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Computing directed pathwidth in O(1.89") time

1,a) 1,b) 1,c) 1,d)

Kerra Komuro Hisao Tamaki

l,e)

YASUAKI KOBAYASHI
TosHIHIRO TANO

KenTA KITSUNAI

Abstract: We give an algorithm for computing the directed pathwidth of a digraph witartices inO(1.89") time.
This is the first algorithm with running time better than the straightforvér@"). As a special case, it computes the
pathwidth of an undirected graph in the same amount of time, improving on the algorithm due to Suchan and Villanger

which runs inO(1.9657") time.
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1. Introduction

The pathwidth[2], [16] of an undirected grapB is defined as
follows. A path-decomposition @& a sequencgX}, 1 <i <t, of
vertex sets o6 that satisfies the following three conditions:
(1) Ui Xi = V(G),

(2) for each edgéu, v} of G, there is somé 1 < i <t such that
u,v € X;, and

(3) for eachw € V(G), the set of indices such that € X; is
contiguous, i.e., is of the fori | a <i < b}.

The width of a path-decompositioXj}, 1 < i < t, is

max<i<t |Xi| — 1 and thepathwidthof G is the smallest integer

k such that there is a path-decompositiorsoivhose width isk.

The directed path-decompositioof a digraphG is defined
analogously. A sequende}, 1 < i < t, of vertex sets is a
directed path-decomposition &f if, together with conditions 1
and 3 above, the following condition 2’ instead of condition 2 is
satisfied:

2'. for each directed edge(v) of G, there is a pair, j of indices
such thaf < j, ue X;, andv € X;.

The directed pathwidth d& is defined similarly to the pathwidth

of an undirected graph. According to Baf1], the notion of di-

Directed pathwidth, Exact exponential algorithm, Graph algorithm, Pathwidth

digraph. On the other hand, directed pathwidth is of interest since
some problems, such as Directed Hamiltonicity, are polynomial
time solvable on digraphs with bounded directed pathwidth [10]
although not necessarily on those whose underlying graphs have
bounded pathwidth. Directed pathwidth is also studied in the con-
text of search games [1], [21].

Computing pathwidth is NP-hard [11] even for bounded degree
planar graphs [15], chordal graphs [8], cocomparability graphs
[9] and bipartite distance hereditary graphs [13] (although it is
polynomial time solvable for permutation graphs [5], cographs
[6], and circular-arc graphs [18]). Consequently, computing di-
rected pathwidth is NP-hard even for digraphs whose underly-
ing graphs lie in these classes. On the positive side, pathwidth is
fixed parameter tractable [17] with running time lineanif3]. In
contrast, it is open whether directed pathwidth is fixed parameter
tractable. Recent work of one of the present authors [20] shows
that directed pathwidth admits an XP algorithm, that is, an algo-
rithm with running timen®®, wherek is the directed pathwidth
of the given digraph with vertices.

Without parameterization, both problems can be solved in
O*(2") time, wheren is the number of vertices and ti@& no-
tation hides polynomial factors, using Bellman-Held-Karp style

rected pathwidth was introduced by Reed, Thomas, and Seymoudynamic programming for vertex ordering problems [4]. Suchan

around 1995.

For an undirected grapB, let G denote the digraph obtained
from G by replacing each edde, v} by a pair of directed edges
(u,v) and ¢, u). Then, condition 2 fo implies condition 2’ forG
and, conversely, condition 2’ f@ together with condition 3 im-
plies condition 2 folG. Therefore, a directed path-decomposition
of G is a path-decomposition & and vice versa. Thus, the prob-

lem of computing the pathwidth of an undirected graph is a spe-
cial case of the problem of computing the directed pathwidth of a
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and Villanger [19] improved the running time for pathwidth to
0(1.9657) and also gave an additive constant approximation of
pathwidth inO(1.89") time. On the other hand, no algorithm
faster tharO*(2") time was known for directed pathwidth before
the present work.

Our result is as follows.

Theorem 1.1. The direct pathwidth of a digraph with n vertices
can be computed in .89") time.

Our algorithm can be viewed as one based on Bellman-Held-
Karp style dynamic programming. For eddhc V(G), letN~(U)
denote the set of in-neighborsdf Given a positive integdcand
a digraphG, we build the collection of “feasible” subsets\8(G),
whereU ¢ V(G) is considered feasible (5{U U N~(U)] has a
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directed path-decomposition of width k whose last subsex;
containsN~(U) (for a more precise definition of feasibility see

Vol.2012-AL-141 No.2
2012/10/4

v, i.e.,, Ng(v) = {u € V(G) \ {v}|(u,v) € E(G)}. For each sub-
setU of V(G), we denote byN;(U) the set of in-neighbors of

Section 2). To get a non-trivial bound on the number of subsetsU, i.e., Ng(U) = U,y Ng(v) \ U. WhenG is clear from the
U, we adopt a strategy essentially due to Suchan and Villangercontext, we drofs from this notation. We also use the notation

[19]. Since eithelJ, N~(U), or V(G) \ (U U N~(U)) has cardinal-
ity at mostn/3, the hope is that we may be able to obtain a non-
trivial upper bound on the number of relevant subgktssing the
well-known bound 2@n on the number of subsets W{G) with
cardinality at mostn, whereH(x) is the binary entropy function,
with @ = £. Note that /3 < 1.89. The dfficulty, as observed
in [19], is that there can be an exponential number of suligets
with N~(U) = S for a fixedS. The larger constant 1.9657 or the
relaxation to additive constant approximation in [19] comes from
the need to deal with this problem.

A key to overcoming this diiculty is the following observa-

U = V(G) \ (U U N-(U)) whereG is implicit.

We call a sequence of vertices ofG non-duplicatingf each
vertex of G occurs at most once ior. We denote by(G) the
set of all non-duplicating sequences of verticessof For each
sequence € X(G), we denote by(o) the set of vertices consti-
tuting o and bylo| = [V(o)| the length ofr.

For each pair of sequencesr € £(G) such thav (o) NV(z) =
0, we denote byrr the sequence iB(G) that iso followed byr.
If o’ = ot for somer, then we say that is aprefixof o’ and
thato”’ is anextensiorof o-; we say that- is aproperprefix of o’
and thato”’ is aproperextension otr if Tis nonempty.

tion whose undirected version is used in [19]. Suppose we are to Let G be a digraph and# a positive integer. We say € X(G)

decide whether the directed pathwidth®ifs at mostk andS is

a vertex set of5 with |S| < k- d. LetC be the set of strongly
connected components GV(G) \ S] with cardinality greater
thand. For each subsefl of C, we are able to define at most
one subsel in a “canonical form” such tha¥i=(U) = S, U con-
tains all components itA, but disjoint from all components in
C \ A. Although there are variants &f that satisfy these condi-

is k-feasiblefor G if [N5(o”)| < k for every prefixo”’ of o. We
say thatr is strongly k-feasibldor G if moreovero is a prefix of
ak-feasible sequencewith V(r) = V(G). We may drop the ref-
erence tdG and sayr is k-feasible (or stronglk-feasible) when
G is clear from the context.

For eachU ¢ V(G), we say thau is k-feasible (stronglyk-
feasible) if there is &-feasible (stronghk-feasible) sequence

tions, it can be shown that only the canonical one is needed in ourwith V(o) = U.

dynamic programming computation. Thus, the number of rele-
vant subset§) with N-(U) = S is bounded by 9! < 2@1. See
Lemma 2.5 for a more formal treatment.

Our result is established by two algorithms, which we call
LARGE-WIDTH and SMALL-WIDTH. Algorithm LARGE-
WIDTH deals with the case wheke> (% +6)n, 6 beinga small
constant, while algorithm SMALL-WIDTH deals with the other
case. In algorithm LARGE-WIDTH, the slack éh allows us
to bound the number of subsdtiswith N~(U) = S for eachS
with |S| < n/3 by 2/%, In algorithm SMALL-WIDTH, we force
a slack ofd whered is a large enough constant: we record only
those feasible setg with [N~ (U)| < k—d. To process those sub-
setsU with [N~ (U)| > k—d, we use an algorithm based on the XP
algorithm in [20], which runs im™*®) time and either decides that
the directed pathwidth d& is at mostk, decides thaU is irrele-
vant, or produces some proper supek§awith [IN~(W)| < k-d,
which can safely replactl in the search. See Lemma 5.1 for
details.

The proofs are omitted in this version and can be found in [14].

The rest of this paper is organized as follows. In Section 2 we

The directed vertex separation number of digr&yhdenoted
by dvsn(3), is the minimum integek such thai/(G) is k-feasible.

It is known that the directed pathwidth Gfequals dvsr) for
every digraplG [21](see also [12] for the undirected case). Based
on this fact, we work on the directed vertex separation number in
the remaining of this paper.

The following lemma formulates a straightforward reasoning
used twice in the sequel.

Lemma 2.1. Let U € V(G), let X € V(G) \ U be such that
N=(X) € U UN~(U), and let W= U U X. Suppose that W is
k-feasible and U is strongly k-feasible. Then, W is also strongly
k-feasible.

We callU ¢ V(G) afull set(with respect td3), if there is no
v e N7(U) with N~(v) € UUN~(U). For eachJ, there is a unique
superset ol that is a full set, which we denote by fullsei. In-
deed, fullset() is defined by

fullsetU) = Uu{ve N"(U) |N"(v) U UN~(U)}.

Note thatN~(fullset(U)) € N~ (U).

define basic concepts and prove some lemmas needed by our ak-emma 2.2. Let U be an arbitrary subset of (@). If U is k-

gorithms. In Section 3, we state and analyze algorithm LARGE-
WIDTH. In Section 4, we review the XP algorithm given in [20]

feasible then so ullset(U). Moreover, if U is strongly k-feasible
then so idullset(V).

to prepare for the next section. Then, in Section 5, we state and

analyze algorithm SMALL-WIDTH. Finally, in Section 6, we
combine the two algorithms to prove Theorem 1.1.

2. Preliminaries

Let G be a digraph. We use the standard notatl(G) is the
set of vertices ofG, E(G) is the set of edges db, andG[U],
whereU ¢ V(G), is the subgraph o& induced byU. For each
vertexv € V(G), we denote byNg(v) the set of in-neighbor of

© 2012 Information Processing Society of Japan

LetU C V(G), H = G[V(G) \ N (U)]. Observe that, for each
strongly connected compone@tof H, eitherC ¢ U or C ¢ U,
as otherwiseN~(U) would contain a vertex i.

An undirected counterpart of the following lemma is called the
component push rulie [19].

Lemma 2.3. Let U and H be as above and let C be a strongly
connected component of H such that@, N~(C) € UUN~(U),
and IN~(U)| + |IC| < k+ 1. If U is k-feasible then W C is
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k-feasible. Moreover, if U is strongly k-feasible thenUC is
strongly k-feasible.

For each digrapl let C(H) denote the set of all strongly con-
nected components &f. Consider the natural partial orderirg
onC(H): C < D if and only if H contains a directed path from a
vertex inC to a vertex inD. For eactJ ¢ V(G) with IN~(U)| <k,
we denote by puskU) the superset df) defined as follows. Let
H = G[V(G) \ N~ (U)], s= k=N~ (U)| + 1, and define

P ={CeC(H) | CcU,[C| < s,and there is n® € C(H)
with D ¢ U, |D| > s, andD < C}.

Then, we let pusffU) = U U Jcep C.
By a repeated application of Lemma 2.3, we obtain the follow-
ing lemma

Lemma 2.4. Let U ¢ V(G). If U is k-feasible then so is
push(U).

Moreover, if U is strongly k-feasible then so is
push(U).

Following [19] we use component push rules not only as an al-
gorithmic technique but also as a tool for analysis. The following
lemma formalizes this latter aspect.

Lemma 2.5. Let S ¢ V(G) with |S| < k. Then, the number of
vertex sets UC V(G) with N"(U) = S andpush(U) = U is at
most2s1 wheres = k — |S| + 1.

Let H(x) = —xlogx— (1 - x)log(1- x), 0 < x < 1, denote the
binary entropy function. We freely use the following well-known
bound on the number of subsets of bounded cardinality.

Proposition 2.1. (see [7], for example)et S be a set of n ele-
ments and 1e0 < a < % Thenthe number of subsets of S with
cardinality at mostn is at mose"(@n,

3. Algorithm LARGE-WIDTH

Given an integek > 0 and a digrapl© with n vertices, Al-
gorithm LARGE-WIDTH decides whether dvsB) < k in the
following steps.

The algorithm uses functiori* defined as follows. Define
f: 2V - 2VO) py f(U) = fullset(push(U)). SinceU ¢ f(U),
there is somé for eachU such thatf"(U) = f™1(U). We denote
this f"(U) by f*(U). Note that ifw = f*(U) for someU then
W = fullset(W) = push(W).

(1) SetUy = {{v} | v € V(G),IN"(v)] < k} and¥Uf; := 0 for
2<isn.
(2) Repeat the following for=1,2,...,n- 1.
(a) For eachU e U; and for eachv € V(G) \ U with
INT(U U {o})] < k, letW = f*(U U {v}) and reset
U, = U; U{W} wherej = |W].
(3) If U, is not empty then answer “YES”; otherwise answer
“NO”.

Lemma 3.1. Algorithm LARGE-WIDTH is correct.

We analyze the complexity of this algorithm for particular val-
ues ofk for which this algorithm is intended.

Lemma 3.2. Let§ > 0 be fixed. For k> (% + 6)n, algorithm
LARGE-WIDTHruns in O'(2HG)") time.

© 2012 Information Processing Society of Japan
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4. XP algorithm

We review the XP algorithm for directed pathwidth due
to Tamaki [20] which is an essential ingredient in algorithm
SMALL-WIDTH.

Theorem 4.1. [20] Given a positive integer k and a digraph G
with n vertices and m edges, it can be decided (m@*?!) time
whether (G) is k-feasible.

The algorithm claimed in this theorem is based on the natu-
ral search tree consisting of &Hfeasible sequences ¥{G). The
running time is achieved by pruning this search tree of potentially
factorial size into one wittD(n“*!) search nodes. The following
lemma is used to enable this pruning. We say that a proper exten-
siont of o € E(G) is non-expandingf [N~ (7)| < [N~ (o).

Lemma 4.1. (Commitment Lemma [20]let o- be a strongly k-

feasible sequence B(G) and letr be a shortest non-expanding

k-feasible extension of, that is,

(1) INT(V@)I < IN“(V(o))I, and

(2) INT(V(7))l > IN~(V(0))| for every k-feasible proper exten-
siont’ of o with |[7| < [7].

Then,r is strongly k-feasible.

Suppose sequence is in the search tree and has a non-
expandingk-feasible extensiom. Then the commitment lemma
allowso to “commit to” this descendant we may remove from
the search tree all the descendantsrafith length|r| but 7. It
is shown in [20] that the resulting search tree contaixg<!)
sequences.

To adapt this result for our purposes, we need some details of
the pruned search tree. Letandr be twok-feasible sequences
of the same length. We say thatis preferable tor if either
INT(V(@)I < IN"(V(0))l or IN"(V(o))l = IN"(V(7))l ando < 7
in the lexicographic ordering oB(G) based on some fixed total
order onV(G). We sayo suppresses, if o is preferable tor
and there is some common prefix of o- andt such thatr is a
shortest non-expandirigfeasible extension af’.

LetS;, 1 < i < n, denote a set df-feasible sequence with
lengthi defined inductively as follows. Each memberSfwill
represent a node in our search tree at level
(1) Si={o|IN"(I <k}

(2) For 1 < i < n, letTi;1 {ov | o € Si,v € V(G) \
V(o),and|N~(V(0) U {v})] < k}. We letS;,1 be the set of
elements off;,; not suppressed by any elementsiof;.

To analyze the size of each s8t, [20] assigns a sequence
sgn(o), called thesignatureof o, to eachk-feasible sequence
as follows.

Call a non-expanding-feasible extension of o~ locally short-
est if no proper prefix ofr is a non-expanding extension of
We define sgnf) inductively as follows.

(1) If o is empty then sgmx) is empty.

(2) If ois nonempty and is a locally shortest non-expanding ex-
tension of some prefix af, then sgn(o)= sgn(r), wherer
is the shortest prefix af with the property that- is a locally
shortest non-expandirigfeasible extension af.

(3) Otherwise sgnf) = sgn(o*)v, wherev is the last vertex of-
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ando = o”'v.

Lemma 4.2. [20] For each i,1 < i < n, if o andt are two dis-
tinct elements of Shen neitheisgn(o) nor sgn(r)is the prefix of
the other.

The following properties of the pruned search tree follow from
this lemma.

Lemma 4.3. Supposer € S, is a non-expanding extension of a
singleton sequenae Theno is the only extension ofin Sy,.

Lemma 4.4. Let1l < j < n and let h be the minimum value

of IN"(V(0))| over all sequences in Jyj Si- Then, we have
ISi| < nkhforl<i<i.

5. Algorithm SMALL-WIDTH

Fix e > 0 and fix an integed > 1/e. The following description
of our algorithm depends ath We assumé, an input to the al-
gorithm, satisfie& > d; otherwise the algorithm in Theorem 4.1
runs inn°@ time.

Our strategy is to record only those sbtsvith [N~ (U)| < k—d
andU = push(U) in our computation. For eac8 with |[S| <
k —d, by Lemma 2.5, the number &f such thalN-(U) = S and
U = push(U) is at most 2".

To processJ with IN~(U)| > k — d, we use the XP algorithm
in [20]. The following lemma is at the heart of our algorithm.

Lemma 5.1. There is an algorithm that, given a k-feasible vertex

set U V(G) with k—d < [N~ (U)| < k, runs in #*°®) time and

either

(1) proves that U is strongly k-feasible,

(2) proves that U is not strongly k-feasible, or

(3) produces some proper superset W of U yNth(W)| < k—d
such that U is strongly k-feasible if and only if W is strongly
k-feasible.

Algorithm SMALL-WIDTH, given G and k, decides if
dvsn@) < kin the following steps.
(1) SetUy = {{v} | v € V(G),IN"(v)] < k} and¥f; := 0 for
2<i<n.
(2) Repeat the following for=1,2,...n—1.
For eachU € U; and for eachv € V(G) \ U with [IN~(U U
{v})] <k, letU’ = U U {0} and do the following.
(a) IfIN"(U")] < k- dthen letW = push(U’) and reset
U = U; U (W)}, wherej = |W].
(b) If IN"(U")| = k - d then apply the algorithm of
Lemma 5.1 taG andU’.
(i) If U’ isfound stronglk-feasible, then stop the en-
tire algorithm answering “YES”.
(i) If U’ is found not stronglk-feasible, then do noth-
ing.
(iii ) If a proper supersetV of U’ with [N~ (W)| < k—-dis
returned, then res@¥; := U; U {push (W)}, where
j = | push(W).
(3) If U, is nonempty then answer “YES”; otherwise answer
“NO”.

Lemma 5.2. Algorithm SMALL-WIDTH is correct.
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Lemma 5.3. For k < n/2, algorithm SMALL-WIDTH runs in
O(2Hk/M+an) time,

6. Combining the two algorithms

Theorem 1.1 immediately follows from a combination of the
two algorithms given in previous sections. Obseré/d) < 1.89
and choose positivé and e so that $(%/3+)+e « 189 If
k > (% + 6)n, we apply algorithm LARGE-WIDTH; otherwise,
we apply algorithm SMALL-WIDTH. From Lemmas 3.2 and 5.3,
we see that the running time of the algorithnOgL.89") in both
cases.
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