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Toward Automated Cache Partitioning for the K Computer
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Abstract: The processor architecture available on the K computer (SPARC64VIIIfx) features an hardware cache par-
titioning mechanism called sector cache. This facility enables software to split the memory cache in two independent
sectors and to select which one will receive a line when it is retrieved from memory. Such control over the cache by
an application enables significant performance optimization opportunities for memory intensive programs, that several
studies on software-controlled cache partitioning environments already demonstrated.
Most of these previous studies share the same implementation idea: the use of page coloring and an overriding of the
operating system virtual memory manager. However, the sector cache differs in several key points over these imple-
mentations, making the use of the existing analysis or optimization strategies impractical, while enabling new ones.
For example, while most studies overlooked the issue of phase changes in an application because of the prohibitive
cost of a repartitioning, the sector cache provides this feature without any costs, allowing multiple cache distribution
strategies to alternate during an execution, providing the best allocation of the current locality pattern.
Unfortunately, for most application programmers, this hardware cache partitioning facility is not easy to take advantage
of. It requires intricate knowledge of the memory access patterns of a code and the ability to identify data structures that
would benefit from being isolated in cache. This optimization process can be tedious, with multiple code modifications
and countless application runs necessary to achieve a good optimization scheme.
To address these issues and to study new optimization strategies, we discuss in this paper our effort to design a new
cache analysis and optimization framework for the K computer. This framework is composed of a binary instrumen-
tation tool to measure the locality of a program data structures over a code region, heuristics to determine the best
optimization strategy for the sector cache and a code transformation tool to automatically apply this strategy to the
target application. While our framework is still a work in progress, we demonstrate the usefulness of our locality
analysis and optimization strategy on a handcrafted application derived from classical stencil programs.
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1. Introduction
As the difference between memory and processor speeds con-

tinued to increase, optimizing a program locality has become one
of the most important issue in many research fields, including
high performance computing. Over the years, many approaches
to this problem have been evaluated, ranging from new hardware
designs for the memory hierarchy to software solutions modify-
ing a program organization via static analysis.

The improvement of the hardware cache has specifically been
the focus of numerous studies. Indeed, any method reducing
the average cost of a memory access will have tremendous im-
pact on the performance of memory bound applications. Among
those studies, we can cite work on scratchpad memories [19], [24]
in embedded systems that allows a program to lock small data
regions very close to the CPU or special instructions for non-
cacheable memory accesses [3] to reduce cache thrashing.

In this paper we will focus on cache partitioning: a mechanism
to split a cache in several sectors, each of them handling their data
independently. In most cases, this independence guaranties that a
memory load to a specific sector will not trigger the eviction of a
cache line in another sector. While most research in this subject
focuses on operating system schemes to forbid one process from
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thrashing the cache of another one, this paper discusses on the
contrary the use of cache partitioning as an optimization tool for
a single application. Indeed, isolating a data structure in cache to
protect it from streaming accesses should improve significantly
the performance of a program.

Our target platform, the K computer [17] and its processor the
SPARC64VIIIfx [5], features such a cache partitioning facility
called the sector cache. Although multiple works [2], [4], [14],
[18], [21] already studied cache behavior analysis and optimiza-
tion using such a mechanism, specific architectural details of the
implementation and API of the sector cache render them inef-
ficient or impractical. Moreover, we argue that these particular
traits also enables new optimization opportunities. Therefore, we
discuss in the following our design for a new analysis and opti-
mization framework for this architecture, with the specific goal
to automate as much as possible the discovery and application of
optimization opportunities in a target HPC application.

Our framework leverages and extends several existing method-
ologies. First, we use binary instrumentation of the target appli-
cation to measure the locality (i.e. reuse distance) of major data
structures in a code region. Then, by modeling the impact of
these localities on the performance of the application, we identify
whether cache thrashing could be reduced by isolating some of
these data structures to a specific sector. Finally, we modify auto-
matically the application by source-to-source transformations to
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configure and activate the sector cache according to our optimiza-
tion scheme.

The remainder of this paper is organized as follows. Next sec-
tion describes the K computer processor and in particular its sec-
tor cache. Section 3 presents existing works related to this study
and discusses their applicability to our issues. Section 4 details
our cache behavior analysis and optimization framework, while
Section 5 validates the locality analysis on an handcrafted appli-
cation. We conclude and discuss future work in Section 6.

2. Cache Partitioning on the K Computer
The K Computer — ranked second on the Top500 issue of June

2012 [16] — contains over 80 000 compute nodes, each com-
posed of a single SPARC processor chip and 16 GiB of memory.
The processor, a SPARC64 VIIIfx, was specifically designed for
this system. This chip is produced by Fujitsu using a 45-nm pro-
cess and is composed of 8 cores operating at 2 GHz for a peak
performance of 128 GFLOPS [5]. It is an extended version of the
SPARC-V9 architecture targeted at high performance computing,
in particular it includes eight times more floating point registers
(256) and SIMD instructions for improved parallelism on HPC
application.

2.1 Memory Hierarchy and Sector Cache
This processor’s memory hierarchy is composed of two cache

levels. Each core has two private L1 2-way associative caches
of 32 KiB, for instruction and data. This caches are virtually
indexed. An unified L2 cache is shared among all cores. This
cache is 6 MiB wide, 12-way associative and physically indexed.
All caches have a cache line size of 128 bytes and are inclusive:
any data in the L1 cache is also in the L2.

Our focus in this paper is on a special feature of the data
caches: software-controlled cache partitioning. Called sector
cache, it allows software to split the cache into two independent
partitions or sectors. Once activated, this partitioning ensure that
a cache line retrieved for one sector cannot evict a cache line from
the other. In other words, instead of a single LRU eviction policy
in the cache, the two sectors implement their own LRU. While
both cache levels possess a sector cache, for the sake of simplic-
ity, we will only discuss this feature on the L2 cache.

The technical name for the hardware implementation of the
sector cache is instruction-based way partitioning. To activate
this partitioning, an unprivileged instruction specify a splitting
rule for the cache’s associative sets: how many ways should be
used by sector 0 and how many for sector 1. If the rule is valid
(i.e. the two sectors contain at least one way), the information
is stored in hardware and partitioning is activated. At this point,
every memory load is considered to be of a specific sector (by de-
fault sector 0). Assigning a memory load to a sector uses another
set of instructions: the unprivileged sxar1 and sxar2 instruc-
tions can specify for respectively the next and the two following
memory accessing instructions the sector of each operand.

Isolation between the two sectors is ensured by the hardware.
Two counters keep track inside each associative set of the number
of lines belonging to each sector. When a cache line is retrieved
from memory, the cache ensure that its sector is not full, in which

case a line of the same sector is evicted according to a pseudo-
LRU policy. When the sector is not full, due to a cache line that
was invalidated for example, the size of the sector is increased
and data placed in an available line. As a matter of fact, nothing
in this hardware implementation restricts the two sector’s sizes
to sum up to 12 (the number of ways in an associative set). The
behavior of the eviction/sector management mechanism becomes
however much more complicated (isolation in not guarantied any-
more) and for obvious simplicity reasons we will not discuss such
setups in this paper. Another detail that will matter in the next
section however is the behavior of this partitioning when ways
are left unoccupied: if the sum of both sectors sizes is less than
12. In this case, any sector is allowed to use the remaining ways,
causing the cache to always be used in full. Thus, it is not pos-
sible to limit the cache of the application by restricting it to a
small sector, as the sector will grow above its configured size if
no memory is loaded in the other sector.

Consequently, we will consider in the remainder of this paper
that only 11 configurations are valid for the sector cache: if we
note a configuration (s, t) with s the size of sector 0 and t = 12− s
the size of sector 1, then we will only discuss the set of configu-
rations (1, 11), (2, 10), (3, 9), ..., (11, 1).

2.2 Sector Cache Programming Interface
If one is willing to program an HPC application in SPARC as-

sembly, the special instructions activating the sector cache and
assigning to sectors some of the memory accesses are all that is
required. Nevertheless, the C and Fortran compilers provided on
the system also give access to an higher level interface. Such
API should be easy to use to anybody familiar for the OpenMP or
OpenAcc language extensions. Indeed, it is directive-based: the
programmer marks by special comments (pragmas is C) the code
regions that should use the sector cache and the compiler gener-
ates the required instructions. Two directives are provided: one
setting the size of each sector and one specifying the instructions
to tag into the sector 1, by taking data structures (arrays) names
as a parameter. These directives can either be applied to a proce-
dure as a whole or to a smaller code regions by using begin/end
delimiters.

double a[N],b[N][N],C[N];

void mvp(void)

{

#pragma procedure cache_subsector_size 10 2

#pragma procedure cache_subsector_assign c

int i,j;

for(i = 0; i < N; i++)

a[i] = 0;

for(j = 0; j < N; j++)

a[i] += b[i][j]*c[j];

}

Fig. 1 C matrix-vector product with a (10, 2) sector cache configuration and
the C array tagged into sector 1.

During assembly generation, the compiler will consider any
instruction that touches a data structure assigned to sector 1 to
be preceded by the special sxar instruction, tagging the mem-
ory access as belonging to sector 1. Since the sector 0 is the
default sector, the user only need to specify the structures going
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to sector 1. Unfortunately, this interface has an obvious issue: if
the compiler cannot determine that an instruction touches a data
structure, it cannot generate the right tagging instruction before
it. For example, the use of pointer aliasing, accessing a structure
by another variable pointing to the same memory, will not trigger
the tagging instruction generation. Moreover, the compiler does
not provide any means to automatically use the sector cache. It
is up to the application programmer to know where and how this
feature could improve the performance of its code.

Finally, environment variables on the computing node can ex-
ert some control on the sector cache. The runtime environment
provides two of them, one to activate/deactivate the sector cache
completely and one to configure an initial size for the sectors. Of
course, using the latter instead of the directive inside the source
code makes it impossible to dynamically change the sector sizes
during runtime, to adapt to phase changes for example.

3. Related Work
The most straightforward way of using this kind of software-

controlled cache partitioning facility is to preserve from eviction
data that the programmer knows for a fact will be used in a close
future. Another possibility is to avoid cache thrashing by isolat-
ing in a small partition accesses without reuse. As a motivating
example of the performance improvements that can be achieved
by these optimizations strategies, one can look at the BLAS li-
brary provided on the K Computer. In particular, the level 3
DGEMM routine, known for being at the heart of the Linpack
benchmark (used for the Top500), uses the sector cache to im-
prove its data reuse by more than 12%. To perform its matrix
multiply operation, it recursively splits its parameters into blocks
and in the process, if the sizes are small enough, reduces cache
thrashing by keeping one of them in sector 1.

This example also illustrates the issues we aim to address in
this paper: without intricate knowledge of both the memory hi-
erarchy of the SPARC64 VIIIfx processor and of the target code
locality, it is currently tedious to make good use of the sector
cache. Consequently, our goal is to design an automated frame-
work that can analyze the locality of an application, identify the
code regions that would benefit from the sector cache and modify
them to use it efficiently. This type of framework would greatly
simplify the optimization of HPC applications when ported or de-
veloped on the K Computer.

Most existing works on software-controlled cache partitioning
didn’t have access to an hardware implementation of it, resorting
to a system-software solution based on page coloring [11]. Such
solution’s principle is based on the fact that with a physically-
indexed way-associative cache, it is possible to control its avail-
ability to a virtual memory region by mapping the latter to spe-
cific physical pages (colors). Unfortunately, such solution suffers
from several drawbacks. First, it requires changing the virtual
memory manager of the underlying operating system or, at least,
to extend and bypass it in significant ways. Second, it is lim-
ited by the amount of physical memory available on the system.
While a complete and integrated solution to this particular issue
could be implemented by rewriting the swapping system, to the
best of our knowledge no existing work did it. Finally, chang-

ing a partitioning during an application runtime is very expensive
is this setup. Indeed, it requires stopping the program and mov-
ing data from every physical page that needs it to another one.
Among works that use page coloring and thus suffer from these
issues we can cite Soft-OLP [14], ULCC [4] and CControl [18].

In regards to our goals, the Soft-OLP paper represents the clos-
est work available. It describes a binary instrumentation frame-
work to analyze the locality of objects (data structures) inside a
program to latter better distribute the cache among them using a
cache partitioning. The cache partitioning environment the au-
thor use allows for more than two partitions, resulting in a focus
of the tool on grouping objects together inside partitions. To an-
alyze the impact of such grouping, the authors define an inter-
object interference metric, based on a sampling the amount of
data references made to a data structure between accesses to an-
other one. Unfortunately, Soft-OLP doesn’t match our goals on
several issues. First, it uses page coloring for the partitioning,
limiting the tool to whole program analysis since dynamic repar-
titioning is too costly. Second, the tool only detects global and
dynamically allocated objects, by reading at a very simple level
the program symbol table and hijacking standard allocation func-
tions (the C malloc family). The authors acknowledge that this
issue triggered them to modify the source code of several of the
benchmarks used in SPEC CPU2000 for example. Finally, our
sector cache is only capable of splitting in two and it is unlikely
that its size allows optimizations with more than one structure
isolated at a given time in sector 1, more so with HPC applica-
tions using a significant amount of memory. Thus, at this stage
of our study, we do not consider intra-object interference to be
required, which simplifies the locality analysis.

On the same topic, ULCC [4] and CControl [18] are two soft-
ware environments allowing a user to partition the cache for its
application. While ULCC relies on user knowledge of each ap-
plication locality for their optimization — something we want to
eliminate — CControl discusses the use of modified runs of the
application to discover automatically the locality of its data struc-
tures. The experiment is the following. First, create two partitions
in cache: one containing a single structure (Ps), the other for the
rest of the application (Pr). Then, run the application with the
minimal size possible for Pr and varying the size of Ps. Since
the cache available to the data structures inside Pr, the amount
of cache they generate is constant at each run. Thus, any change
in cache misses is the result of an improvement/worsening in the
cache use of the isolated structure. The authors then uses this
working set analysis to determine which structures would benefit
the most from partitioning and optimize the application accord-
ingly. Unfortunately, while likely to be faster than binary instru-
mentation to analyze the locality of an application, this experi-
mental scheme is not possible on the K Computer. As we stated
before it is not possible to configure the sector cache so that both
partitions occupy less than the full cache. Consequently, while
we could isolate a structure inside sector 1 and increase progres-
sively the number of ways it uses, the sector 0 will always fill the
rest of cache, creating variations of the amount of cache misses
triggered by its data structures and making the experiment void
in the process.
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Farther from our objectives, Mowry et al. discussed in 1996
a compiler framework detecting cache partitioning opportunities
in a parallel program and generating hints for a page coloring so-
lution inside the operating system. This study was focused on
multi-threaded programs working on shared arrays and the use of
cache partitioning to isolate each thread’s accesses to the arrays
from the others’. While the use of cache partitioning for such
purposes is interesting in itself, the sector cache and its only two
partitions is a poor fit.

Finally, Wang et al. discussed in a series of papers [7], [8] is-
sues regarding the locality of specific instructions in a program.
Using reuse distance analysis the authors identify critical instruc-
tions in a program, responsible for most of the cache misses.
They identify that these instructions possess multiple major reuse
distances: i.e., the instruction generates several classes of ac-
cesses, at different distance from each other. They also identify
that these classes correspond to phase change in the program or
at least execution path differences. In other words, some critical
instructions appear in multiple execution path and each path has
its own locality pattern. A simple example of such instructions
would be the ones in an utility function called from multiple sites
in the program. While we expect to discover such kind of func-
tion/instruction in HPC applications, we chose to address these
issues in a future work. One possible solution for this issue in
our setup is to generate several versions of the function according
to its different call sites or execution paths and to optimize each
version independently. For the rest of this paper we will consider
that the performance critical code is contained in functions with
a single incoming path.

4. A Framework for Analysis and Optimiza-
tion of Partitioned Programs

As stated in the introduction, our framework is composed of
three phases. We first study the locality of a code region using bi-
nary instrumentation to create a trace of all memory accesses and
apply reuse distance analysis to it. Then, the framework identify
which of the data structures will be benefit from the sector cache
by predicting the cache misses of a partitioning configuration. Fi-
nally we modify the application’s source code to activate and ap-
ply partitioning in the relevant function. Such process can then
be repeated for each code region generating a significant amount
of cache misses.

In its current state our framework does not identify by itself
neither the application’s hotspots nor which data structures are of
most interest. Detecting which functions generate the most cache
misses can easily be achieved by using one of the numerous ex-
isting profiling tools like Intel VTune [20], Likwid [23] or the one
Fujitsu provide on the K Computer [10]. As for identifying the
relevant structures, we rely on the user to provide us their names.
While our tool is able to list every variable in the program and
analyze all of them at once, the complexity of the reuse distance
measurement grows quadratically with the number of structures,
making such solution expensive.

4.1 Reuse Distance Analysis by Binary Instrumentation
Numerous studies have demonstrated the use of the reuse dis-

tance as a measure of a program locality and a good predictor
for cache misses [1], [22]. Traditionally, the reuse distance of a
memory access is defined as the number of unique memory ac-
cesses separating it from the previous one touching the same lo-
cation. First accesses to a location are considered to be of infinite
distance. Assuming a fully-associative cache and a perfect LRU
policy, if a memory access has a reuse distance greater than the
size of the cache it will trigger a cache miss: the LRU policy nec-
essarily evicted the data from the cache. While such cache model
might seem unrealistic, the reuse distance as proven to be a good
predictor of cache miss rates on commodity architectures. Gener-
ally, the reuse distance of all memory accesses in a program will
be merged in a reuse distance histogram, giving insight about the
number of cache misses triggered for any given cache size.

For the purpose of our analysis, we will however distinguish
memory accesses in two categories: those touching a given data
structure and those outside its address range. In other words, our
objective here is to compute for each data structure two reuse dis-
tance histograms: the first one for accesses internal to the data
structure and the second for all the others. Analyzing the former
will allow us to predict the cache misses triggered by the structure
if it was alone in a sector of the cache and the latter to predict the
cache misses triggered by the rest of the program isolated in the
other sector.

To trace all the memory accesses in a target program, we use
the binary instrumentation framework Pin [15]. Schematically,
this framework allows us to execute custom code each time an
instruction results in a memory access by modifying the applica-
tion binary at runtime. The complete process of this analysis is
the following. Upon startup, the user provides us with informa-
tion on the data structures to analyze and a code scope over which
to perform this analysis. We define structure information as the
name of the variable referencing it and, in the case the name can
appear multiple times in the program, enclosing scope (i.e. en-
closing function or object file). The code scope is either a func-
tion or a range of source code lines. With this information, our
program compile a table of the data structures locations by read-
ing the program’s DWARF debugging information. Once each
data structure’s address range is known, the program instruments
every instruction of the traced scope. During the target applica-
tion execution, each memory access will trigger our tracing code,
registering locality information about this memory access for all
the data structures under study. We detail these two steps in the
following subsections.
4.1.1 Extracting Data Structures Information from DWARF

DWARF is the standard debugging information format used
under Linux (which the K Computer uses both on the frontend
and the computing nodes). It describes all the functions, variables
and constants in the program, providing enough information for
a debugger to be implemented. In particular, the format orga-
nizes its information into a tree of DIEs (Debugging Information
Entries), with a top DIE representing the compilation unit and
having as children DIEs representing enclosed types, functions
and variables.

Using the structure information provided by the user, our tool
recursively scans the whole tree, filtering nodes until the DIE of
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each structure of interest is found. The DIE of a data structure
contains information on its type and location. This information
is then used by our tool to compute the address ranges corre-
sponding to the structure. For example, a contiguous array will
be described by the DWARF type DW tag array type and will
include the size of each of its dimensions, its basic type and a
location expression. If the size of such array is then obvious,
translating the location expression into the starting address of the
structure can require work at runtime.

Indeed, the location expression is defined in DWARF as a list
of operations to apply to an integer stack. After execution of all
operations, the stack’s top value is the virtual address researched.
Runtime information might be required to execute these opera-
tions, as it can include pushing current machine register values on
the stack. This is specially needed to represent parameters passed
as pointer to a function, their location thus expressed as an offset
to the current stack pointer. In the event the location expression
cannot be resolved statically, our tool saves a representation of
the expression to use during the target application run.
4.1.2 Reuse Distances Tracing

Once the DWARF information has been parsed, Pin is used to
instrument each instruction of the tracing scope. By default, our
code only instruments the instructions of the top-level scope, not
the code that could be called from it. This enables us to reduce
the number of instrumented instructions and greatly improves the
slowdown of the application. It is still possible to instrument all
called functions if the user requires it.

For each instrumented instruction triggering a memory access,
our code collects the required register values (for location expres-
sions) along with the address and the size of the memory access.
It then iterates over the structure table, registering this event for
all structures. If the memory address falls into a structure, the
internal reuse distance of the access is computed, otherwise the
reuse distance for the other accesses is found. In both cases the
according histogram is updated.

To compute a reuse distance, our tool implement one of fastest
algorithm known [6]. This algorithm relies on two data struc-
tures: an hash table saving for each memory location the last
time it was accessed and a splay tree sorted by this time. The
splay tree keeps track of all memory locations touched as well as
for each node the number of left and right children. A recursive
lookup through the tree can then be used to compute the number
of locations touched since the last access to the current location.

Given that we target a single architecture, this reuse distance
analysis is optimized to only remember the amount of locations
that can fit in cache, considering that any access with a distance
greater than that will always trigger a cache miss.

4.2 Identifying Cache Optimization Opportunities
Once the tracing is completed, the binary instrumentation tool

outputs each structure’s histograms. From these histograms we
predict the amount of cache misses that a sector cache configu-
ration will trigger. Let us start by formalizing our reuse distance
and cache misses model.

Let M be the set of memory addresses touched by our program
and T the trace of these memory accesses. We can express it as a

set of tuples (pos, a) with pos ∈ N and a ∈ M. Let A(s) the mem-
ory addresses of a structure s analysed by our experiments. We
can now express the reuse distance as h(m, d) as the number of ac-
cesses of distance d in the trace T − (pos, a),∀a ∈ m. That is, we
remove from the trace of memory accesses a number of addresses,
while preserving order, before computing the reuse distance of it.
For future convenience, we will note h0(s, d) = h(A(s), d) and
h1(s, d) = h(M − A(s), d). The former represents the reuse dis-
tance without accesses to a specific data structure and the latter to
the reuse distance of these accesses by themselves.

Let C0,C1 be respectively the sizes in bytes of Sector 0 and
Sector 1 and let s be the data structure in Sector 1. Then we can
express the cache misses we observe in our experiment as:

Qs(C0,C1) =

∞∑
d=C0+1

h0(s, d) +

∞∑
d=C1+1

h1(s, d)

This equation formalizes the cache miss model we presented
earlier: for a given cache size, any access with a reuse distance
greater than it will trigger a cache miss. Computing the amount of
cache misses triggered by a sector cache configuration thus just
requires iterating through both histograms built during the reuse
distance analysis and summing their bins for values higher than
the corresponding cache size. We then determine the best con-
figuration for each data structure and thus the best configuration
overall.

4.3 Code Transformations for the Sector Cache
The next step of the process is the optimization of the appli-

cation itself. With the knowledge of which sector cache config-
uration to apply, this requires inserting at the beginning of the
tracing scope we just analyzed. To do so, we intend to use the
XcodeML framework [25]. This framework provides a source-to-
source transformation facility based on an intermediate code rep-
resentation in XML. It supports transformation from and to C and
Fortran code with an helper library to inspect, modify, remove
and add code to the abstract tree of a target program. This frame-
work was for example used to develop the Omni OpemMP com-
piler [12] and the XcalableMP parallel language compiler [13].

While adding the required directive at the top of a function
might seem too simple to require the use of a full source-to-source
transformation framework, our intend is to also support the recur-
sive modification of successive function calls, each function re-
quiring its own sector cache configuration setup. Such goal might
for example require to detect that a data structure was passed as
parameter to another function and that it changed its name in the
callee. Since the directives provided by the compiler do not prop-
agate to the called functions, this can be an important issue when
optimizing an application.

5. Experimental Results
Our framework is still a work in progress. In particular, the

code generation phase is not complete yet. Nevertheless, we de-
signed a simple application to validate our binary instrumentation
tool and the resulting locality analysis and optimization.
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Fig. 2 Multigrid Stencil: 9 cells of matrices M1,M2 and M3 are summed
into a single cell of Mr . Grey areas represent cache requirements of
each matrix.

Our test application makes a simultaneous use of three differ-
ent matrices that reside in memory to compute the elements of
a result matrix. The input matrices form a multigrid structure, it
is made of a large matrix (Y × X double-precision floating point
values), a medium-sized matrix (one fourth of the large matrix
size) and a small matrix (one sixteenth of the large matrix size).
The output matrix has the same size as the large matrix. Each of
its elements is a linear combination of nine points stencils taken
from each input matrix at the same coordinates (interpolated for
smaller matrices). This application is interesting for two reasons:
it is extremely memory intensive and each of its matrices has a
different cache size requirement. Our nine points stencil forms a
cross (a center element, the two elements above it, the two ele-
ments on the right, and so on) and it is included in five lines of a
matrix. Thus, in the ideal case, if five lines of each input matrix
can remain in the cache during the computation, the stencil will
be computed with a maximal reuse. This translates into a cache
space of X × 8 × 5 bytes for the large matrix, half of this size for
the medium one and one fourth of this size for the small one. Of
course if these requirements (working sets) cannot fit all in cache,
accesses to each matrix will thrash accesses to the others.

Figure 2 illustrate this stencil, with a 9 points cross being read
in each 3 matrices to compute a single cell of the resulting matrix.
Cache requirements of each matrix are also displayed. Matrices
are named from the smallest one M1 (X/4 by Y/4) to the biggest
M3 (X by Y), the result matrix is named Mr.

To validate our binary instrumentation tool we analyze the lo-
cality of the 3 input matrices of this program. We chose the matri-
ces sizes so that M3 requires 7MiB in cache so that a default cache
configuration triggers numerous cache misses. The full program
executes the stencil 10 times, after having initialized each ma-
trix with random values. We applied our binary instrumentation,
giving it the 3 M matrices’ names and limiting the trace to one
application of the stencil. Since Pin does not support the SPARC
instruction set, this analysis was realized on another system, a
Linux system with an Intel i7 2760 QM processor and 8 GiB of

RAM. On average, the analysis induced an execution time of the
application 200 slower. This value is on par with existing instru-
mentation methods [14].

1.75Mib 3.5MiB 7MiB ∞

0

5 · 106

1 · 107

M1
M2
M3

Fig. 3 Reuse distance histograms for the 3 input matrices of the multigrid
stencil. For simplicity, we display distance bigger than a 12th of the
cache. Bins are 256KiB wide. The last bin is for infinite distances.

After analysis of these reuse distance histograms (Fig. 3), our
cache model predicts that isolating the M2 matrix with a sector
cache configuration giving more than 7 ways to sector 1 would
reduce by 23% the amount of cache misses triggered by one sten-
cil. We applied this optimization to our application code and
compared the resulting program to the unoptimized one on the
K Computer. We compiled a different version of the program for
each sector cache configuration tested. To also validate that our
optimization was among the best available, we tested every con-
figuration of the sector cache for every data structure.

Table 1 Cache misses reduction: comparison between the chosen optimiza-
tion against best configuration for each isolation.

Version Stencil Miss Rate (%) Reduction (%)
Unoptimized 2.10 -

M2(5, 7) 1.68 20
M2(1, 11) best 1.62 22
M1(7, 5) best 1.84 12

M3(11, 1) best 2.08 0.1

Table 1 gives the resulting cache misses for the different ver-
sions. Notice that the very best configuration available is for M2

to be isolated in a sector bigger than 7 ways. However, given the
reuse distance histograms we measured, our cache model does
not predict any performance difference between the two config-
urations. The fact that we do not take into account the influence
of associativity on cache misses could explain this small perfor-
mance difference. Our tool still achieves a very good optimiza-
tion of the application. We also confirmed these results by testing
other sizes for the matrices, and achieve a cache misses reduction
up to 40%.

6. Conclusion and Future Works
We presented our design for an automatic analysis and opti-

mization of HPC application regarding the use of a specific cache
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partitioning facility available on the K Computer. While previ-
ous work presented interesting analysis and optimizations tech-
niques using cache partitioning, we demonstrated that specific
implementation details of the sector cache rendered such solu-
tions impractical, requiring us to develop our own environment.

Using state of the art tools in binary instrumentation tech-
niques, we discussed the analysis of the cache requirements of
each data structure of interest inside an application. Because the
sector cache provides dynamic reconfiguration of the partition-
ing during execution, we argue that a solution analysing indepen-
dently multiple regions of code and determining the best config-
uration for each of them is a better strategy than whole program
analysis. This approach is also expected to induce lower costs on
the instrumentation of the target application, a process known to
be particularly heavy.

While still a work in progress, we expect our framework to
enable fast and easy optimization of HPC applications for the K
Computer. Preliminary results indicate a possible improvement
of the locality of application ranging from 12 to 40%. In the fu-
ture, we intend to apply our framework to the full suite of the
NAS Parallel Benchmarks, demonstrating its relevance to the op-
timization of complex applications.

Among the long term possibilities for this work, we believe 3
studies to be of particular importance. First, in its current state our
framework is unable to resolve the address ranges of some vari-
able if they are too complex, like for example a dynamically al-
located multidimensional array or any function parameter whose
size is not known statically. Both limitation arise from our use of
the exclusive use of DWARF information for this purpose. We be-
lieve that this information could be combined to a syntactic anal-
ysis of the application’s code. Indeed, it would be possible to pre-
pare the binary instrumentation by identifying which instructions
were generated from a source line accessing a data structure of
interest. Second, the issue of code regions requiring multiple sec-
tor cache configurations according to the code path that precedes
them could be solved either by a code transformation duplicating
the code region to create independent instruction streams for each
path or, in the simple case that only the size of each sector needs
to be changed, by reconfiguring the cache at runtime depending
on the current path. Third, we believe that in some case, an ap-
plication might benefit from the sector cache being reconfigured
between function calls. In other words, using the sector cache
to preserve data during the call to a thrashing function. Detecting
such cases would require to analyze very precisely the target code
before, during and after the function call, while preserving infor-
mation on the cache content between these scopes. In its current
state, our framework might require additional automation in the
analysis phase to allow this kind of studies.
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