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Designing various multivariate analysis at will
via generalized pairwise expression
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Abstract: This paper provides a generic and theoretical framework of multivariate analysis introducing a
new expression for scatter matrices and Gram matrices, called Generalized Pairwise Expression (GPE). The
framework includes not only (1) the traditional multivariate analysis methods but also (2) several regulariza-
tion techniques, (3) localization techniques, (4) clustering methods based on generalized eigenvalue problems,
and (5) their semi-supervised extensions. This paper also presents a methodology for designing a desired
multivariate analysis method from the proposed framework. The methodology is quite simple: adopting the
above mentioned special cases as templates, and generating a new method by combining these templates
appropriately. Through this methodology, we can freely design various tailor-made methods for specific
purposes or domains.
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1. Introduction

We can easily obtain a massive collection of images

[1], [2], [3], [4] and videos [5], [6] nowadays. However, we

are now facing a difficulty in finding an intrinsic trend and

nature of such a massive collection of data. Multivariate

analysis is traditional, quite simple but might be one of the

powerful tools to obtain a hidden structure embedded in the

data. Actually, multivariate analysis has been still an im-

portant tool, and recent reports showed its effectiveness for

several tasks, e.g. human detection [7], image annotation

[8], [9], sensor data mining [10], [11], [12].

Principal component analysis (PCA) [13], Fisher discrim-

inant analysis (FDA) [14], multivariate linear regression

(MLR), canonical correlation analysis (CCA) [13], and par-

tial least squares (PLS) [15] are well known as standard

multivariate analysis methods. These methods can be for-

mulated as a generalized eigenvalue problem of a scatter

matrix or an augmented matrix composed of several scat-

ter matrices. Several extended researches tried to tackle

the so-called small sample size problem, i.e., the situation

where the number of training samples is small compared

with their dimensionality [16], [17], [18], [19], [20], [21]).
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Kernel multivariate analysis methods as kernelized exten-

sions of those standard methods have been also developed

to deal with non-vector samples and non-linear analysis

[22], [23], [24], [25], [26], [27]). They can be formulated as

a generalized eigenvalue problem of an augmented matrix

composed of Gram matrices, instead of scatter matrices.

Kernel multivariate analysis often needs some regulariza-

tion techniques such as ℓ2-norm regularization [28], [29], [30]

and graph Laplacian method [31]. In addition, improve-

ments of robustness against outliers and non-Gaussiaity (i.e.

multi-dimensional scaling (MDS) [32], locality preserving

projection (LPP) [33] and local Fisher discriminant anal-

ysis (LFDA) [34]) and their extensions to semi-supervised

dimensionality reduction [31], [35], [36] have been consid-

ered.

A lot of multivariate analysis methods and several trials to

unify these methods have been presented so far. Borge et al

[37] and De Bie et al [38] presented that several major linear

multivariate analysis method can be formulated by a unified

form of generalized eigenvalue problems. Sun et al [39], [40]

showed the equivalence between a certain class of generalized

eigenvalue problems and least squares ones under a mild as-

sumption. De la Torre [41], [42] extended the work by Sun

et al to a various kind of component analysis methods by

introducing the formulation of least-squares weighted kernel

reduced rank regression (LS-WKRRR). However, freely de-

signing a tailor-made multivariate analysis for a specific pur-

pose or domain still remains an open problem. Until now,

researchers have had to choose one of the existing meth-

ods that seems best to address the problem of interest, or
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had to laboriously develop a new analysis method tailored

specifically for that purpose.

In view of the above discussions, this paper provides a new

expression of covariance matrices and Gram matrices, which

we call Generalized pairwise expression (GPE) to make it

easy to design a new multivariate analysis method with de-

sired property. The methodology is quite simple: adopting

the above mentioned special cases as templates, and gener-

ating a new method by combining these templates appropri-

ately. This characteristics has not been discussed yet in any

previous researches to our best knowledge. It is also possi-

ble to individually select and arrange samples for calculating

the scatter matrices of the methods to be combined, which

enables us to extend CA methods to semi-supervised ones

and multi-modal ones.

Our contributions can be summarized as follows:

( 1 ) Providing a unified formulation of various multivariate

analysis methods via GPE.

( 2 ) Making it easy to implement a multivariate analysis

method with desired property by simply combining the

GPEs of existing methods.

( 3 ) Designing new multivariate analysis methods based on

the methodology derived from the GPE.

2. Multivariate analysis for vector data

Consider two sets X and Y of samples*1, where each set

contains Nx and Ny samples, and each sample can be ex-

pressed as a vector with dx and dy dimensions, respectively,

as follows:

X = {x1, . . . ,xNx
},

Y = {y1, . . . ,yN ,yNx+1, . . . ,yNx+Ny−N}.

For brevity, both of the sample sets X and Y are supposed

to be centered on the origin by subtracting the mean from

each component. Suppose that samples xn and yn with the

same suffix are co-occurring. Each set X and Y of samples

is separated into the following two types: Complete sample

sets X(C) and Y (C) so that every sample xn (resp. yn) has

co-occurring sample yn (resp. xn), and incomplete sample

sets X(I) and Y (I) so that every sample xn (resp. yn)

cannot find the co-occurring sample.

X(C) = {x1,x2, . . . ,xN},

= {x(C)
1 ,x

(C)
2 , . . . ,x

(C)
N },

Y (C) = {y1,y2, . . . ,yN},

= {y(C)
1 ,y

(C)
2 , . . . ,y

(C)
N },

X(I) = {xN+1,xN+2, . . . ,xNx
},

= {x(I)
1 ,x

(I)
2 , . . . ,x

(I)
Nx−N},

Y (I) = {yNx+1,yNx+2, . . . ,yNx+Ny−N},

= {y(I)
1 ,y

(I)
2 , . . . ,y

(I)
Ny−N}

First, we concentrate on the case that Nx = Ny = N ,

*1 The following discussion can be easily extended to more than
2 sets of samples sets [43].

Fig. 1 Various multivariate analysis methods can be described
via generalized pairwise expression (GPE)

namely all the samples are paired, unless otherwise stated.

Many linear multivariate analysis methods developed so

far involve an optimization problem of the following form:

w(opt) = arg max
w∈Rd

R(w), (1)

R(w) = w⊤Cw(w⊤Cw)−1,

where C and C are square matrices with certain statistical

nature. For example, C is a scatter matrix of X and C is

an identity matrix in PCA, and C is a between-class scat-

ter matrix and C is a within-class scatter matrix in FDA.

Roughly speaking, C encodes the quantity that we want to

increase, and C corresponds to the quantity that we want

to decrease. The denominator of the function R(w) is of-

ten normalized to remove scale ambiguity, resulting in the

following form:

w(opt) = arg max
W∈Rd

R1(w) s.t. R2(w) = 1, (2)

R1(w) = w⊤Cw, R2(w) = w⊤Cw.

The above optimization problem can be converted to the

following generalized eigenvalue problem via the Lagrange

multiplier method:

Cw = λCw. (3)

The solution wk (k = 1, 2, . . . , r) of the above generalized

eigenvalue problem gives a solution of the original multivari-

ate analysis formulated in Equation (1).

3. Generalized pairwise expression

When addressing linear multivariate analysis methods, we

often deal with the following type of second-order statistics

as an extension of scatter matrices, since it is convenient to

describe the relation between two features regarding whether

they are close together or far apart

SQ,xy =

N∑
n=1

N∑
m=1

Qn,m(xn − xm)(yn − ym)⊤,

(4)

where Q is an N ×N non-negative, semi-definite and sym-

metric matrix. A typical example is the scatter matrix*2:

*2 Due to the limited space, we describe only the scatter matrix
Sxy and its extensions with the pairwise form. The scatter ma-
trices Sxx and Syy , and their extensions can be easily derived
in the same way.
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Sxy = N−1∑N
n=1 xny

⊤
n .

Let DQ be the N ×N diagonal matrix with

DQ,n,n =

N∑
n2=1

Qn,n2 ,

and let LQ be LQ = DQ − Q. Then, the matrix SQ,xy

can be expressed in terms of LQ as follows:

SQ,xy = XLQY ⊤.

The above expression is called the pairwise expression (PE)

of the second-order statistics SQ,xx[35]. If Q is a weight

matrix for a graph with n nodes, LQ can be regarded as a

graph Laplacian matrix in the spectral graph theory. If Q

is symmetric and its elements are all non-negative, LQ is

known to be positive semi-definite.

Here, we extend PE to the following expression introduc-

ing an additional matrix independent of Q:

ŜQ,xy = XLQ,1Y
⊤ +L2,

where LQ,1 is a N×N positive semi-definite matrix, and L2

is a dx × dy non-negative semi-definite matrix. We do not

have to explicitly consider the matrix Q for the following

discussions:

Ŝxy = XL1Y
⊤ +L2. (5)

After all, we call this expression as the generalized pairwise

expression (GPE). The first term of Equation (5) is called

the data term since it depends on the sample data, and the

second term is called the bias term.

We can derive the following fundamental properties of

GPE from the definition, if the number of samples, N is

sufficiently large:

( 1 ) If A is GPE and β > 0 is a constant, then βA is also

GPE.

( 2 ) If bothA andB are GPE with dx rows and dy columns,

then A+B is also GPE with dx rows and dy columns.

( 3 ) If A is GPE with dx rows and dy columns, and B is

GPE with dy rows and dz columns, then AB is also

GPE with dx rows and dz columns.

Proof. The first and second claims can be easily proved, so

we concentrate on proving the third one.

First, let us denote A and B as follows:

A = XLA1Y
⊤ +LA2,

B = Y LB1Z
⊤ +LB2,

where LA1 (resp. LB1) is a positive semi-definite matrix

with dx (resp. dy) rows and dy (resp. dz) columns, and

LA2 (resp. LB2) is a dx × dy (resp. dy × dz) non-negative

matrix. Then, we obtain

AB = (XLA1Y
⊤ +LA2)(Y LB1Z

⊤ +LB2),

= X(LA1Y
⊤Y LB1)Z

⊤ + (LA2Y )LB1Z
⊤

+XLA1(Y
⊤LB2) +LA2LB2.

Table 1 GPEs of standard methods

Method C C

PCA Sxx IdX

FDA S
(b)
xx S

(w)
xx

CCA

[
0 Sxy

Syx 0

] [
Sxx 0
0 Syy

]
MLR

[
0 Sxy

Syx 0

] [
Sxx 0
0 Idy

]
PCR[44]

[
0 Sx̂y

Syx̂ 0

] [
Sx̂x̂ 0
0 Idy

]
OPLS SxyS⊤

xy Sxx

Ridge
[

0 Sxy

Syx 0

] [
Sxx + δIdx

0
0 Idy

]
regression
LPP[33] XLX⊤ XDX⊤

LFDA[45] S
(lb)
Q,xx S

(lw)
Q,xx

PCR: Principal component regression, OPLS: Orthogonal partial

least-squares.

S
(b)
xx and S

(w)
xx : Between-class and within-class scatter matrices

of X, X̂ = UKΣKV ⊤
K : K-rank approximation of X by SVD,

Id: d × d identity matrix, δ > 0: constant, S
(b)
Q and S

(w)
Q :

between-class and within-class scatter matrices of X weighted

by an N ×N non-negative symmetric matrix.

Here, we can find some matrices LCi (i = 1, 2, 3) satisfying

the following relationships, if N ≥ max(dx, dy, dz):

LC1 = LA1Y
⊤Y LB1,

XLC2 = LA2Y ,

LC3Z
⊤ = Y ⊤LB2.

This implies that

AB

= XLC1Z
⊤ +XLC2LB1Z

⊤

+XLA1LC3Z
⊤ +LA2LB2

= X(LC1 +LC2LB1 +LA1LC3)Z
⊤ +LA2LB2

= XLD1Z
⊤ +LD2,

for some matrices LD1 and LD2, which means AB is also

GPE.

Recall that the class of multivariate analysis we are deal-

ing with can be expressed as Cw = λCw, and both C and

C can be expressed by GPEs or their augmented matri-

ces. The notable point is that various multivariate analysis

methods can be easily designed with the help of these GPE

properties, namely by combining GPEs of existing methods

with desired properties. The rest of the problem is to reveal

GPE of existing methods and the function of every type of

combinations (addition and/or multiplication), which will

be described in the next section.

4. Reviewing multivariate analysis

4.1 Preliminaries

The GPEs of the standard CA methods are listed in Table

1. Several detailed derivations can be seen in [37], [38]. In-

stead, this paper provides several significant examples that

would be quite an important hint when constructing new

CA methods.
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4.2 Locality preserving projection (LPP)

Locality preserving projections (LPP) [33] seeks for an

embedding transformation such that nearby data pairs in

the original space close in the embedding space. Thus, LPP

can reduce the dimensionality without losing the local struc-

ture.

Let A be an affinity matrix, that is, the N -dimensional

matrix with the (n,m)-th element An,m being the affinity

between xn and xm. We assume that An,m ∈ [0, 1]; An,m

is large if xn and xm are close and An,m is small if xn and

xm are far apart. There are several different manners of

defining A, such as using the local scaling heuristics [46],

i.e.

An,m = exp

{
−∥xn − xm∥2

σnσm

}
,

σn = ∥xn − x(k)
n ∥,

where x
(k)
n is the k-th nearest neighbor of xn. A heuristic

choice of k = 7 was shown to be useful through experiments

[46]. The objective function to be minimized is the following

weighted squared error:

ϵ(LPP)(w|X) =

N∑
n=1

N∑
m=1

An,m∥w⊤xn −w⊤xm∥2

s.t. w⊤XDAX⊤w = 1,

In the same way as the derivation of GPE (see Section 3),

the above minimization can be converted to the following

generalized eigenvalue problem:

XLAX⊤w = λXDAX⊤w.

Thus, the GPE of LPP can be obtained as

C
(LPP)

= XLAX⊤, C(LPP) = XDAX⊤.

4.3 Local Fisher discriminant analysis (LFDA)

Local Fisher discriminant analysis (LFDA) [34] is a

method for supervised dimensionality reduction, and an ex-

tension of Fisher discriminant analysis (FDA). LFDA can

overcome the weakness of the original FDA against outliers.

The point is the introduction of between-sample similarity

matrix Q obtained from the affinity matrix, for calculating

the between-class scatter matrix S
(lb)
Q and the within-class

scatter matrix S
(lw)
Q .

S
(lb)
Q =

N∑
n=1

N∑
m=1

Q(lb)
n,m(xn − xm)(xn − xm)⊤,

S
(lw)
Q =

N∑
n=1

N∑
m=1

Q(lw)
n,m(xn − xm)(xn − xm)⊤.

where Q(lb) and Q(lw) are the N ×N matrices with

Q(lb)
n,m =

{
An,m(1/N − 1/Nc) if yn = ym = c,

1/N if yn ̸= ym,

Q(lw)
n,m =

{
An,m/Nc if yn = ym = c,

1/N if yn ̸= ym,

where Nc is the number of samples in class c. Note that the

local scaling is computed in a class-wise manner in LFDA,

since we want to preserve the within-class local structure.

This also contributes to reducing the computational cost for

nearest neighbor search when computing the local scaling.

From the above discussion, the GPE of LFDA can be ob-

tained as follows:

C
(LFDA)
Q = S

(lb)
Q , C

(LFDA)
Q = S

(lw)
Q .

4.4 Semi-supervised LFDA (SELF)

Semi-supervised local fisher discriminant analysis, called

SELF [35], integrates LFDA as a supervised dimensionality

reduction and PCA as a unsupervised dimensionality reduc-

tion. SELF brings us one example for designing multivariate

analysis methods via the GPE framework from the following

two viewpoints:

( 1 ) combining several multivariate analysis methods via

GPE,

( 2 ) changing sample sets to calculate the data term in GPE,

which provides us to extend the method to a semi-

supervised one.

Assume that there are two samples sets X and Y , each

sample in Y represents a class indicator vector, and an in-

complete sample set X(I) only exists, namely there are at

least one unlabeled samples in the sample set X. In such

cases, we can search for solutions that lie in the span of

the larger sample set X, and regularize using the additional

data. SELF looks for solutions that lie along an empirical

estimate of the subspace spanned by all the samples. This

gives increased robustness to the algorithm, and increases

class separability in the absence of label information. In

detail, SELF integrates the GPE (S
(C,lb)
Q and S

(C,lb)
Q ) of

LFDA calculated only from the labeled samples (in other

words, complete sample sets) and the GPE Sxx of PCA

calculated from all the samples, as follows:

C
(SELF)
Q = βS

(C,lb)
Q + (1− β)Sxx,

C
(SELF)
Q = βS

(C,lw)
Q + (1− β)Idx

,

where β is a hyper parameter satisfying 0 ≤ β ≤ 1. When

β = 1, SELF is equivalent to LFDA with only the labeled

samples (X(C),Y (C)). Meanwhile, when β = 0, SELF is

equivalent to PCA with all samples in X. Generally speak-

ing, SELF inherits the properties of both LFDA and PCA,

and their influences can be controlled by the parameter β.

4.5 Semi-supervised CCA

In a similar way to that of SELF, a semi-supervised ex-

tension of CCA can be derived, which is called SemiCCA

[36].

Assume that there are two samples sets X and Y , and

each includes incomplete sample set X(I) and Y (I) only ex-

ists, namely there are at least one unpaired samples in both

X and Y . SemiCCA integrates the GPE of CCA calculated

only from the complete sample sets) and the GPE of PCA

calculated from the complete and incomplete sample sets,
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as follows:

C
(SemiCCA)

= β

(
0 S

(C)
xy

S
(C)
yx 0

)
+ (1− β)

(
Sxx 0

0 Syy

)
,

C(SemiCCA)

= β

(
S

(I)
xx 0

0 S
(I)
yy

)
+ (1− β)

(
Idx

0

0 Idy

)
When β = 1, SemiCCA is equivalent to CCA with only the

complete samples (X(C),Y (C)).

5. How to design new methods

To summarize the discussions so far, we describe (1)

GPEs of major existing methods, (2) the way for integrating

several GPEs and (3) some semi-supervised extensions by

changing the sample sets for calculating GPEs. This section

shows that we can easily design new multivariate analysis

methods at will by replicating those steps. Note that an-

other way to generate new methods would be possible, and

the following one is only one example.

One of the simple extensions is to integrate FDA as su-

pervised dimensionality reduction and CCA as unsuper-

vised dimensionality reduction with a latent model. Con-

sider a problem of video categorization, where its train-

ing data includes image features X, audio features Y and

class indexes. Finding appropriate correlations of such three

different modals would be still challenging. Several ap-

proaches might be possible: (1) FDA for concatenated fea-

tures (X⊤,Y ⊤)⊤, which cannot obtain appropriate corre-

lations between two different types of feature vectors, (2)

CCA for two features (X,Y ) followed by FDA on the com-

pressed domain, which cannot find class-wise differences of

correlations.

Here, we newly introduce an integration of CCA and FDA,

which enables us to extract class-wise differences of feature

correlations as well as to achieve discriminative embedding

simultaneously. In the following, we call this method CFDA

for the simplicity. CFDA can be formulated by the following

equation:

C
(CFDA)
Q = β

(
0 Sxy

Syx 0

)
+ (1− β)S

(lb)
Q , (6)

C
(CFDA)
Q = β

(
Sxx 0

0 Syy

)
+ (1− β)S

(lw)
Q . (7)

When β = 1 CFDA is equivalent to CCA, while when

β = 0 CFDA is equivalent to FDA for concatenated fea-

tures (X⊤,Y ⊤)⊤.

6. Kernelized extensions

6.1 Kernelization of standard methods

A lot of methods in the GPE framework can be kernel-

ized in a similar manner to the existing ones. The GPEs of

major kernelized CA methods are listed in Table 1. By intro-

ducing kernelized expression, several methods for clustering

and local embedding can be included in this framework, e.g.

Table 2 GPEs of kernelized CA methods

Method C C

kPCA Kx IN

kFDA K
(b)
x K

(w)
x

kCCA

[
0 KxKy

KyKx 0

] [
K2

x 0
0 K2

y

]
kMLR

[
0 KxKy

KyKx 0

] [
K2

x 0
0 IN

]
kCCA+ℓ2[30]

[
0 KxKy

KyKx 0

] [
K

(ℓ2)
x 0

0 K
(ℓ2)
y

]

L-kCCA[31]

[
0 KxKy

KyKx 0

] [
K

(L)
x 0

0 K
(L)
x

]
LE, SC Lx Dx

LLE K
(LL)
x K

(LL)⊤
x IN

NC, nSC D
−1/2
x LxD

−1/2
x IN

L-kCCA: Laplacian-regularized kernel CCA, Kx, Kx: Gram

matrices, K
(ℓ2)
x = K2

x + δxKx, K
(L)
x = K2

x + γxRx, Rx =

KxLxKxm, LE: Laplacian eigenmap, SC: Spectral clustering,

NC: Normalized cuts, nSC: normalized SC, K
(LL)
x = IN −Kx

Laplacian eigenmap (LE), locally linear embedding (LLE),

spectral clustering (SC) and normalized cuts (NC).

6.2 How to design new kernelized methods

Integrating two methods within the kernelized GPE

framework is not obvious, since a simple addition of Gram

matrices is not GPE. One example can be seen in a kernel-

ized extension of SELF, called kernel SELF [35]. Remember

that the original SELF integrates LFDA with labeled sam-

ples and PCA with all the samples (see Section 4.4), and it

can be formulated by a localized between-class scatter ma-

trix S
(C,lb)
Q , localized within-class matrix S

(C,lw)
Q and the

ordinary scatter matrix Sxx. Kernel SELF can be formu-

lated via their Laplacian matrices L
(C,lb)
Q , L

(C,lw)
Q , Lxx, as

follows:

C
(kSELF)

= Kx{βL(C,lb)
Q + (1− β)Lxx}Kx,

C(kSELF) = βKxL
(C,lb)
Q Kx + (1− β)Kx.

From this formulation, we can see that a weighted sum

of GPEs in original multivariate analysis corresponds to a

weighted sum of Laplacian matrices in kernelized multivari-

ate analysis. Namely, when dealing with kernelized multi-

variate analysis, we have to explicitly derive GPEs of ex-

isting methods, and replace the data matrix into its Gram

matrix.

7. Concluding remarks

This paper provided a new theoretical expression of co-

variance matrices and Gram matrices, which we call gener-

alized pairwise expression (GPE). This provided a unified

insight into various multivariate analysis methods and their

extensions. GPE made it easy to design desired multivariate

analysis methods by simple combinations of GPEs of exist-

ing methods as templates. According to this methodology,

we designed several new multivariate analysis methods.

The GPE framework covers a wide variety of multivari-

ate analysis methods, and thus the way we have presented

in this paper for designing new methods is still one of the
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examples. Developing more general guidelines would be sig-

nificant future work.
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