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Abstract: Itemset mining is one of the most essential tasks in the field of data mining. In this paper, we focus on
minimum length as a mining measure for closed itemset mining. That is, our task is formalized as follows: Given a
database and user-specified minimum length threshold, find all closed itemsets whose length is at least the minimum
length. Closed itemset mining based on the minimum length threshold is preferable when it is difficult for users to
determine the appropriate minimum support value. For our task, we propose TripleEye: an efficient algorithm of closed
itemset mining that is based on the intersection of transactions in a database. Our algorithm utilizes the information
of inclusion relations between itemsets to avoid the generation of duplicate itemsets and reduce the computational
cost of intersection. During the mining procedure, the information of inclusion relations is maintained in a novel tree
structure called Ordered Inclusion Tree. Experiments show that our algorithm dramatically reduces the computational
cost, compared against naive intersection-based algorithm. Our algorithm also achieves up to twice the running speed
of conventional algorithms given dense databases.
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1. Introduction

Itemset mining is a fundamental task for knowledge discov-
ery in databases. It has been widely applied to discover associa-
tion rules from many kinds of databases such as product transac-
tions recorded by point-of-scale (POS) system, Web click stream
logs [4], and biological gene expressions [11], [13], [14]. The task
of itemset mining is, in general, to find all interesting itemsets
satisfying some constraint such as minimum support, minimum
confidence [10], and minimum length threshold.

Most previous works [1], [9], [18], [21] have focused on fre-
quent itemset mining, which uses a minimum support threshold
to explore itemsets. In addition, frequent closed itemset min-
ing has been proposed [15] as an alternative to standard frequent
itemset mining to reduce the large number of frequent itemsets.
An itemset x is a closed itemset if there exists no superset in the
database whose frequency is the same as x. Closed itemsets con-
tain complete information of all itemsets, but their size is usu-
ally much smaller [8]. The task of frequent closed itemset mining
is formulated as follows: Given a database and user-specified

minimum support value, find all closed itemsets that satisfy the

minimum support threshold. As some researchers have pointed
out [6], [17], however, the above framework has some drawbacks
that hinder its practical use.
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First, it is difficult to determine an appropriate minimum sup-
port value for a given database. Setting the value too small of-
ten makes the task computationally infeasible, while setting it too
large may omit some interesting patterns. The FIMI workshop [4]
on frequent itemset mining has shown that the number of frequent
patterns in a database heavily depends on various factors, e.g.,
size, density, etc. Therefore, it takes a lot of time and effort for
users to find a good threshold by trial and error [6].

Second, the output of frequent itemset mining contains a large
number of excessively short patterns, e.g., itemsets containing
only one item. This is because every subset of a frequent item-
set is also a frequent itemset, which is well-known as the Apriori
property [1]. Those too short patterns do not capture the relation-
ship between items in which we are interested, and thus moti-
vate us to find all itemsets under the condition of minimum length

threshold, not minimum support.
In this paper, we focus on minimum length as a mining measure

and formalize the alternative task of closed itemset mining as:
Given a database and user-specified minimum length value, find

all closed itemsets whose length is at least the minimum length. It
should be noted that mining itemsets with minimum length con-
straint has been explored so far [2], however, their work differs
from ours in that they present more general concept mining satis-
fying user-defined constraints.

Minimum length is a useful measure for closed itemset min-
ing for several reasons. First, in most cases, there are relatively
few minimum lengths (e.g., 1 to 30) [6], whereas minimum sup-
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port values can range widely (e.g., 0.00% to 100.00%). There-
fore, it is easy and intuitive to adjust the minimum length value
for a database. Second, often the application offers some back-
ground knowledge about itemset length. For example, in biolog-
ical databases, it is known that a transcription factor binding site
has a length from 6 to 15 [20]. In such cases, we need an efficient
algorithm for itemset mining that can satisfy a minimum length
threshold without specifying minimum support. Third, closed
itemsets whose length is at least minimum length contain suf-
ficient information with regard to short sub-patterns. Therefore,
the closed itemsets mined by our approach can be used for further
data mining analysis without loss of information.

Our task is closely related to top-k frequent closed itemset
mining [6], which is formulated as follows: Given a database

and user-specified k and minimum length, find the top-k frequent

closed itemsets that satisfy the minimum length threshold. In top-
k frequent closed itemset mining, it is unnecessary to specify min-
imum support, however, setting the appropriate number of k is not
as trivial as minimum support since it depends on the number of
frequent itemsets in the database. In addition, top-k most frequent
itemsets are usually not the most representative k patterns [8]. On
the other hand, our task makes it unnecessary to specify k or min-
imum support.

Previous works on frequent closed itemset mining can be cat-
egorized as the enumeration-based approach [5], [16], [21] and
the intersection-based approach [3], [12]. The former starts with
a one-element itemset, then explores longer itemsets gradually in
a depth-first or breadth-first manner. In contrast, the latter starts
with large itemsets, then generates common itemsets by calculat-
ing the intersection of two or more transactions. Since our goal is
to find closed itemsets whose length is at least minimum length,
we expect the intersection-based approach to be the more efficient
choice.

For our task, we propose TripleEye*1: an efficient closed item-
set mining algorithm that satisfies the minimum length thresh-
old. Our algorithm takes the intersection-based approach, but is
much more efficient than the conventional alternatives [3], [12].
The key idea of our algorithm is that information of inclusion
relations between itemsets is helpful in reducing computational
cost. For example, the intersection of itemset

{
apple, orange

}
and

superset
{
apple, banana, orange

}
is
{
apple, orange

}
itself, which

is unnecessary for our task. Furthermore, if we observe that{
apple, orange

}
and
{
cherry, peach, pear

}
have nothing in com-

mon, then
{
apple, orange

}
and the subset of

{
cherry, peach, pear

}
,

e.g.,
{
cherry, peach

}
also have nothing in common. Considering

the examples stated above, we keep the information of inclusion
relations in a novel tree structure called Ordered Inclusion Tree,
and so avoid any unnecessary computational costs. Experiments
show that our algorithm up to twice as fast as the conventional
algorithms given dense databases.

Overall, our contributions are as follows:
( 1 ) We propose Ordered Inclusion Tree: a compact tree structure

for retaining the information of inclusion relations between
itemsets.

*1 TripleEye is derived from three “I”s: Itemset, Intersection and Inclusion.

( 2 ) We propose TripleEye: an efficient algorithm for closed
itemset mining, it satisfies the minimum length threshold by
using Ordered Inclusion Tree.

( 3 ) Experiments show that the running time of our algorithm
is at least 50% less than the conventional algorithms given
dense databases.

The rest of the paper is organized as follows: in Section 2, we
discuss the related work. In Section 3, we introduce some pre-
liminaries and give the formal task definition. In Section 4, we
present a concept of Ordered Inclusion Tree and give the theory
and algorithm of our method. In Section 5, we report the perfor-
mance study of our algorithm, and in Section 6, we conclude our
work.

2. Related Work

2.1 Enumeration-based Approach for Frequent Closed
Itemset Mining

There has been much work on frequent enumeration-based
closed itemset mining such as CLOSET [16], CHARM [21],
CLOSET+ [19], and TFP [6], [7].

CLOSET is an enumeration-based algorithm for frequent
closed itemset mining. It constructs a prefix tree structure called
FP-tree, which represents compressed but complete information
of frequent patterns in a database. CLOSET uses a depth-first
search strategy and efficiently generates closed frequent itemsets
with FP-tree.

CHARM is also an enumeration-based algorithm for frequent
closed itemset mining. It maintains an original tree structure
called IT-Tree (Itemset Tidset Tree), which contains both itemset
and transaction id set simultaneously. CHARM also implements
several optimization techniques such as diffset, a compact rep-
resentation of IT-Tree, for memory efficiency and fast frequency
computation.

CLOSET+ is another enumeration-based algorithm for fre-
quent closed itemset mining. Similar to CLOSET, it makes use of
FP-tree for efficient pattern generation and performs in a depth-
first search. CLOSET+ integrates two types of tree-projection
methods: bottom-up tree projection for dense databases and top-
down tree projection for sparse databases. Owing to this hy-
brid tree-projection approach, it has been shown that CLOSET+
has advantages over CLOSET and CHARM in terms of runtime,
memory and scalability.

FPclose is also an enumeration-based algorithm for frequent
closed itemset mining with FP-tree structure. FPclose uses an
additional simple array structure to traverse FP-trees efficiently,
which greatly reduces the computational cost. In FIMI’03 work-
shop, FPclose won the best implementation award [4].

TFP [6] is a enumeration-based top-k frequent closed itemset
mining algorithm. Similar to the other algorithms, TFP uses FP-
tree structure for efficient itemset mining. TFP starts by setting
the minimum support value to zero, then gradually raises mini-
mum support with the search space pruning method called item
merging and prefix itemset skipping. Experiments show that TFP
outperforms CHARM and CLOSET+ if minimum support is well
tuned.
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2.2 Intersection-based Approach for Frequent Closed Item-
set Mining

A simple intersection-based approach for frequent closed item-
set mining has been proposed by Ref. [12], but it is too inefficient
for real databases.

IsTa [3] is an alternative intersection-based approach for fre-
quent closed itemset mining. It relies on a prefix tree structure for
storing closed itemsets and quickly computing intersections. IsTa
is much faster than the simple intersection-based implementation
proposed by [12], and is also faster than the enumeration-based
variants for some databases.

Our algorithm takes the intersection approach, but differs from
the work of Ref. [12] and IsTa. Instead of relying on FP-tree
or other prefix-tree structure variants, our algorithm constructs
a novel data structure called Ordered Inclusion Tree to keep the
information of inclusion relations between already mined closed
itemsets.

3. Preliminaries

Let F = { f1, f2, . . . , fm} be a set of discrete items. Itemset x is
a subset of F, i.e., x ⊆ F. The length of itemset x, denoted by |x|,
is the number of elements contained in x. We assume a database
composed of a set of rows R = {r1, r2, . . . , rn}, where each row ri

is an itemset.
Example 3.1 Table 1 shows an example database. In this ex-

ample, F = {a, b, c, d, e} and there are five rows R = {r1, . . . , r5}
in the database. Row lengths are |r1| = |r2| = |r3| = 4 and

|r4| = |r5| = 3.

Itemset x is referred to as a closed itemset in R if there exists
no itemset x′ such that x ⊂ x′ and ∀i : (x ⊆ ri → x′ ⊆ ri). In
other words, x is a closed itemset if there exists no superset in R

which has the same frequency as x. In this work, we use an alter-
native and equivalent definition of closed itemset as follows [12];
it directly represents the relationship between closed itemsets and
intersection of rows.
Definition 3.1 Closed itemset

Itemset x is a closed itemset in R if and only if there exists

I ⊆ {1, 2, . . . , n} such that x =
⋂

i∈I ri, where n is the number of

rows.

According to the definition 3.1, every row itself and all itemsets
produced by the intersection of rows are closed itemsets.
Example 3.2 In the example of Table 1, closed itemsets are

{a, b, c, d} = r1, {b, c, d, e} = r2, {a, b, d, e} = r3, {b, c, d} = r4,

{a, d, e} = r5, {a, b, d} = r1 ∩ r3, {b, d, e} = r2 ∩ r3, {a, d} = r1 ∩ r5,

{d, e} = r2 ∩ r5, {b, d} = r3 ∩ r4 and {d} = r4 ∩ r5.

Task definition
Given a database consisting of R and user-specified minimum

length threshold minlen, our task is to find all closed itemsets
whose length is at least minlen.

A set of closed itemsets satisfying minlen, denoted by
C (R,minlen), can be represented as follows:

C (R,minlen) ≡ {⋂i∈I ri |I ∧ |⋂i∈I ri| ≥ minlen } (1)

where I ⊆ {1, 2, . . . , n}. According to Eq. (1), a straightforward
implementation of intersection-based closed itemset mining that

Table 1 Example database.

i ri

1 a, b, c, d
2 b, c, d, e
3 a, b, d, e
4 b, c, d
5 a, d, e

Algorithm 1: Straightforward implementation of closed
itemsets mining

Input : R, minlen

Output: a set of closed itemsets: C

// initialize

1 R′ ← {r ∈ R ||r| ≥ minlen }
2 A0 ← R′

3 C0 ← R′

4 Step k ← 0

5 while |Ak | > 0 do
6 Pick a ∈ Ak and remove a from Ak

// calculate intersection

7 T ← {a⋂ c |c ∈ Ck ∧ |a⋂ c| ≥ minlen } \Ck

8 Ak+1 ← Ak ∪ T

9 Ck+1 ← Ck ∪ T

10 k ← k + 1
11 end

12 C ← Ck

satisfies minlen is shown in algorithm 1, where X \ Y (as in line
7) represents a relative complement of a set Y with respect to a
set X.

Algorithm 1 uses two sets of itemsets: Ak and Ck. Both Ak and
Ck are first initialized as R′ in line 2 and line 3. For each step, k,
an arbitrary itemset a ∈ Ak is picked, and then the intersection of
a and c ∈ Ck is calculated in line 7. All newly generated itemsets
are added to Ak and Ck. Therefore, Ck ⊇ Ak holds for any step k.
When the number of elements in Ak becomes zero, the algorithm
terminates. The output of algorithm 1 is equal to C (R,minlen) in
Eq. (1) (the proof is shown in Appendix A).

The algorithm 1 is extremely inefficient. This is because when
a new closed itemset x is generated by intersection, the algo-
rithm again calculates the intersection of x and every other itemset
c ∈ Ck (line 7). We propose a more efficient algorithm in the next
section.

4. Proposed Method

In this section, we propose a novel data structure called Or-
dered Inclusion Tree, and then propose an efficient algorithm for
our closed itemset mining task that uses Ordered Inclusion Tree.

4.1 Ordered Inclusion Tree
4.1.1 Theory and Algorithm

We introduce the concept of Ordered Inclusion Tree, which is
a necessary data structure for our algorithm.
Definition 4.1 Ordered Inclusion Tree

Ordered Inclusion Tree (OI-Tree in short) is an ordered tree

structure whose nodes are itemsets. The root node of OI-Tree is

always set to F.
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Fig. 1 Example OI-Tree constructed from the database in Table 1.

Let X be a set of itemsets. We denote OI-Tree as consisting of

X as XOI, that is, we handle XOI as a set of itemsets with internal

tree structure. XOI satisfies the following conditions:

( 1 ) ∀x ∈ XOI : x ⊂ Parent (x)

( 2 ) ∀i,∀ j :
(
si � s j ∧ si � s j

)

( 3 ) ∀i,∀ j :
(
i < j→ ∀d ∈ Desc

(
s j

)
: si � d

)

where Parent (x) is a parent node of x, Desc (x) is a set of de-

scendant nodes of x. Likewise, Children (x) is defined as a set of

child nodes of x, and Root
(
XOI
)

is defined as the root node of

XOI. si and s j (i, j = 1, 2, . . .) are arbitrary ordered sibling nodes

in OI-Tree.

Example 4.1 Figure 1 shows an example of the OI-Tree con-

structed from the database in Table 1. The root node is

F = {a, b, c, d, e}. Parent ({a, b, c, d}) = {a, b, c, d, e}, and

Desc ({a, b, c, d}) = {{b, c, d}}. Furthermore, {a, b, c, d} = s1,

{b, c, d, e} = s2, {a, b, d, e} = s3 are example sibling nodes.

{b, c, d} is a proper subset of both {a, b, c, d} and {b, c, d, e}. Ac-

cording to the third condition of OI-Tree, {b, c, d} must be a child

node of the first superset {a, b, c, d}.
OI-Tree clearly represents inclusion relations between item-

sets. The first condition of OI-Tree requires the parent node
of itemset x to be a proper superset of x. The second con-
dition prevents sibling nodes in OI-Tree from containing each
other. The third condition requires itemset x to be the descendant
node of the first superset in sibling nodes. For example, assume
x ⊂ si (i = 1, 2, . . .) where {si} are sibling nodes in OI-Tree. To
satisfy the third condition, x must be the descendant node of s1.
Due to the third condition, OI-Tree is well-organized even when
x has multiple supersets in X.

XOI can be efficiently constructed in a top-down manner by
adding an itemset to XOI in length descending order. This is be-
cause the length of the parent node is always longer than that of
a child node. We show the basic procedure of constructing XOI

in algorithm 2. Note that given a set of itemsets X, XOI is not
uniquely determined. It depends on in what order an itemset is
added to XOI .

The algorithm 2 for constructing OI-Tree calls the procedure
FindParent, which takes two arguments and returns the parent
node of the second argument. The procedureFindParent is shown
in the algorithm 3.
4.1.2 Terms

We define some terms related to OI-Tree: Pos, FirstPos, and
RightSibDesc to permit further discussion.
Definition 4.2 Pos

Let XOI be an OI-Tree. For itemset x ∈ XOI, Pos (x) (abbre-

viation of Position) is a numerical value numbered in ascending

order according to the depth-first traversal of XOI. The Pos value

of the root node is set to 0.

Algorithm 2: ConstructOITree

Input : a set of itemsets: X

Output: XOI

// initialize

1 Root
(
XOI
)
← F

2 while |X| > 0 do
3 x← argmax

x′∈X
|x′|and remove x from X

4 p← call FindParent
(
Root

(
XOI
)
, x
)

5 Add x to the last child node of p
6 end

Algorithm 3: FindParent

Input : candidate parent node: p, target node: x (p ⊃ x)

Output: Parent (x)

1 foreach c ∈ Children (p) do
2 if c ⊃ x then
3 return call FindParent (c, x)

4 end
5 end

6 return p

Fig. 2 The Pos value for each itemset in an OI-Tree.

Example 4.2 Figure 2 shows Pos (x) value in an OI-Tree. Each

itemset in the nodes are omitted for simplicity. The Pos (x) value

for each itemset x is shown by the index at the upper of the node.

Definition 4.3 FirstPos

Let XOI be an OI-Tree and let Y be a set of itemsets that satis-

fies Y ⊆ XOI. Then, FirstPos (Y) (abbreviation of First Position)
is defined as follows:

FirstPos (Y) ≡ argmin
y∈Y

Pos (y)

That is, FirstPos (Y) is the itemset y ∈ Y that minimizes its
Pos value.
Definition 4.4 RightS ibDesc

Let XOI be an OI-Tree. For itemset x ∈ XOI, RightS ibDesc (x)

(abbreviation of Right Sibling Descendants) is a set of itemsets

defined as follows:

RightS ibDesc (x) ≡ {y |Pos (y) > Pos (x)

∧y ∈ Desc (Parent (x)) ∧y � Desc (x)}
Example 4.3 Figure 3 shows RightS ibDesc (x) in an OI-Tree.

Itemsets in the nodes are omitted for simplicity. In Fig. 3,

RightS ibDesc (x) is the circled set of three itemsets.

4.2 TripleEye
We propose TripleEye: an efficient algorithm of closed item-

set mining that satisfies minlen and uses OI-Tree. The straight-
forward implementation of Eq. (1) (shown in algorithm 1) is ex-
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Fig. 3 RightS ibDesc (x).

Algorithm 4: Closed itemset mining with OI-Tree

Input : R, minlen

Output: a set of itemsets: C

// initialize

1 R′ ← {r ∈ R ||r| ≥ minlen }
2 A0 ← R′

3 COI
0 ← call ConstructOITree (R′)

4 Step k ← 0

5 while |Ak | > 0 do
6 a← FirstPos (Ak) and remove a from Ak

// calculate intersection

7
T ← {a⋂ da |da ∈ RightS ibDesc (a)

∧ |a⋂ da | ≥ minlen} \COI
k

8 Ak+1 ← Ak ∪ T

// grow OI-Tree

9 Sort T into length descending order

10 foreach t ∈ T do
11 p← call FindParent

(
Root

(
COI

k

)
, t
)

12 Add t to the last child node of p
13 end

14 COI
k+1 ← COI

k

15 k ← k + 1
16 end

17 C ← all nodes of COI
k

tremely inefficient. This is because when a new closed itemset
x is generated by intersection, the algorithm again calculates the
intersection of x and every other itemset c ∈ Ck (line 7 in algo-
rithm 1).

The main idea of our algorithm is as follows: when a new
closed itemset x is generated by intersection, x is added to the
OI-Tree composed of Ck. This makes it sufficient to calculate
only the intersection of x and dx ∈ RightS ibDesc (x), which is
guaranteed by the Localization theorem (described later). Since
the number of itemsets in RightS ibDesc (x) is smaller than that
of itemsets in Ck, the computational cost is reduced. We also
show that the intersection of x and dx ∈ RightS ibDesc (x) can be
efficiently calculated by using the property of OI-Tree.
4.2.1 Algorithm

Consider an OI-Tree for Ck, i.e., COI
k in algorithm 1. We mod-

ify algorithm 1 as shown in algorithm 4.
Algorithm 4 is different from algorithm 1 in three ways. First,

Ck in algorithm 1 yields OI-Tree COI
k . Second, in line 6, a =

FirstPos (Ak) is picked for each step, whereas an arbitrary item-
set is picked in algorithm 1. Third, in line 7, the intersection of
a and only da ∈ RightS ibDesc (a) is calculated, whereas the in-
tersection of a and every other itemset in Ck is calculated in algo-
rithm 1. For each step, the Pos value of each itemset in OI-Tree

(a) Pos (a) > Pos (c)

(b) Pos (a) < Pos (c)

Fig. 4 The examples of OI-Tree which represent (a) Pos (a) > Pos (c) and
(b) Pos (a) < Pos (c).

is updated with each additional node in COI
k .

4.2.2 Localization Theorem
We show two lemmas and then give the Localization theorem

to validate line 7 of algorithm 4.
Lemma 4.1 In algorithm 4, let a ∈ Ak, c ∈ COI

k be closed item-

sets for arbitrary step k. For any step k, Ak ⊆ COI
k is satisfied. In

line 6, a = FirstPos (Ak) is picked, then

∀k :
(
Pos (a)>Pos (c) ∧ |a ∩ c| ≥ minlen→ a ∩ c ∈ COI

k

)

Figure 4 (a) shows the example of COI
k which represents

Pos (a) > Pos (c). The itemsets in white nodes are elements of
Ak, and the itemsets in black nodes are elements of Ck \ Ak. The
itemset in the square node represents a = FirstPos (Ak).
Proof.

If a ∈ Desc (c), a ∩ c = a. Hence the given lemma holds.
Let us assume a � Desc (c). A closed itemset can be repre-

sented as the intersection of rows, that is, ∃I ⊆ {1, 2, . . . , n} :
a ∩ c = (∩i∈Iri) ∩ c.

Considering the assumption Pos (c) < Pos (a), for step
k′ (0 < k′ < k), the intersection of c and every other itemset in
COI

k′ is calculated in line 6. Since ∀r ∈ R′ : r ∈ COI
0 ,

∀i :
(
|ri ∩ c| ≥ minlen→ ri ∩ c ∈ COI

k

)

Moreover, Pos (ri ∩ c) < Pos (a) is satisfied since ri ∩ c ⊆ c.
Consequently,

∀i,∀ j :
(∣∣∣ri ∩ r j ∩ c

∣∣∣ ≥ minlen→ ri ∩ r j ∩ c ∈ COI
k

)

Likewise, if |a ∩ c| ≥ minlen, then a∩ c = (∩i∈Iri)∩ c ∈ COI
k . �

Lemma 4.2 In algorithm 4, let a ∈ Ak, c ∈ COI
k be closed item-

sets for arbitrary step k. For any step k, Ak ⊆ COI
k is satisfied. In

line 6, a = FirstPos (Ak), then

∀k :
(
Pos (a)<Pos (c) ∧ |a ∩ c| ≥ minlen ∧ a ∩ c � COI

k

→ a ∩ c ∈ {a ∩ da |da ∈ RightS ibDesc (a) })
Figure 4 (b) shows the example of COI

k which represents
Pos (a) < Pos (c). The itemsets in white nodes are elements of
Ak, and the itemsets in black nodes are elements of Ck \ Ak. The
itemset in the square node represents a = FirstPos (Ak).
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(a) k = 0 (b) k = 1

(c) k = 2 (d) k = 6

(e) k = 7 (f) k = 11

Fig. 5 Step-by-step example of our algorithm. The itemsets in white nodes are elements of Ak , and
the itemsets in black nodes are elements of Ck \ Ak . The itemset in the square node represents
a = FirstPos (Ak). RightS ibDesc (a) is a set of circled itemsets.

Proof.

If c ∈ Desc (a) then a∩c = a, which contradicts the supposition
a ∩ c � COI

k .
Let us assume c � Desc (a). a ∩ c can be rewritten as follows:

a ∩ c = (a ∩ Parent (a)) ∩ c = a ∩ (Parent (a) ∩ c)

Let c′ ≡ Parent (a) ∩ c. Here we prove ∀k : c′ ∈ COI
k and

Pos (a) < Pos (c′) is satisfied.
When the given assumptions a∩c � COI

k and Pos (a) < Pos (c)

are satisfied,

∀da ∈ RightS ibDesc (a) : Pos (a ∩ c) < Pos (da)

holds since a ∩ c ⊆ a. Hence, c is not the intersection of any two
itemsets, i.e., ∃ri ∈ R′ : c = ri. Therefore, ∀k : c′ ∈ COI

k holds.
According to lemma 4.1, if Pos (a) > Pos (c′) and |a ∩ c′| ≥

minlen, then a ∩ c′ ∈ COI
k , which contradicts the supposition

a ∩ c′ = a ∩ c � COI
k . Therefore, Pos (a) < Pos (c′).

Consequently, c′ satisfies c′ ⊆ Parent (a), and Pos (a) <
Pos (c′), thus

c′ = a ∨ c′ ∈ Desc (a) ∨ c′ ∈ RightS ibDesc (a)

If c′ = a ∨ c′ ∈ Desc (a) then a ∩ c′ = a, which contra-
dicts the supposition a ∩ c′ = a ∩ c � COI

k . Hence, a ∩ c′ ∈
{a ∩ da |da ∈ RightS ibDesc (a) } holds. �
Theorem 4.1 Localization

In line 7 of algorithm 4, let a ∈ Ak, c ∈ COI
k be closed itemsets

for arbitrary step k, then

∀k :
{
a ∩ c

∣∣∣c ∈ COI
k ∧ |a ∩ c| ≥ minlen

}
\COI

k

= {a ∩ c |c ∈RightS ibDesc (a) ∧ |a ∩ c|≥minlen }\COI
k

Proof.

If a∩ c ∈ COI
k then (a ∩ c) \COI

k = ∅, thus the given theorem is
true.

Let us assume a ∩ c � COI
k . According to lemma 4.1 and

lemma 4.2, if |a ∩ c| ≥ minlen then Pos (a) < Pos (c) and
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a ∩ c ∈ {a ∩ da |da ∈ RightS ibDesc (a) }. Therefore, the given
theorem is true. �

According to the localization theorem, the output of algo-
rithm 4 is equal to that of algorithm 1. Since the number of item-
sets in RightS ibDesc (a) is smaller than that of the itemsets in
COI

k , the computational cost of intersection is reduced.
4.2.3 Step-by-Step Example

We give a step-by-step example of our algorithm. Let us use
the database in Table 1 and set minlen = 1. Figure 5 shows the
transitions in COI

k yielded by running algorithm 4. Each subfigure
represents COI

k for some step k.
For step k = 0, COI

0 is constructed from R′ (Fig. 5 (a)). In line
7 of algorithm 4, a = FirstPos (A0) = {a, b, c, d} is picked. Then,
in line 7, the intersection of a and da ∈ RightS ibDesc (a) is cal-
culated, that is, {a, b, c, d}∩ {b, c, d, e}, {a, b, c, d}∩ {a, b, d, e}, and
{a, b, c, d} ∩ {a, d, e}. Finally, all new itemsets generated by inter-
section are added to COI

0 (see Fig. 5 (b)).
Similarly, for step k = 1, a = FirstPos (A1) = {b, c, d}. Next,

the intersections {b, c, d} ∩ {a, b, d} and {b, c, d} ∩ {a, d} are calcu-
lated, and added to COI

1 . When |Ak | = 0, the algorithm terminates
(Fig. 5 (f)). Then, the itemsets contained in COI

k are all of the
closed itemsets that satisfy minlen.

4.3 Further Speedup
We introduce further speedup techniques for our algorithm.

4.3.1 Empty Itemsets by Intersection
The efficiency of our algorithm relies on how rapidly the in-

tersection a
⋂

da can be calculated (line 7 of algorithm 4), where
a ∈ Ak and da ∈ RightS ibDesc (a). The naive implementation
of algorithm 4 generates empty itemsets many times. This is be-
cause if the intersection of itemsets x and y is an empty set, the
intersection of x and the subset of y is also an empty set. To elimi-
nate such unnecessary computational cost, we utilize the OI-Tree
property as shown in the following lemma.
Lemma 4.3 Let COI

k be an OI-Tree for step k in algorithm 4. If

a ∈ Ak, c ∈ COI
k are itemsets, then

∀dc ∈ Desc (c) :
(
a
⋂

c = ∅ → a
⋂

dc = ∅
)

Proof.

According to the definition of OI-Tree, ∀dc ∈ Desc (c) : c ⊃ dc.
Hence a

⋂
c = ∅ → a

⋂
dc = ∅ holds. �

Owing to lemma 4.3, we can stop the depth-first search of OI-
Tree in line 7 if a ∩ c = ∅, which reduces the cost of intersection
computation.
4.3.2 Binarized Database

The implementation of our algorithm requires the following
three procedures:
• Share: checks whether x

⋂
y � ∅.

• Contain: checks whether x ⊇ y.
• Intersect: returns x

⋂
y.

where x and y are itemsets.
To execute those procedures quickly, we transpose the database

into binary representation. Table 2 shows the example of a bina-
rized form of the database in Table 1. A binarized database al-
lows us to compute the above procedures by bitwise operations
as shown in the following lemma.

Table 2 Binarized database.

a b c d e
r1 1 1 1 1 0
r2 0 1 1 1 1
r3 1 1 0 1 1
r4 0 1 1 1 0
r5 1 0 0 1 1

Lemma 4.4 If x and y are binary represented itemsets, then

• Share: x
⋂
y � ∅ ⇔ xANDy � ∅

• Contain: x ⊇ y⇔ xXOR (xORy) = ∅
• Intersect: x

⋂
y = xANDy

where AND, XOR, and OR are bitwise operators of conjunction,

exclusive disjunction, and disjunction, respectively.

Proof.

Obviously, Share and Intersect are true. The truth table of Con-

tain is shown below:

xk yk xk XOR (xk OR yk)

0 0 0
0 1 1
1 0 0
1 1 0

where xk and yk are the kth bits of x and y, respectively. Accord-
ing to the truth table, only if xk = 0 and yk = 1, does the operator
yield 1. Therefore, Contain is true. �

5. Experiments

In our first experiment, we compare the computational cost
of TripleEye against that of the algorithm 1 to evaluate the ef-
ficiency of our algorithm. Both algorithms are intersection-based
approaches for closed itemset mining satisfying minlen thresh-
old. However, TripleEye uses the OI-Tree structure for reducing
the number of intersection operations, while the algorithm 1 has
no such a structure.

In our second experiment, we measure the running time of
TripleEye with varying minlen threshold to evaluate whether
TripleEye solves our task in practical time. Since most previ-
ous works are designed for closed itemset mining satisfying not
minlen but minimum support, it is difficult to directly compare
TripleEye agianst other algorithms. However, these conventional
algorithms can be used for solving our task, thus we also show
the running time of FPclose [5] and IsTa [3] as references.

FPclose is an enumeration-based algorithm of frequent closed
itemset mining, and won the FIMI’03 best implementation
award [4]. We downloaded the source code of FPclose from
FIMI’03 repository*2, and compiled it using Microsoft Visual
C++ 2010. IsTa is a recently proposed intersection-based al-
gorithm of frequent closed itemset mining. We downloaded the
windows binary executable of IsTa from the author’s website*3.

In our third experiment, we measure the running time of Triple-
Eye with varying the number of transactions to evaluate the scal-
ability of our algorithm.

All experiments were conducted on a Core i7 3.2 Ghz CPU,
running Windows R© 7. We confirmed all implementations were

*2 http://fimi.ua.ac.be/fimi03/
*3 http://www.borgelt.net/ista.html
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(a) chess (b) gazelle

Fig. 6 Computational cost comparison.

Table 3 Database characteristics.

Database # Trans. # Items Avg. Length Dense/Sparse
chess1k 1000 75 37 Dense

chess1.2k 1200 75 37 Dense
L15I40T3k 3000 40 15 Dense
L15I40T5k 5000 40 15 Dense

gazelle 59601 497 2.5 Sparse
T10I4D50K 50000 869 10.1 Sparse

compiled as windows 32 bit executables, thus the maximum
amount of memory is limited to 3.12 GB.

We prepared both real and synthetic databases for the perfor-
mance comparison. Table 3 shows the characteristics of each
database. Each database can be categorized as dense or sparse.

As a pre-experiment, we applied our speedup techniques (early
stopping of depth-first search and database binarization in Sec-
tion 4.3) to our algorithm and confirmed significant speedup.
Therefore, those techniques are employed in all of our experi-
ments.

5.1 Comparison against Simple Intersection-based Algo-
rithm

Figure 6 shows the computational cost comparison of Triple-
Eye (algorithm 4) against the simple intersection-based approach
(algorithm 1) on the chess1k database (Fig. 6 (a)) and the gazelle
database (Fig. 6 (b)). Both figures are plotted with computational
cost as the vertical axis (logarithmic scale) and the number of
transactions as the horizontal axis. The computational cost was
measured by the number of intersection operations which were
needed for finding all closed itemset mining satisfying minlen =

1.
It is apparent from Fig. 6 that TripleEye dramatically reduces

the number of intersection operations. For example, the num-
ber of intersection operations of TripleEye was 37447, while that
of algorithm 1 was 286037651 for 120 transactions on Fig. 6 (a).
When the number of transactions exceeded 120, the algorithm 1
failed to calculate all closed itemsets in practical time. On the
other hand, TripleEye successfully calculated all closed itemsets
on more than 120 transactions because of the efficient mining pro-
cedure by using OI-Tree.

5.2 Running Time Comparison
5.2.1 Dense Databases

We used chess and L15I40 databases to compare the run-

ning time of mining algorithms for dense databases. The chess
database was obtained from the UCI Machine Learning Repos-
itory*4. We selected the first 1k and 1.2k transactions (chess1k
and chess1.2k). L15I40 database was created by the IBM data
set generator. We set the number of transactions to 3k and 5k
(L15I40T3k and L15I40T5k).

Figure 7 (a) shows the running time of TripleEye, IsTa, and
FPclose on the chess1k database for minlen values from 1 to 35.
The minimum support of IsTa and FPclose was set to 1. There-
fore, when minlen is set to be 1, all algorithms produce the same
output. We can see that TripleEye consistently outperformed IsTa
and FPclose for any minlen.

Since IsTa and FPclose aim to find closed itemsets that sat-
isfy minimum support, the running time of those algorithms is
constant when minlen is ranged. Indeed, IsTa has an option of
setting minlen, however, the running time was constant on the
chess1k database regardless of minlen. On the other hand, the
running time of TripleEye successfully decreased as minlen be-
came longer.

The chess1k and chess1.2k database had the following prop-
erties: a) for minlen values from 1 to 15, the number of closed
itemsets was almost constant. b) for minlen values from 15 to
35, the number of closed itemsets gradually decreased as minlen

became longer. Therefore, we can see that TripleEye performs in
accordance with the number of closed itemsets satisfying minlen.

Figure 7 (b) shows the running time of TripleEye and IsTa on
the chess1.2k database for minlen values from 1 to 35. FPclose
failed to mine closed itemsets because of a memory overflow er-
ror. As in Fig. 7 (a), our algorithm consistently outperformed IsTa
regardless of minlen. Even when minlen was set to 1, our algo-
rithm was approximately 1.5 times faster than IsTa.

Figures 7 (c) and 7 (d) show the running time of the three al-
gorithms for minlen values from 1 to 15. As in the experiments
on chess databases, our algorithm outperformed the conventional
algorithms regardless of minlen. Even when minlen was 1, our
algorithm was more than twice as fast as IsTa on the L15I405k
database. Overall, our algorithm outperformed the other algo-
rithms on dense databases, and efficiently found all closed item-
sets satisfying minlen.

5.2.2 Sparse Databases
We used gazelle and T10I4D50K as sparse databases. Gazelle

*4 http://archive.ics.uci.edu/ml/
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(a) chess1k (b) chess1.2k-comp

(c) L15I40T3k (d) L15I40T5k

Fig. 7 Running time comparison on dense databases.

(a) gazelle (b) T10I4D50K

Fig. 8 Running time comparison on sparse databases.

holds click stream data [6], and T10I4D50K was created by the
IBM data set generator.

Figure 8 (a) shows the running time of three algorithms on
gazelle database. When minlen was relatively large (5 to 30),
our algorithm was the fastest of the algorithms. When minlen

was less than 5, our algorithm matched the results of IsTa and
FPclose.

Figure 8 (b) shows the running time of the three algorithms on
the T10I4D50K database. For the T10I4D50K database, FPclose
was the fastest of the three algorithms. The average length of the
T10I4D50K database is longer than that of the gazelle database.
Furthermore, the length variance of the T10I4D50K database was
considerably lower than that of the gazelle database. Therefore,
it seems possible that the performance gap of intersection-based
approaches (TripleEye and IsTa) between Fig. 8 (a) and Fig. 8 (b)
is due to the average length and length variance, while the run-
ning time of enumeration-based approach (FPclose) is insensitive
for those factors on sparse databases. TripleEye was faster than
IsTa when minlen was relatively large, but slower than IsTa when

minlen was small.
These results on dense and sparse databases can be ex-

plained in part by the difference between intersection-based and
enumeration-based approach. An intersection-based approach
generates closed itemsets in decreasing order of length. There-
fore, our algorithm can prune all closed itemsets whose length are
less than minlen, which resulted in better performance than FP-
close and IsTa. IsTa is also intersection-based approach, however,
the data structure and algorithm is designed for fast calculation of
closed itemsets satisfying minimum support threshold.

On the other hand, an enumeration-based approach generates
closed itemsets in ascending order of length. This is equivalent to
itemsets generation in decreasing order of support value. There-
fore, enumeration-based approach is suitable for pruning itemsets
whose support value are less than minimum support, rather than
minlen.

5.3 Scalability Test
We tested the scalability of our algorithm on dense and sparse
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(a) TL15I40 (b) T10I4D50K

Fig. 9 Scalability test.

databases. Figure 9 (a) shows the running time of TripleEye on
the L15I40 database with four different minlen values. The num-
ber of transactions ranges from 1k to 10k. We can see that the
running time of TripleEye increases almost linearly on the L15I40
database in all cases.

Figure 9 (b) shows the running time of TripleEye on the
T10I4D50K database with four different minlen values. The num-
ber of transactions in the figure ranges from 10k to 60k. The
figure shows that the running time of TripleEye increases almost
linearly on the T10I4D50K database in four cases. Overall, it has
been shown that our algorithm is scalable on dense and sparse
databases in terms of database size.

6. Conclusions

We have studied the task of closed itemset mining where the
constraint is at least matching the minimum length. Different
from frequent closed itemset mining and top-k frequent closed
itemset mining, our task formulation makes it unnecessary to
specify minimum support or the value of k. Furthermore, it
is possible to apply background knowledge about the length of
itemsets to be mined. For example, in biological databases, it is
known that a transcription factor binding site has a length from 6
to 15 [20]. In this case, we simply set minlen value to 6 with-
out specifying minimum support. To reach our goal, we pro-
posed the Ordered Inclusion Tree; it maintains the inclusion rela-
tions between itemsets, and also proposed an efficient algorithm,
TripleEye, for closed itemset mining that can satisfy the mini-
mum length threshold. Our algorithm utilizes the Ordered Inclu-
sion Tree for reducing the computation cost of intersection oper-
ations. The validity of which is guaranteed by the Localization
theorem. Experiments showed that our algorithm was up to twice
as fast as the conventional alternatives given dense databases and
minimum length of 1. We will extend our algorithm to support
sequence, tree, and graph pattern mining.
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Appendix

A.1 Correctness of the Algorithm 1

Here, we prove that the output of algorithm 1 is equal to
C (R,minlen) in Eq. (1). Equation (1) is a definition of closed
itemset mining satisfying minlen. The algorithm 1 is a simple
intersection-based approach for calculation of Eq. (1). We em-
ploy the following two lemmas for our proof.
Lemma A.1.1 Let C be the output of algorithm 1, then

∀c ∈ C : c ∈ C (R,minlen)

Proof.

Basis: In algorithm 1, C0 = R′. Hence ∀c ∈ C0 : c ∈
C (R,minlen).

Induction: Assume that for arbitrary step k, ∀c ∈ Ck :
c ∈ C (R,minlen) in line 6. By using the induction hypothesis,
∀a ∈ Ak : a ∈ C (R,minlen) since Ak ⊆ Ck is satisfied for any k.
Therefore, ∀t ∈ T : t ∈ Ck in line 7.

In line 9, Ck is updated as Ck+1 ← Ck ∪ T , hence ∀c ∈ Ck+1 :
c ∈ C (R,minlen).

Since both the Basis and Induction step have been proved,
∀c ∈ Ck : c ∈ C (R,minlen) for any k. Therefore, the given
lemma holds. �
Lemma A.1.2 Let C be the output of algorithm 1, then

∀c ∈ C (R,minlen) : c ∈ C

Proof.

In algorithm 1, ∀r ∈ R′ : r ∈ Ck for any step since C0 = R′.
Hence, in line 7,

∀a ∈ Ak,∀r ∈ R′ : (|a ∩ r| ≥ minlen→ a ∩ r ∈ T )

for step k. In addition,

∀r ∈ R′,∀r′ ∈ R′ :
(∣∣∣r ∩ r′

∣∣∣ ≥ minlen→ r ∩ r′ ∈ Ck

)

holds since A0 = R′.
Likewise, for any c ∈ Ck and r ∈ R′, c ∩ r is calculated in line

7 and added to Ak+1 and Ck+1 in line 8 and 9. Therefore,

∀I ⊆ {1, 2, . . . , n} :

⎛⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣
⋂

i∈I

ri

∣∣∣∣∣∣∣ ≥ minlen→
⋂

i∈I

ri ∈ Ck

⎞⎟⎟⎟⎟⎟⎠

Therefore, the given lemma holds. �
According to lemma A.1.1 and lemma A.1.2, C =

C (R,minlen). Therefore, the output of algorithm 1 is equal
to C (R,minlen) in Eq. (1).
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