
IPSJ SIG Technical Report

Computing directed pathwidth in O(1.89n) time

Kenta Kitsunai1,a) Yasuaki Kobayashi1,b) Keita Komuro1,c) Hisao Tamaki1,d)

Toshihiro Tano1,e)

Abstract: We give an algorithm for computing the directed pathwidth of a digraph withn vertices inO(1.89n) time.
This is the first algorithm with running time better than the straightforwardO∗(2n). As a special case, it computes the
pathwidth of an undirected graph in the same amount of time, improving on the algorithm due to Suchan and Villanger
which runs inO(1.9657n) time.

Keywords: Directed pathwidth, Exact exponential algorithm, Graph algorithm, Pathwidth

1. Introduction

Thepathwidth[2], [16] of an undirected graphG is defined as
follows. A path-decomposition Gis a sequence{Xi}, 1 ≤ i ≤ t, of
vertex sets ofG that satisfies the following three conditions:
(1)
∪

1≤i≤t Xi = V(G),
(2) for each edge{u, v} of G, there is somei, 1 ≤ i ≤ t such that

u, v ∈ Xi , and
(3) for eachv ∈ V(G), the set of indicesi such thatv ∈ Xi is

contiguous, i.e., is of the form{i | a ≤ i ≤ b}.
The width of a path-decomposition{Xi}, 1 ≤ i ≤ t, is
max1≤i≤t |Xi | − 1 and thepathwidthof G is the smallest integer
k such that there is a path-decomposition ofG whose width isk.

The directed path-decompositionof a digraphG is defined
analogously. A sequence{Xi}, 1 ≤ i ≤ t, of vertex sets is a
directed path-decomposition ofG if, together with conditions 1
and 3 above, the following condition 2’ instead of condition 2 is
satisfied:
2’. for each directed edge (u, v) of G, there is a pairi, j of indices

such thati ≤ j, u ∈ Xi , andv ∈ X j .
The directed pathwidth ofG is defined similarly to the pathwidth
of an undirected graph. According to Barát [1], the notion of di-
rected pathwidth was introduced by Reed, Thomas, and Seymour
around 1995.

For an undirected graphG, let Ĝ denote the digraph obtained
from G by replacing each edge{u, v} by a pair of directed edges
(u, v) and (v,u). Then, condition 2 forG implies condition 2’ forĜ
and, conversely, condition 2’ for̂G together with condition 3 im-
plies condition 2 forG. Therefore, a directed path-decomposition
of Ĝ is a path-decomposition ofG and vice versa. Thus, the prob-
lem of computing the pathwidth of an undirected graph is a spe-
cial case of the problem of computing the directed pathwidth of a

1 Meiji University, Kawasaki, Japan 214-8571
a) kitsunai@cs.meiji.ac.jp
b) yasu0207@cs.meiji.ac.jp
c) kouki-metal@cs.meiji.ac.jp
d) tamaki@cs.meiji.ac.jp
e) tano-0820@cs.meiji.ac.jp

digraph. On the other hand, directed pathwidth is of interest since
some problems, such as Directed Hamiltonicity, are polynomial
time solvable on digraphs with bounded directed pathwidth [10]
although not necessarily on those whose underlying graphs have
bounded pathwidth. Directed pathwidth is also studied in the con-
text of search games [1], [21].

Computing pathwidth is NP-hard [11] even for bounded degree
planar graphs [15], chordal graphs [8], cocomparability graphs
[9] and bipartite distance hereditary graphs [13] (although it is
polynomial time solvable for permutation graphs [5], cographs
[6], and circular-arc graphs [18]). Consequently, computing di-
rected pathwidth is NP-hard even for digraphs whose underly-
ing graphs lie in these classes. On the positive side, pathwidth is
fixed parameter tractable [17] with running time linear inn [3]. In
contrast, it is open whether directed pathwidth is fixed parameter
tractable. Recent work of one of the present authors [20] shows
that directed pathwidth admits an XP algorithm, that is, an algo-
rithm with running timenO(k), wherek is the directed pathwidth
of the given digraph withn vertices.

Without parameterization, both problems can be solved in
O∗(2n) time, wheren is the number of vertices and theO∗ no-
tation hides polynomial factors, using Bellman-Held-Karp style
dynamic programming for vertex ordering problems [4]. Suchan
and Villanger [19] improved the running time for pathwidth to
O(1.9657n) and also gave an additive constant approximation of
pathwidth inO(1.89n) time. On the other hand, no algorithm
faster thanO∗(2n) time was known for directed pathwidth before
the present work.

Our result is as follows.

Theorem 1.1. The direct pathwidth of a digraph with n vertices

can be computed in O(1.89n) time.

Our algorithm can be viewed as one based on Bellman-Held-
Karp style dynamic programming. For eachU ⊆ V(G), let N−(U)
denote the set of in-neighbors ofU. Given a positive integerk and
a digraphG, we build the collection of “feasible” subsets ofV(G),
whereU ⊆ V(G) is considered feasible ifG[U ∪ N−(U)] has a

c⃝ 2012 Information Processing Society of Japan 1

Vol.2012-AL-141 No.2
2012/10/4

IPSJ SIG Technical Report

directed path-decomposition of width≤ k whose last subsetXt

containsN−(U) (for a more precise definition of feasibility see
Section 2). To get a non-trivial bound on the number of subsets
U, we adopt a strategy essentially due to Suchan and Villanger
[19]. Since eitherU, N−(U), or V(G) \ (U ∪N−(U)) has cardinal-
ity at mostn/3, the hope is that we may be able to obtain a non-
trivial upper bound on the number of relevant subsetsU using the
well-known bound 2H(α)n on the number of subsets ofV(G) with
cardinality at mostαn, whereH(x) is the binary entropy function,
with α = 1

3 . Note that 2H(1/3) < 1.89. The difficulty, as observed
in [19], is that there can be an exponential number of subsetsU

with N−(U) = S for a fixedS. The larger constant 1.9657 or the
relaxation to additive constant approximation in [19] comes from
the need to deal with this problem.

A key to overcoming this difficulty is the following observa-
tion whose undirected version is used in [19]. Suppose we are to
decide whether the directed pathwidth ofG is at mostk andS is
a vertex set ofG with |S| < k − d. Let C be the set of strongly
connected components ofG[V(G) \ S] with cardinality greater
thand. For each subsetA of C, we are able to define at most
one subsetU in a “canonical form” such thatN−(U) = S, U con-
tains all components inA, but disjoint from all components in
C \ A. Although there are variants ofU that satisfy these condi-
tions, it can be shown that only the canonical one is needed in our
dynamic programming computation. Thus, the number of rele-
vant subsetsU with N−(U) = S is bounded by 2|C| ≤ 2

n
d+1 . See

Lemma 2.5 for a more formal treatment.
Our result is established by two algorithms, which we call

LARGE-WIDTH and SMALL-WIDTH. Algorithm LARGE-
WIDTH deals with the case wherek ≥ (1

3 + δ)n, δ beinga small
constant, while algorithm SMALL-WIDTH deals with the other
case. In algorithm LARGE-WIDTH, the slack ofδn allows us
to bound the number of subsetsU with N−(U) = S for eachS

with |S| ≤ n/3 by 21/δ. In algorithm SMALL-WIDTH, we force
a slack ofd whered is a large enough constant: we record only
those feasible setsU with |N−(U)| < k− d. To process those sub-
setsU with |N−(U)| ≥ k−d, we use an algorithm based on the XP
algorithm in [20], which runs innd+(1) time and either decides that
the directed pathwidth ofG is at mostk, decides thatU is irrele-
vant, or produces some proper supersetW with |N−(W)| < k − d,
which can safely replaceU in the search. See Lemma 5.1 for
details.

The proofs are omitted in this version and can be found in [14].
The rest of this paper is organized as follows. In Section 2 we

define basic concepts and prove some lemmas needed by our al-
gorithms. In Section 3, we state and analyze algorithm LARGE-
WIDTH. In Section 4, we review the XP algorithm given in [20]
to prepare for the next section. Then, in Section 5, we state and
analyze algorithm SMALL-WIDTH. Finally, in Section 6, we
combine the two algorithms to prove Theorem 1.1.

2. Preliminaries

Let G be a digraph. We use the standard notation:V(G) is the
set of vertices ofG, E(G) is the set of edges ofG, andG[U],
whereU ⊆ V(G), is the subgraph ofG induced byU. For each
vertex v ∈ V(G), we denote byN−G(v) the set of in-neighbor of

v, i.e., N−G(v) = {u ∈ V(G) \ {v}|(u, v) ∈ E(G)}. For each sub-
setU of V(G), we denote byN−G(U) the set of in-neighbors of
U, i.e., N−G(U) =

∪
v∈U N−G(v) \ U. WhenG is clear from the

context, we dropG from this notation. We also use the notation
Ũ = V(G) \ (U ∪ N−(U)) whereG is implicit.

We call a sequenceσ of vertices ofG non-duplicatingif each
vertex ofG occurs at most once inσ. We denote byΣ(G) the
set of all non-duplicating sequences of vertices ofG. For each
sequenceσ ∈ Σ(G), we denote byV(σ) the set of vertices consti-
tutingσ and by|σ| = |V(σ)| the length ofσ.

For each pair of sequencesσ, τ ∈ Σ(G) such thatV(σ)∩V(τ) =
∅, we denote byστ the sequence inΣ(G) that isσ followed byτ.
If σ′ = στ for someτ, then we say thatσ is a prefix of σ′ and
thatσ′ is anextensionof σ; we say thatσ is aproperprefix ofσ′

and thatσ′ is aproperextension ofσ if τ is nonempty.
Let G be a digraph andk a positive integer. We sayσ ∈ Σ(G)

is k-feasiblefor G if |N−G(σ′)| ≤ k for every prefixσ′ of σ. We
say thatσ is strongly k-feasiblefor G if moreoverσ is a prefix of
a k-feasible sequenceτ with V(τ) = V(G). We may drop the ref-
erence toG and sayσ is k-feasible (or stronglyk-feasible) when
G is clear from the context.

For eachU ⊆ V(G), we say thatU is k-feasible (stronglyk-
feasible) if there is ak-feasible (stronglyk-feasible) sequenceσ
with V(σ) = U.

The directed vertex separation number of digraphG, denoted
by dvsn(G), is the minimum integerk such thatV(G) is k-feasible.

It is known that the directed pathwidth ofG equals dvsn(G) for
every digraphG [21](see also [12] for the undirected case). Based
on this fact, we work on the directed vertex separation number in
the remaining of this paper.

The following lemma formulates a straightforward reasoning
used twice in the sequel.

Lemma 2.1. Let U ⊆ V(G), let X ⊆ V(G) \ U be such that

N−(X) ⊆ U ∪ N−(U), and let W= U ∪ X. Suppose that W is

k-feasible and U is strongly k-feasible. Then, W is also strongly

k-feasible.

We callU ⊆ V(G) a full set (with respect toG), if there is no
v ∈ N−(U) with N−(v) ⊆ U∪N−(U). For eachU, there is a unique
superset ofU that is a full set, which we denote by fullset(U). In-
deed, fullset(U) is defined by

fullset(U) = U ∪ {v ∈ N−(U) | N−(v) ⊆ U ∪ N−(U)}.

Note thatN−(fullset(U)) ⊆ N−(U).

Lemma 2.2. Let U be an arbitrary subset of V(G). If U is k-

feasible then so isfullset(U). Moreover, if U is strongly k-feasible

then so isfullset(U).

Let U ⊆ V(G), H = G[V(G) \ N−(U)]. Observe that, for each
strongly connected componentC of H, eitherC ⊆ U or C ⊆ Ũ,
as otherwiseN−(U) would contain a vertex inC.

An undirected counterpart of the following lemma is called the
component push rulein [19].

Lemma 2.3. Let U and H be as above and let C be a strongly

connected component of H such that C⊆ Ũ, N−(C) ⊆ U∪N−(U),
and |N−(U)| + |C| ≤ k + 1. If U is k-feasible then U∪ C is

c⃝ 2012 Information Processing Society of Japan 2

Vol.2012-AL-141 No.2
2012/10/4

IPSJ SIG Technical Report

k-feasible. Moreover, if U is strongly k-feasible then U∪ C is

strongly k-feasible.

For each digraphH letC(H) denote the set of all strongly con-
nected components ofH. Consider the natural partial ordering≺
onC(H): C ≺ D if and only if H contains a directed path from a
vertex inC to a vertex inD. For eachU ⊆ V(G) with |N−(U)| ≤ k,
we denote by pushk(U) the superset ofU defined as follows. Let
H = G[V(G) \ N−(U)], s= k− |N−(U)| + 1, and define

P = {C ∈ C(H) | C ⊆ Ũ, |C| ≤ s,and there is noD ∈ C(H)

with D ⊆ Ũ, |D| > s, andD ≺ C}.

Then, we let pushk(U) = U ∪∪C∈PC.
By a repeated application of Lemma 2.3, we obtain the follow-

ing lemma

Lemma 2.4. Let U ⊆ V(G). If U is k-feasible then so is

pushk(U). Moreover, if U is strongly k-feasible then so is

pushk(U).

Following [19] we use component push rules not only as an al-
gorithmic technique but also as a tool for analysis. The following
lemma formalizes this latter aspect.

Lemma 2.5. Let S ⊆ V(G) with |S| ≤ k. Then, the number of

vertex sets U⊆ V(G) with N−(U) = S andpushk(U) = U is at

most2
n

s+1 wheres= k− |S| + 1.

Let H(x) = −x log x− (1− x) log(1− x), 0 < x < 1, denote the
binary entropy function. We freely use the following well-known
bound on the number of subsets of bounded cardinality.

Proposition 2.1. (see [7], for example)Let S be a set of n ele-

ments and let0 < α ≤ 1
2 . Thenthe number of subsets of S with

cardinality at mostαn is at most2H(α)n.

3. Algorithm LARGE-WIDTH

Given an integerk > 0 and a digraphG with n vertices, Al-
gorithm LARGE-WIDTH decides whether dvsn(G) ≤ k in the
following steps.

The algorithm uses functionf ∗ defined as follows. Define
f : 2V(G) → 2V(G) by f (U) = fullset(pushk(U)). SinceU ⊆ f (U),
there is someh for eachU such thatf h(U) = f h+1(U). We denote
this f h(U) by f ∗(U). Note that ifW = f ∗(U) for someU then
W = fullset(W) = pushk(W).
(1) SetU1 := {{v} | v ∈ V(G), |N−(v)| ≤ k} andUi := ∅ for

2 ≤ i ≤ n.
(2) Repeat the following fori = 1,2, . . . ,n− 1.

(a) For eachU ∈ Ui and for eachv ∈ V(G) \ U with
|N−(U ∪ {v})| ≤ k, let W = f ∗(U ∪ {v}) and reset
U j := U j ∪ {W} where j = |W|.

(3) If Un is not empty then answer “YES”; otherwise answer
“NO”.

Lemma 3.1. Algorithm LARGE-WIDTH is correct.

We analyze the complexity of this algorithm for particular val-
ues ofk for which this algorithm is intended.

Lemma 3.2. Let δ > 0 be fixed. For k> (1
3 + δ)n, algorithm

LARGE-WIDTHruns in O∗(2H(1
3)n) time.

4. XP algorithm

We review the XP algorithm for directed pathwidth due
to Tamaki [20] which is an essential ingredient in algorithm
SMALL-WIDTH.

Theorem 4.1. [20] Given a positive integer k and a digraph G

with n vertices and m edges, it can be decided in O(mnk+1) time

whether V(G) is k-feasible.

The algorithm claimed in this theorem is based on the natu-
ral search tree consisting of allk-feasible sequences inΣ(G). The
running time is achieved by pruning this search tree of potentially
factorial size into one withO(nk+1) search nodes. The following
lemma is used to enable this pruning. We say that a proper exten-
sionτ of σ ∈ Σ(G) is non-expandingif |N−(τ)| ≤ |N−(σ)|.

Lemma 4.1. (Commitment Lemma [20])Letσ be a strongly k-

feasible sequence inΣ(G) and letτ be a shortest non-expanding

k-feasible extension ofσ, that is,

(1) |N−(V(τ))| ≤ |N−(V(σ))|, and

(2) |N−(V(τ′))| > |N−(V(σ))| for every k-feasible proper exten-

sionτ′ ofσ with |τ′| < |τ|.
Then,τ is strongly k-feasible.

Suppose sequenceσ is in the search tree and has a non-
expandingk-feasible extensionτ. Then the commitment lemma
allowsσ to “commit to” this descendantτ: we may remove from
the search tree all the descendants ofσ with length |τ| but τ. It
is shown in [20] that the resulting search tree containsO(nk+1)
sequences.

To adapt this result for our purposes, we need some details of
the pruned search tree. Letσ andτ be twok-feasible sequences
of the same length. We say thatσ is preferable toτ if either
|N−(V(σ))| < |N−(V(τ))| or |N−(V(σ))| = |N−(V(τ))| andσ < τ
in the lexicographic ordering onΣ(G) based on some fixed total
order onV(G). We sayσ suppressesτ, if σ is preferable toτ
and there is some common prefixσ′ of σ andτ such thatσ is a
shortest non-expandingk-feasible extension ofσ′.

Let Si , 1 ≤ i ≤ n, denote a set ofk-feasible sequence with
length i defined inductively as follows. Each member ofSi will
represent a node in our search tree at leveli.
(1) S1 = {v | |N−(v)| ≤ k}.
(2) For 1 ≤ i < n, let Ti+1 = {σv | σ ∈ Si , v ∈ V(G) \

V(σ), and|N−(V(σ) ∪ {v})| ≤ k}. We let Si+1 be the set of
elements ofTi+1 not suppressed by any elements ofTi+1.

To analyze the size of each setSi , [20] assigns a sequence
sgn(σ), called thesignatureof σ, to eachk-feasible sequenceσ
as follows.

Call a non-expandingk-feasible extensionτ of σ locally short-

est, if no proper prefix ofτ is a non-expanding extension ofσ.
We define sgn(σ) inductively as follows.
(1) If σ is empty then sgn(σ) is empty.
(2) If σ is nonempty and is a locally shortest non-expanding ex-

tension of some prefix ofσ, then sgn(σ)= sgn(τ), whereτ
is the shortest prefix ofσwith the property thatσ is a locally
shortest non-expandingk-feasible extension ofτ.

(3) Otherwise sgn(σ) = sgn(σ′)v, wherev is the last vertex ofσ

c⃝ 2012 Information Processing Society of Japan 3

Vol.2012-AL-141 No.2
2012/10/4

IPSJ SIG Technical Report

andσ = σ′v.

Lemma 4.2. [20] For each i,1 ≤ i ≤ n, if σ andτ are two dis-

tinct elements of Si then neithersgn(σ) nor sgn(τ)is the prefix of

the other.

The following properties of the pruned search tree follow from
this lemma.

Lemma 4.3. Supposeσ ∈ S|σ| is a non-expanding extension of a

singleton sequencev. Then,σ is the only extension ofv in S|σ|.

Lemma 4.4. Let 1 ≤ j ≤ n and let h be the minimum value

of |N−(V(σ))| over all sequencesσ in
∪

1≤i≤ j Si . Then, we have

|Si | ≤ nk−h for 1 ≤ i ≤ j.

5. Algorithm SMALL-WIDTH

Fix ϵ > 0 and fix an integerd > 1/ϵ. The following description
of our algorithm depends ond. We assumek, an input to the al-
gorithm, satisfiesk > d; otherwise the algorithm in Theorem 4.1
runs innO(1) time.

Our strategy is to record only those setsU with |N−(U)| < k−d

andU = pushk(U) in our computation. For eachS with |S| <
k− d, by Lemma 2.5, the number ofU such thatN−(U) = S and
U = pushk(U) is at most 2ϵn.

To processU with |N−(U)| ≥ k − d, we use the XP algorithm
in [20]. The following lemma is at the heart of our algorithm.

Lemma 5.1. There is an algorithm that, given a k-feasible vertex

set U⊆ V(G) with k− d ≤ |N−(U)| ≤ k, runs in nd+O(1) time and

either

(1) proves that U is strongly k-feasible,

(2) proves that U is not strongly k-feasible, or

(3) produces some proper superset W of U with|N−(W)| < k−d

such that U is strongly k-feasible if and only if W is strongly

k-feasible.

Algorithm SMALL-WIDTH, given G and k, decides if
dvsn(G) ≤ k in the following steps.
(1) SetU1 := {{v} | v ∈ V(G), |N−(v)| ≤ k} andUi := ∅ for

2 ≤ i ≤ n.
(2) Repeat the following fori = 1,2, . . .n− 1.

For eachU ∈ Ui and for eachv ∈ V(G) \ U with |N−(U ∪
{v})| ≤ k, let U′ = U ∪ {v} and do the following.
(a) If |N−(U′)| < k − d then letW = pushk(U

′) and reset
U j := U j ∪ {W}, where j = |W|.

(b) If |N−(U′)| ≥ k − d then apply the algorithm of
Lemma 5.1 toG andU′.
(i) If U′ is found stronglyk-feasible, then stop the en-

tire algorithm answering “YES”.
(ii) If U′ is found not stronglyk-feasible, then do noth-

ing.
(iii) If a proper supersetW of U′ with |N−(W)| < k−d is

returned, then resetU j := U j ∪{pushk(W)}, where
j = |pushk(W)|.

(3) If Un is nonempty then answer “YES”; otherwise answer
“NO”.

Lemma 5.2. Algorithm SMALL-WIDTH is correct.

Lemma 5.3. For k ≤ n/2, algorithm SMALL-WIDTH runs in

O(2(H(k/n)+ϵ)n) time.

6. Combining the two algorithms

Theorem 1.1 immediately follows from a combination of the
two algorithms given in previous sections. Observe 2H(1/3) < 1.89
and choose positiveδ and ϵ so that 2H(1/3+δ)+ϵ < 1.89. If
k > (1

3 + δ)n, we apply algorithm LARGE-WIDTH; otherwise,
we apply algorithm SMALL-WIDTH. From Lemmas 3.2 and 5.3,
we see that the running time of the algorithm isO(1.89n) in both
cases.

References

[1] J. Baŕat: Directed path-width and monotonicity in digraph searching,
Graphs and Combinatorics 22(2):161–172, 2006.

[2] H. L. Bodlaender: A Tourist Guide Through Treewidth,Acta Cyber-
netica, Vol. 11, pp. 1–23, 1993.

[3] H. L. Bodlaender: A linear-time algorithm for finding tree-
decompositions of small treewidth,SIAM Journal on Computing,
Vol. 25, pp. 1305–1317, 1996.

[4] H. L. Bodlaender, F. V. Fomin, D. Kratsch and D. Thilikos: A Note on
Exact Algorithms for Vertex Ordering Problems on Graphs,Theory of
Computing Systems, Vol. 50(3), pp. 420–432, 2012.

[5] H. L. Bodlaender, T. Kloks and D. Kratsch: Treewidth and pathwidth
of permutation graphs, In@Proceedings of the 20nd International
Colloquium on Automata, Languages and Programming, ICALP1993,
pp. 114–125, 1993.

[6] H. L. Bodlaender and R. H. M̈ohring: The Pathwidth and Treewidth of
Cographs,SIAM Journal on Discrete Mathematics, Vol. 6(2), pp. 181–
188, 1992.

[7] F. V. Fomin and D. Kratsch: Exact Exponential Algorithms,Springet-
Verlag, 2010.

[8] J. Gusted: On the pathwidth of chordal graphs,Discrete Applied Math-
ematics, Vol. 45(3), pp. 233–248, 1993.

[9] M. Habib and R. H. M̈ohring: Treewidth of cocomparability graphs
and a new order-theoretic parameter,Order, Vol. 11(1), pp. 44-60,
1994.

[10] T. Johnson, N. Robertson, P. D. Seymour and R. Thomas: Directed
tree-width, Journal of Combinatorial Theory, Series B, Vol. 82(1),
pp. 138–154, 2001.

[11] T. Kashiwabara and T. Fujisawa: NP-completeness of the problem of
finding a minimum-clique-number interval graph containing a given
graph as a subgraphm, InProceedings of International Symposium on
Circuits and Systems, pp. 657–660, 1979.

[12] G. N. Kinnersley: The vertex separation number of a graph equals
its path-width,Information Processing Letters, 42(6), pp. 345–350,
1992.

[13] T. Kloks, H. L. Bodlaender, H. M̈uller and D. Kratsch: Computing
treewidth and minimum fill-in: All you need are the minimal separa-
tors, InProceedings of the 1st Annual European Symposium on Algo-
rithms, pp. 260–271, 1993.

[14] K. Kitsunai, Y. Kobayashi, K. Komuro, H. Tamaki and T. Tano: Com-
puting directed pathwidth inO(1.89n) time, InProceedings of the 7th
International Symposium on Parameterized and Exact Computation,
to appear, 2012.

[15] B. Monien and I. H. Sudborough: Min cur is NP-complete for edge
weighted trees,Theoretical Computer Science, Vol. 58(1–3), pp. 209–
229,1988.

[16] N. Robertson and P. D. Seymour: Graph minors. I. Excluding a for-
est,Journal of Combinatorial Theory, Series B, Vol. 35(1), pp. 39–61,
1983.

[17] N. Robertson and P. D. Seymour: Graph minors VIII The disjoint paths
peoblem,Journal of Combinatorial Theory, Series B, Vol. 63, pp. 65–
110, 1995.

[18] K. Suchan and I. Todinca: Pathwidth of circular-arc graphs, InPro-
ceedings of 33rd International Workshop on Graph-Theoretic Con-
cepts in Computer Science, pp. 258–269, 2007.

[19] K. Suchan and Y. Villanger: Computing Pathwidth Faster Than 2n, In
Proceedings of the 4th International Workshop on Parameterized and
Exact Computation, IWPEC2009, pp. 324–335, 2009.

[20] H. Tamaki: A Polynomial Time Algorithm for Bounded Directed
Pathwidth, InProceedings of the 37th International Workshop on
Graph-Theoretic Concepts in Computer Science, WG2011, pp. 331–
342, 2011.

c⃝ 2012 Information Processing Society of Japan 4

Vol.2012-AL-141 No.2
2012/10/4

IPSJ SIG Technical Report

[21] B. Yang and Y. Cao: Digraph searching, directed vertex separation
and directed pathwidth,Discrete Applied Mathematics, Vol. 156(10),
pp. 1822–1837, 2008.

c⃝ 2012 Information Processing Society of Japan 5

Vol.2012-AL-141 No.2
2012/10/4

