical Report

5. Experimental Result
We compare the average length of the codes proposed in pre-

vious sections.
An environment for an experiment is as follows. (1) OS:

FreeBSD 8.2-RELEASE, (2) CPU: AMD Phenom(tm) II X6
1065T Processor (2909.62-MHz K8-class CPU), (3) Main mem-
ory: 4GB and (4) Programming language: Common lisp (5)
Compiler: SBCL 1.0.57.

Now we show processes in our experiment. First we enumer-
ate all permutations of n elements. Second we enumerate all opti-
mal ladder lotteries of each permutation. Third we compute three
codes RC, LC and IC for every optimal ladder lottery. Finally we
calculate the average length of each code.

We have designed an efficient algorithm that enumerates all
optimal ladder lotteries of a given permutation [16]. Using the
algorithm, we enumerated all optimal ladder lotteries of every
permutation with n elements. For n = 1, 2, . . . , 9, Table 1 shows
the number of permutations with n elements, the number of opti-
mal ladder lotteries with n lines, and the average number of bars
in optimal ladder lotteries with n lines. Table 2 shows average
lengths of RC, LC and IC.

Table 1 The number of permutations, the number of optimal ladder lotteries
with n lines, the average number of bars.

n # of permutations # of optimal ladder average # of bars
with n elements lotteries with n lines in a ladder lottery

2 2 2 0.5
3 6 7 1.7
4 24 43 4.0
5 120 476 7.1
6 720 9,661 11.4
7 5,040 361,071 16.8
8 40,320 24,787,065 23.2
9 362,880 3,111,103,213 30.6

Table 2 The average length of each code per an optimal ladder lottery.

n RC LC IC
(bits) (bits) (bits)

2 2.0 2.0 1.0
3 6.0 5.4 3.3
4 12.0 10.7 7.7
5 20.0 18.1 14.1
6 30.0 27.8 22.4
7 42.0 39.5 32.7
8 56.0 53.3 44.8
9 72.0 69.2 58.8

Table 2 shows that IC is the most compact among the three
codes. Although the length of IC is n + 2b − 1 bits in the worst
case, the experimental result shows that the average length of IC
is more compact than the worst case. This implies that our im-
provements are valid on saving bits.

6. Conclusion
We have designed three codes for an optimal ladder lotteries

with n lines and b bars. The route-based code can be computed
and decoded in O(n2) time, and the line-based code can be com-
puted and decoded in O(n + b) time. Furthermore we improved
the line-based code. For improved code, coding and decoding can

be done in O(n + b) time.
We computed the average length for four codes RC, LC and

IC using enumeration algorithms. The experimental result shows
that IC is the most compact code among them.

The length of the improved code is at most n+2b−1 bits. How-
ever, the experimental result shows that the average length of the
improved code is more compact than the worst-case length.

Our future works are as follows. (1) Can we formally give up-
per and lower bounds on the average length of the improved code?
(2) Is there a more compact code? (3) Can we give a information-
theoretical lower bound for an optimal ladder lottery with n lines
and b bars?

Acknowledgement
We would like to thank participants of The 16th Enumeration-

algorithm Seminar for useful discussions. We also would like
to thank Takehiro Ito and Kei Uchizawa for useful discussions.
This work was supported by JSPS KAKENHI Grant Number
23700012.

References
[1] L.C. Aleardi, O. Devillers, and G. Schaeffer. Succinct representations

of planar maps. Theoretical Computer Science, 408:174–187, 2008.
[2] D.A. Benoit, E.D. Demaine, J.I. Munro, and V. Raman. Representing

trees of higher degree. Algorithmica, 43:275–292, 2005.
[3] Y.T. Chiang, C.C. Lin, and H.I. Lu. Orderly spanning trees with ap-

plications. SIAM Journal on Computing, 34:924–945, 2005.
[4] R.C.N. Chuang, A. Garg, X. He, M.Y. Kao, and H.I. Lu. Compact en-

codings of planar graphs via canonical orderings and multiple paren-
theses. Proc. of 25th International Colloquium on Automata, Lan-
guages and Programming (ICALP 1998), LNCS 1443:118–129, 1998.

[5] S. Felsner. On the number of arrangements of pseudolines. In
Proc. The 12th annual Symposium on Computational Geometry, (SCG
1996), pages 30–37, 1996.

[6] S. Felsner. On the number of arrangements of pseudolines. Discrete
& Computational Geometry, 18:257–267, 1997.

[7] S. Felsner and P. Valtr. Coding and counting arrangements of pseudo-
lines. Discrete & Computational Geometry, 46:405–416, 2011.

[8] R.R. Geary, R. Raman, and V. Raman. Succinct ordinal trees with
level-ancestor queries. ACM Transactions on Algorithms, 2(4):510–
534, 2006.

[9] J.E. Goodman. Pseudline arrangements. Handbook of Discrete and
Computational Geometry CRC Press, pages 97–128, 2004.

[10] G. Jacobson. Space-efficient static trees and graphs. Proc. of the 30th
IEEE Symposium on Foundations of Computer Science, (FOCS1989),
pages 549–554, 1989.

[11] K. Keeler and J. Westbrook. Short encodings of planar graphs and
maps. Discrete Applied Mathematics, 58:239–252, 1995.

[12] D.E. Knuth. Axioms and hulls. LNCS 606, Springer-Verlag, 1992.
[13] J.I. Munro and V. Raman. Succinct representation of balanced paren-

theses and static trees. SIAM Journal on Computing, 31(3):762–776,
2001.

[14] D. Poulalhon and G. Schaeffer. Optimal coding and sampling of trian-
gulations. Algorithmica, 46:505–527, 2006.

[15] K. Yamanaka and S. Nakano. A compact encoding of plane triangu-
lations with efficient query supports. Information Processing Letters,
110(18-19):803–809, 2010.

[16] K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara, and K. Nakada. Effi-
cient enumeration of all ladder lotteries and its applications. Theoret-
ical Computer Science, 411:1714–1722, 2010.

c⃝ 2012 Information Processing Society of Japan 6

Vol.2012-AL-142 No.10
2012/11/2

