Computing directed pathwidth in $\boldsymbol{O}\left(1.89^{\boldsymbol{n}}\right)$ time

Kenta Kitsunai ${ }^{1, a)}$ Yasuaki Kobayashi ${ }^{1, b)} \quad$ Keita $^{\text {a }} \operatorname{Komuro}^{1, c}{ }^{1, c} \quad$ Hisao Tamaki ${ }^{1, d)}$ Toshifiro Tano ${ }^{1, \mathrm{e})}$

Abstract

We give an algorithm for computing the directed pathwidth of a digraph with n vertices in $O\left(1.89^{n}\right)$ time. This is the first algorithm with running time better than the straightforward $O^{*}\left(2^{n}\right)$. As a special case, it computes the pathwidth of an undirected graph in the same amount of time, improving on the algorithm due to Suchan and Villanger which runs in $O\left(1.9657^{n}\right)$ time.

Keywords: Directed pathwidth, Exact exponential algorithm, Graph algorithm, Pathwidth

1. Introduction

The pathwidth [2], [16] of an undirected graph G is defined as follows. A path-decomposition G is a sequence $\left\{X_{i}\right\}, 1 \leq i \leq t$, of vertex sets of G that satisfies the following three conditions:
(1) $\bigcup_{1 \leq i \leq t} X_{i}=V(G)$,
(2) for each edge $\{u, v\}$ of G, there is some $i, 1 \leq i \leq t$ such that $u, v \in X_{i}$, and
(3) for each $v \in V(G)$, the set of indices i such that $v \in X_{i}$ is contiguous, i.e., is of the form $\{i \mid a \leq i \leq b\}$.
The width of a path-decomposition $\left\{X_{i}\right\}, 1 \leq i \leq t$, is $\max _{1 \leq i \leq t}\left|X_{i}\right|-1$ and the pathwidth of G is the smallest integer k such that there is a path-decomposition of G whose width is k.

The directed path-decomposition of a digraph G is defined analogously. A sequence $\left\{X_{i}\right\}, 1 \leq i \leq t$, of vertex sets is a directed path-decomposition of G if, together with conditions 1 and 3 above, the following condition 2^{\prime} instead of condition 2 is satisfied:
2'. for each directed edge (u, v) of G, there is a pair i, j of indices such that $i \leq j, u \in X_{i}$, and $v \in X_{j}$.
The directed pathwidth of G is defined similarly to the pathwidth of an undirected graph. According to Barát [1], the notion of directed pathwidth was introduced by Reed, Thomas, and Seymour around 1995.

For an undirected graph G, let \hat{G} denote the digraph obtained from G by replacing each edge $\{u, v\}$ by a pair of directed edges (u, v) and (v, u). Then, condition 2 for G implies condition 2^{\prime} for \hat{G} and, conversely, condition 2^{\prime} for \hat{G} together with condition 3 im plies condition 2 for G. Therefore, a directed path-decomposition of \hat{G} is a path-decomposition of G and vice versa. Thus, the problem of computing the pathwidth of an undirected graph is a special case of the problem of computing the directed pathwidth of a

[^0]digraph. On the other hand, directed pathwidth is of interest since some problems, such as Directed Hamiltonicity, are polynomial time solvable on digraphs with bounded directed pathwidth [10] although not necessarily on those whose underlying graphs have bounded pathwidth. Directed pathwidth is also studied in the context of search games [1], [21].

Computing pathwidth is NP-hard [11] even for bounded degree planar graphs [15], chordal graphs [8], cocomparability graphs [9] and bipartite distance hereditary graphs [13] (although it is polynomial time solvable for permutation graphs [5], cographs [6], and circular-arc graphs [18]). Consequently, computing directed pathwidth is NP-hard even for digraphs whose underlying graphs lie in these classes. On the positive side, pathwidth is fixed parameter tractable [17] with running time linear in n [3]. In contrast, it is open whether directed pathwidth is fixed parameter tractable. Recent work of one of the present authors [20] shows that directed pathwidth admits an XP algorithm, that is, an algorithm with running time $n^{O(k)}$, where k is the directed pathwidth of the given digraph with n vertices.

Without parameterization, both problems can be solved in $O^{*}\left(2^{n}\right)$ time, where n is the number of vertices and the O^{*} notation hides polynomial factors, using Bellman-Held-Karp style dynamic programming for vertex ordering problems [4]. Suchan and Villanger [19] improved the running time for pathwidth to $O\left(1.9657^{n}\right)$ and also gave an additive constant approximation of pathwidth in $O\left(1.89^{n}\right)$ time. On the other hand, no algorithm faster than $O^{*}\left(2^{n}\right)$ time was known for directed pathwidth before the present work.

Our result is as follows.
Theorem 1.1. The direct pathwidth of a digraph with n vertices can be computed in $O\left(1.89^{n}\right)$ time.

Our algorithm can be viewed as one based on Bellman-HeldKarp style dynamic programming. For each $U \subseteq V(G)$, let $N^{-}(U)$ denote the set of in-neighbors of U. Given a positive integer k and a digraph G, we build the collection of "feasible" subsets of $V(G)$, where $U \subseteq V(G)$ is considered feasible if $G\left[U \cup N^{-}(U)\right]$ has a
directed path-decomposition of width $\leq k$ whose last subset X_{t} contains $N^{-}(U)$ (for a more precise definition of feasibility see Section 2). To get a non-trivial bound on the number of subsets U, we adopt a strategy essentially due to Suchan and Villanger [19]. Since either $U, N^{-}(U)$, or $V(G) \backslash\left(U \cup N^{-}(U)\right)$ has cardinality at most $n / 3$, the hope is that we may be able to obtain a nontrivial upper bound on the number of relevant subsets U using the well-known bound $2^{H(\alpha) n}$ on the number of subsets of $V(G)$ with cardinality at most αn, where $H(x)$ is the binary entropy function, with $\alpha=\frac{1}{3}$. Note that $2^{H(1 / 3)}<1.89$. The difficulty, as observed in [19], is that there can be an exponential number of subsets U with $N^{-}(U)=S$ for a fixed S. The larger constant 1.9657 or the relaxation to additive constant approximation in [19] comes from the need to deal with this problem.

A key to overcoming this difficulty is the following observation whose undirected version is used in [19]. Suppose we are to decide whether the directed pathwidth of G is at most k and S is a vertex set of G with $|S|<k-d$. Let C be the set of strongly connected components of $G[V(G) \backslash S]$ with cardinality greater than d. For each subset \mathcal{A} of C, we are able to define at most one subset U in a "canonical form" such that $N^{-}(U)=S, U$ contains all components in \mathcal{A}, but disjoint from all components in $C \backslash \mathcal{A}$. Although there are variants of U that satisfy these conditions, it can be shown that only the canonical one is needed in our dynamic programming computation. Thus, the number of relevant subsets U with $N^{-}(U)=S$ is bounded by $2^{|C|} \leq 2^{\frac{n}{d+1}}$. See Lemma 2.5 for a more formal treatment.
Our result is established by two algorithms, which we call LARGE-WIDTH and SMALL-WIDTH. Algorithm LARGEWIDTH deals with the case where $k \geq\left(\frac{1}{3}+\delta\right) n, \delta$ being a small constant, while algorithm SMALL-WIDTH deals with the other case. In algorithm LARGE-WIDTH, the slack of δn allows us to bound the number of subsets U with $N^{-}(U)=S$ for each S with $|S| \leq n / 3$ by $2^{1 / \delta}$. In algorithm SMALL-WIDTH, we force a slack of d where d is a large enough constant: we record only those feasible sets U with $\left|N^{-}(U)\right|<k-d$. To process those subsets U with $\left|N^{-}(U)\right| \geq k-d$, we use an algorithm based on the XP algorithm in [20], which runs in $n^{d+(1)}$ time and either decides that the directed pathwidth of G is at most k, decides that U is irrelevant, or produces some proper superset W with $\left|N^{-}(W)\right|<k-d$, which can safely replace U in the search. See Lemma 5.1 for details.

The proofs are omitted in this version and can be found in [14].
The rest of this paper is organized as follows. In Section 2 we define basic concepts and prove some lemmas needed by our algorithms. In Section 3, we state and analyze algorithm LARGEWIDTH. In Section 4, we review the XP algorithm given in [20] to prepare for the next section. Then, in Section 5, we state and analyze algorithm SMALL-WIDTH. Finally, in Section 6, we combine the two algorithms to prove Theorem 1.1.

2. Preliminaries

Let G be a digraph. We use the standard notation: $V(G)$ is the set of vertices of $G, E(G)$ is the set of edges of G, and $G[U]$, where $U \subseteq V(G)$, is the subgraph of G induced by U. For each vertex $v \in V(G)$, we denote by $N_{G}^{-}(v)$ the set of in-neighbor of
v, i.e., $N_{G}^{-}(v)=\{u \in V(G) \backslash\{v\} \mid(u, v) \in E(G)\}$. For each subset U of $V(G)$, we denote by $N_{G}^{-}(U)$ the set of in-neighbors of U, i.e., $N_{G}^{-}(U)=\bigcup_{v \in U} N_{G}^{-}(v) \backslash U$. When G is clear from the context, we drop G from this notation. We also use the notation $\tilde{U}=V(G) \backslash\left(U \cup N^{-}(U)\right)$ where G is implicit.

We call a sequence σ of vertices of G non-duplicating if each vertex of G occurs at most once in σ. We denote by $\Sigma(G)$ the set of all non-duplicating sequences of vertices of G. For each sequence $\sigma \in \Sigma(G)$, we denote by $V(\sigma)$ the set of vertices constituting σ and by $|\sigma|=|V(\sigma)|$ the length of σ.

For each pair of sequences $\sigma, \tau \in \Sigma(G)$ such that $V(\sigma) \cap V(\tau)=$ \emptyset, we denote by $\sigma \tau$ the sequence in $\Sigma(G)$ that is σ followed by τ. If $\sigma^{\prime}=\sigma \tau$ for some τ, then we say that σ is a prefix of σ^{\prime} and that σ^{\prime} is an extension of σ; we say that σ is a proper prefix of σ^{\prime} and that σ^{\prime} is a proper extension of σ if τ is nonempty.

Let G be a digraph and k a positive integer. We say $\sigma \in \Sigma(G)$ is k-feasible for G if $\left|N_{G}^{-}\left(\sigma^{\prime}\right)\right| \leq k$ for every prefix σ^{\prime} of σ. We say that σ is strongly k-feasible for G if moreover σ is a prefix of a k-feasible sequence τ with $V(\tau)=V(G)$. We may drop the reference to G and say σ is k-feasible (or strongly k-feasible) when G is clear from the context.

For each $U \subseteq V(G)$, we say that U is k-feasible (strongly k feasible) if there is a k-feasible (strongly k-feasible) sequence σ with $V(\sigma)=U$.

The directed vertex separation number of digraph G, denoted by $\operatorname{dvsn}(G)$, is the minimum integer k such that $V(G)$ is k-feasible.

It is known that the directed pathwidth of G equals $\operatorname{dvsn}(G)$ for every digraph G [21](see also [12] for the undirected case). Based on this fact, we work on the directed vertex separation number in the remaining of this paper.

The following lemma formulates a straightforward reasoning used twice in the sequel.
Lemma 2.1. Let $U \subseteq V(G)$, let $X \subseteq V(G) \backslash U$ be such that $N^{-}(X) \subseteq U \cup N^{-}(U)$, and let $W=U \cup X$. Suppose that W is k-feasible and U is strongly k-feasible. Then, W is also strongly k-feasible.

We call $U \subseteq V(G)$ a full set (with respect to G), if there is no $v \in N^{-}(U)$ with $N^{-}(v) \subseteq U \cup N^{-}(U)$. For each U, there is a unique superset of U that is a full set, which we denote by fullset (U). Indeed, fullset (U) is defined by

$$
\text { fullset }(U)=U \cup\left\{v \in N^{-}(U) \mid N^{-}(v) \subseteq U \cup N^{-}(U)\right\}
$$

Note that $N^{-}($fullset $(U)) \subseteq N^{-}(U)$.
Lemma 2.2. Let U be an arbitrary subset of $V(G)$. If U is k feasible then so is fullset (U). Moreover, if U is strongly k-feasible then so is fullset (U).

Let $U \subseteq V(G), H=G\left[V(G) \backslash N^{-}(U)\right]$. Observe that, for each strongly connected component C of H, either $C \subseteq U$ or $C \subseteq \tilde{U}$, as otherwise $N^{-}(U)$ would contain a vertex in C.

An undirected counterpart of the following lemma is called the component push rule in [19].

Lemma 2.3. Let U and H be as above and let C be a strongly connected component of H such that $C \subseteq \tilde{U}, N^{-}(C) \subseteq U \cup N^{-}(U)$, and $\left|N^{-}(U)\right|+|C| \leq k+1$. If U is k-feasible then $U \cup C$ is
k-feasible. Moreover, if U is strongly k-feasible then $U \cup C$ is strongly k-feasible.
For each digraph H let $C(H)$ denote the set of all strongly connected components of H. Consider the natural partial ordering < on $C(H)$: $C<D$ if and only if H contains a directed path from a vertex in C to a vertex in D. For each $U \subseteq V(G)$ with $\left|N^{-}(U)\right| \leq k$, we denote by $\operatorname{push}_{k}(U)$ the superset of U defined as follows. Let $H=G\left[V(G) \backslash N^{-}(U)\right], s=k-\left|N^{-}(U)\right|+1$, and define

$$
\mathcal{P}=\{C \in C(H)|C \subseteq \tilde{U},|C| \leq s, \text { and there is no } D \in C(H)
$$

$$
\text { with } D \subseteq \tilde{U},|D|>s, \text { and } D<C\} \text {. }
$$

Then, we let $\operatorname{push}_{k}(U)=U \cup \bigcup_{C \in \mathcal{P}} C$.
By a repeated application of Lemma 2.3, we obtain the following lemma
Lemma 2.4. Let $U \subseteq V(G)$. If U is k-feasible then so is $\operatorname{push}_{k}(U)$. Moreover, if U is strongly k-feasible then so is $\operatorname{push}_{k}(U)$.

Following [19] we use component push rules not only as an algorithmic technique but also as a tool for analysis. The following lemma formalizes this latter aspect.
Lemma 2.5. Let $S \subseteq V(G)$ with $|S| \leq k$. Then, the number of vertex sets $U \subseteq V(G)$ with $N^{-}(U)=S$ and $\operatorname{push}_{k}(U)=U$ is at most $2^{\frac{n}{s+1}}$ where $s=k-|S|+1$.

Let $H(x)=-x \log x-(1-x) \log (1-x), 0<x<1$, denote the binary entropy function. We freely use the following well-known bound on the number of subsets of bounded cardinality.
Proposition 2.1. (see [7], for example) Let S be a set of n elements and let $0<\alpha \leq \frac{1}{2}$. Then the number of subsets of S with cardinality at most αn is at most $2^{H(\alpha) n}$.

3. Algorithm LARGE-WIDTH

Given an integer $k>0$ and a digraph G with n vertices, Algorithm LARGE-WIDTH decides whether $\operatorname{dvsn}(G) \leq k$ in the following steps.

The algorithm uses function f^{*} defined as follows. Define $f: 2^{V(G)} \rightarrow 2^{V(G)}$ by $f(U)=$ fullset $\left(\operatorname{push}_{k}(U)\right)$. Since $U \subseteq f(U)$, there is some h for each U such that $f^{h}(U)=f^{h+1}(U)$. We denote this $f^{h}(U)$ by $f^{*}(U)$. Note that if $W=f^{*}(U)$ for some U then $W=$ fullset $(W)=\operatorname{push}_{k}(W)$.
(1) Set $\mathcal{U}_{1}:=\left\{\{v\}\left|v \in V(G),\left|N^{-}(v)\right| \leq k\right\}\right.$ and $\mathcal{U}_{i}:=\emptyset$ for $2 \leq i \leq n$.
(2) Repeat the following for $i=1,2, \ldots, n-1$.
(a) For each $U \in \mathcal{U}_{i}$ and for each $v \in V(G) \backslash U$ with $\left|N^{-}(U \cup\{v\})\right| \leq k$, let $W=f^{*}(U \cup\{v\})$ and reset $\mathcal{U}_{j}:=\mathcal{U}_{j} \cup\{W\}$ where $j=|W|$.
(3) If \mathcal{U}_{n} is not empty then answer "YES"; otherwise answer "NO".

Lemma 3.1. Algorithm LARGE-WIDTH is correct.

We analyze the complexity of this algorithm for particular values of k for which this algorithm is intended.
Lemma 3.2. Let $\delta>0$ be fixed. For $k>\left(\frac{1}{3}+\delta\right) n$, algorithm LARGE-WIDTH runs in $O^{*}\left(2^{H\left(\frac{1}{3}\right) n}\right)$ time.

4. XP algorithm

We review the XP algorithm for directed pathwidth due to Tamaki [20] which is an essential ingredient in algorithm SMALL-WIDTH.

Theorem 4.1. [20] Given a positive integer k and a digraph G with n vertices and m edges, it can be decided in $O\left(m n^{k+1}\right)$ time whether $V(G)$ is k-feasible.

The algorithm claimed in this theorem is based on the natural search tree consisting of all k-feasible sequences in $\Sigma(G)$. The running time is achieved by pruning this search tree of potentially factorial size into one with $O\left(n^{k+1}\right)$ search nodes. The following lemma is used to enable this pruning. We say that a proper extension τ of $\sigma \in \Sigma(G)$ is non-expanding if $\left|N^{-}(\tau)\right| \leq\left|N^{-}(\sigma)\right|$.

Lemma 4.1. (Commitment Lemma [20]) Let σ be a strongly k feasible sequence in $\Sigma(G)$ and let τ be a shortest non-expanding k-feasible extension of σ, that is,
(1) $\left|N^{-}(V(\tau))\right| \leq\left|N^{-}(V(\sigma))\right|$, and
(2) $\left|N^{-}\left(V\left(\tau^{\prime}\right)\right)\right|>\left|N^{-}(V(\sigma))\right|$ for every k-feasible proper extension τ^{\prime} of σ with $\left|\tau^{\prime}\right|<|\tau|$.
Then, τ is strongly k-feasible.
Suppose sequence σ is in the search tree and has a nonexpanding k-feasible extension τ. Then the commitment lemma allows σ to "commit to" this descendant τ : we may remove from the search tree all the descendants of σ with length $|\tau|$ but τ. It is shown in [20] that the resulting search tree contains $O\left(n^{k+1}\right)$ sequences.
To adapt this result for our purposes, we need some details of the pruned search tree. Let σ and τ be two k-feasible sequences of the same length. We say that σ is preferable to τ if either $\left|N^{-}(V(\sigma))\right|<\left|N^{-}(V(\tau))\right|$ or $\left|N^{-}(V(\sigma))\right|=\left|N^{-}(V(\tau))\right|$ and $\sigma<\tau$ in the lexicographic ordering on $\Sigma(G)$ based on some fixed total order on $V(G)$. We say σ suppresses τ, if σ is preferable to τ and there is some common prefix σ^{\prime} of σ and τ such that σ is a shortest non-expanding k-feasible extension of σ^{\prime}.

Let $S_{i}, 1 \leq i \leq n$, denote a set of k-feasible sequence with length i defined inductively as follows. Each member of S_{i} will represent a node in our search tree at level i.
(1) $S_{1}=\left\{v| | N^{-}(v) \mid \leq k\right\}$.
(2) For $1 \leq i<n$, let $T_{i+1}=\left\{\sigma v \mid \sigma \in S_{i}, v \in V(G) \backslash\right.$ $V(\sigma)$, and $\left.\left|N^{-}(V(\sigma) \cup\{v\})\right| \leq k\right\}$. We let S_{i+1} be the set of elements of T_{i+1} not suppressed by any elements of T_{i+1}.
To analyze the size of each set S_{i}, [20] assigns a sequence $\operatorname{sgn}(\sigma)$, called the signature of σ, to each k-feasible sequence σ as follows.
Call a non-expanding k-feasible extension τ of σ locally shortest, if no proper prefix of τ is a non-expanding extension of σ. We define $\operatorname{sgn}(\sigma)$ inductively as follows.
(1) If σ is empty then $\operatorname{sgn}(\sigma)$ is empty.
(2) If σ is nonempty and is a locally shortest non-expanding extension of some prefix of σ, then $\operatorname{sgn}(\sigma)=\operatorname{sgn}(\tau)$, where τ is the shortest prefix of σ with the property that σ is a locally shortest non-expanding k-feasible extension of τ.
(3) Otherwise $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{\prime}\right) v$, where v is the last vertex of σ
and $\sigma=\sigma^{\prime} v$.
Lemma 4.2. [20] For each $i, 1 \leq i \leq n$, if σ and τ are two distinct elements of S_{i} then neither $\operatorname{sgn}(\sigma)$ nor $\operatorname{sgn}(\tau)$ is the prefix of the other.

The following properties of the pruned search tree follow from this lemma.

Lemma 4.3. Suppose $\sigma \in S_{|\sigma|}$ is a non-expanding extension of a singleton sequence v. Then, σ is the only extension of v in $S_{|\sigma|}$.

Lemma 4.4. Let $1 \leq j \leq n$ and let h be the minimum value of $\left|N^{-}(V(\sigma))\right|$ over all sequences σ in $\bigcup_{1 \leq i \leq j} S_{i}$. Then, we have $\left|S_{i}\right| \leq n^{k-h}$ for $1 \leq i \leq j$.

5. Algorithm SMALL-WIDTH

Fix $\epsilon>0$ and fix an integer $d>1 / \epsilon$. The following description of our algorithm depends on d. We assume k, an input to the algorithm, satisfies $k>d$; otherwise the algorithm in Theorem 4.1 runs in $n^{O(1)}$ time.

Our strategy is to record only those sets U with $\left|N^{-}(U)\right|<k-d$ and $U=\operatorname{push}_{k}(U)$ in our computation. For each S with $|S|<$ $k-d$, by Lemma 2.5, the number of U such that $N^{-}(U)=S$ and $U=\operatorname{push}_{k}(U)$ is at most $2^{\epsilon n}$.
To process U with $\left|N^{-}(U)\right| \geq k-d$, we use the XP algorithm in [20]. The following lemma is at the heart of our algorithm.

Lemma 5.1. There is an algorithm that, given a k-feasible vertex set $U \subseteq V(G)$ with $k-d \leq\left|N^{-}(U)\right| \leq k$, runs in $n^{d+O(1)}$ time and either
(1) proves that U is strongly k-feasible,
(2) proves that U is not strongly k-feasible, or
(3) produces some proper superset W of U with $\left|N^{-}(W)\right|<k-d$ such that U is strongly k-feasible if and only if W is strongly k-feasible.

Algorithm SMALL-WIDTH, given G and k, decides if $\operatorname{dvsn}(G) \leq k$ in the following steps.
(1) Set $\mathcal{U}_{1}:=\left\{\{u\}\left|v \in V(G),\left|N^{-}(v)\right| \leq k\right\}\right.$ and $\mathcal{U}_{i}:=\emptyset$ for $2 \leq i \leq n$.
(2) Repeat the following for $i=1,2, \ldots n-1$.

For each $U \in \mathcal{U}_{i}$ and for each $v \in V(G) \backslash U$ with $\mid N^{-}(U \cup$ $\{v\}) \mid \leq k$, let $U^{\prime}=U \cup\{v\}$ and do the following.
(a) If $\left|N^{-}\left(U^{\prime}\right)\right|<k-d$ then let $W=\operatorname{push}_{k}\left(U^{\prime}\right)$ and reset $\mathcal{U}_{j}:=\mathcal{U}_{j} \cup\{W\}$, where $j=|W|$.
(b) If $\left|N^{-}\left(U^{\prime}\right)\right| \geq k-d$ then apply the algorithm of Lemma 5.1 to G and U^{\prime}.
(i) If U^{\prime} is found strongly k-feasible, then stop the entire algorithm answering "YES".
(ii) If U^{\prime} is found not strongly k-feasible, then do nothing.
(iii) If a proper superset W of U^{\prime} with $\left|N^{-}(W)\right|<k-d$ is returned, then reset $\mathcal{U}_{j}:=\mathcal{U}_{j} \cup\left\{\operatorname{push}_{k}(W)\right\}$, where $j=\left|\operatorname{push}_{k}(W)\right|$.
(3) If \mathcal{U}_{n} is nonempty then answer "YES"; otherwise answer "NO".

Lemma 5.2. Algorithm SMALL-WIDTH is correct.

Lemma 5.3. For $k \leq n / 2$, algorithm SMALL-WIDTH runs in $O\left(2^{(H(k / n)+\epsilon) n}\right)$ time.

6. Combining the two algorithms

Theorem 1.1 immediately follows from a combination of the two algorithms given in previous sections. Observe $2^{H(1 / 3)}<1.89$ and choose positive δ and ϵ so that $2^{H(1 / 3+\delta)+\epsilon}<1.89$. If $k>\left(\frac{1}{3}+\delta\right) n$, we apply algorithm LARGE-WIDTH; otherwise, we apply algorithm SMALL-WIDTH. From Lemmas 3.2 and 5.3, we see that the running time of the algorithm is $O\left(1.89^{n}\right)$ in both cases.

References

[1] J. Barát: Directed path-width and monotonicity in digraph searching, Graphs and Combinatorics 22(2):161-172, 2006.
[2] H. L. Bodlaender: A Tourist Guide Through Treewidth, Acta Cybernetica, Vol. 11, pp. 1-23, 1993.
[3] H. L. Bodlaender: A linear-time algorithm for finding treedecompositions of small treewidth, SIAM Journal on Computing, Vol. 25, pp. 1305-1317, 1996.
[4] H. L. Bodlaender, F. V. Fomin, D. Kratsch and D. Thilikos: A Note on Exact Algorithms for Vertex Ordering Problems on Graphs, Theory of Computing Systems, Vol. 50(3), pp. 420-432, 2012.
[5] H. L. Bodlaender, T. Kloks and D. Kratsch: Treewidth and pathwidth of permutation graphs, In @Proceedings of the 20nd International Colloquium on Automata, Languages and Programming, ICALP1993, pp. 114-125, 1993.
[6] H. L. Bodlaender and R. H. Möhring: The Pathwidth and Treewidth of Cographs, SIAM Journal on Discrete Mathematics, Vol. 6(2), pp. 181188, 1992.
[7] F. V. Fomin and D. Kratsch: Exact Exponential Algorithms, SpringetVerlag, 2010.
[8] J. Gusted: On the pathwidth of chordal graphs, Discrete Applied Mathematics, Vol. 45(3), pp. 233-248, 1993.
[9] M. Habib and R. H. Möhring: Treewidth of cocomparability graphs and a new order-theoretic parameter, Order, Vol. 11(1), pp. 44-60, 1994.
[10] T. Johnson, N. Robertson, P. D. Seymour and R. Thomas: Directed tree-width, Journal of Combinatorial Theory, Series B, Vol. 82(1), pp. 138-154, 2001.
[11] T. Kashiwabara and T. Fujisawa: NP-completeness of the problem of finding a minimum-clique-number interval graph containing a given graph as a subgraphm, In Proceedings of International Symposium on Circuits and Systems, pp. 657-660, 1979.
[12] G. N. Kinnersley: The vertex separation number of a graph equals its path-width, Information Processing Letters, 42(6), pp. 345-350, 1992.
[13] T. Kloks, H. L. Bodlaender, H. Müller and D. Kratsch: Computing treewidth and minimum fill-in: All you need are the minimal separators, In Proceedings of the 1st Annual European Symposium on Algorithms, pp. 260-271, 1993.
[14] K. Kitsunai, Y. Kobayashi, K. Komuro, H. Tamaki and T. Tano: Computing directed pathwidth in $O\left(1.89^{n}\right)$ time, In Proceedings of the 7th International Symposium on Parameterized and Exact Computation, to appear, 2012.
[15] B. Monien and I. H. Sudborough: Min cur is NP-complete for edge weighted trees, Theoretical Computer Science, Vol. 58(1-3), pp. 209229,1988.
[16] N. Robertson and P. D. Seymour: Graph minors. I. Excluding a forest, Journal of Combinatorial Theory, Series B, Vol. 35(1), pp. 39-61, 1983.
[17] N. Robertson and P. D. Seymour: Graph minors VIII The disjoint paths peoblem, Journal of Combinatorial Theory, Series B, Vol. 63, pp. 65110, 1995.
[18] K. Suchan and I. Todinca: Pathwidth of circular-arc graphs, In Proceedings of 33 rd International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 258-269, 2007.
[19] K. Suchan and Y. Villanger: Computing Pathwidth Faster Than 2^{n}, In Proceedings of the 4th International Workshop on Parameterized and Exact Computation, IWPEC2009, pp. 324-335, 2009.
[20] H. Tamaki: A Polynomial Time Algorithm for Bounded Directed Pathwidth, In Proceedings of the 37th International Workshop on Graph-Theoretic Concepts in Computer Science, WG2011, pp. 331342, 2011.
[21] B. Yang and Y. Cao: Digraph searching, directed vertex separation and directed pathwidth, Discrete Applied Mathematics, Vol. 156(10), pp. 1822-1837, 2008.

[^0]: Meiji University, Kawasaki, Japan 214-8571
 kitsunai@cs.meiji.ac.jp
 yasu0207@cs.meiji.ac.jp
 kouki-metal@cs.meiji.ac.jp
 tamaki@cs.meiji.ac.jp
 e) tano-0820@cs.meiji.ac.jp

