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Extending ILP-based Abductive Reasoning with
Cutting Plane Inference

Naoya Inoue1,a) Kentaro Inui1,b)

Abstract: Abduction, inference to the best explanation, is desirable for many natural language processing (NLP)
tasks. While recent advances in large-scale world knowledge acquisition warrant applying abduction with large knowl-
edge bases to real-life NLP problems, as of yet no existing approach to abduction has achieved both the efficiency and
formal expressiveness necessary to be a practical solution for large-scale reasoning on real-life problems. In this paper,
we provide an expressive and efficient solution for large-scale abductive reasoning, extending our prior work on the In-
teger Linear Programming-based formulation of first-order predicate logic abduction [16], [17]. The key contributions
of this paper are the following: (i) we show how Cutting Plane Inference, an iterative optimization strategy developed
in Operations Research, can be applied for improving the bottleneck of large-scale first-order logic abduction; (ii) we
show the runtime efficiency of our method on a larger and real-life dataset, while existing abductive reasoning systems
are evaluated on rather small datasets; (iii) we make the abductive inference engine presented in this paper publicly
available.

1. Introduction
Discovering implicit information from natural language dis-

course is essential to a wide range of NLP tasks, such as Ques-
tion Answering, Information Extraction and Recognizing Textual
Entailment (RTE). A number of NLP components are exploited
for processing a variety of discourse phenomena (e.g. anaphora)
when inferring implicit information. In the field of computational
linguistics, each NLP component has been studied extensively in
recent decades; however, less attention has been paid to how to
integrate them into a single inference framework.

In this paper, we explore first-order logic abduction-based dis-
course processing as a framework for integrating NLP compo-
nents. Abduction is inference to the best explanation. Abduction
has long been studied in a wide range of contexts from artificial
intelligence research to cognitive science. For example, abduc-
tion has been viewed as a promising framework for describing
the mechanism of human perception [7], [14], [25], [36], etc. The
idea is that the declarative nature of abduction enables us to in-
fer the most plausible, implicitly stated information combining
several types of inference, and pieces of explicitly observed in-
formation.

Abduction-based discourse processing has been studied inten-
sively in the 1980s and 1990s; Hobbs et al. (1993) show that
the lowest-cost abductive proof provides the solutions to a broad
range of natural language pragmatics problems, such as word
sense disambiguation, anaphora, and metonymy resolution. The
key advantages of using abduction for discourse processing are
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twofold:
• abduction-based discourse processing models interdepen-

dencies between NLP tasks and identifies the most coherent
interpretation to all tasks;

• it discovers plausible and new information by combining
heterogeneous inference rules and the pieces of information
observed from texts.

While the lack of world knowledge resources hampered ap-
plying abduction to real-life problems in the 1980s and 1990s,
a number of techniques that acquire world knowledge resources
have been developed in the last decade [6], [11], [15], [33], [35],
etc. Consequently, several researchers start applying abduction
to real-life problems, exploiting large knowledge bases. For in-
stance, inspired by Hobbs et al. (1993), Ovchinnikova et al.
(2011) propose an abduction-based natural language processing
framework using forty thousands of axioms extracted from the
popular ontological resources, WordNet [11] and FrameNet [33].
They evaluate their approach on the real-life natural language
processing task of Recognizing Textual Entailment (RTE) [9].

However, in order to apply large-scale abductive inference to
real-life problems, we still need to address the following issue:
how to search for the best explanation efficiently. Abduction is
known to be an NP-hard problem in general [5]; this hampers the
application of abduction with large world knowledge resources
to real-life problems. In fact, Ovchinnikova et al. (1993) report
that the Mini-TACITUS abductive reasoning system [22] could
not search the entire search space of explanations within 30 min-
utes in most of the RTE problems in their experiments. Our re-
cent effort, a machine learning-based approach to abductive in-
ference [20], also motivates us to develop more efficient infer-
ence engines, because it requires inference as a subroutine. In
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(∃e1,e2,x1,x2,y1,y2) 
                 john(x1) ∧ go(e1, x1, x2) ∧ bank(x2) ∧ he(y1) ∧ get(e2, y1, y2) ∧ loan(y2)   

loan(y2)  ⇒ (∃e2, y1, y3) issue(e2, y3, y2, y1) ∧ financial_inst(y3) 

Explanation	
 issue(e2, y3, y2, y1) 
⇒ get(e2, y1, y2) 

financial_inst(x2) 
⇒ bank(x2) 

x2=y3 
issue(e2, x2, x3, x1)   
⇒ go(e2, x1, x2) 

x1=y1 

John went to the bank.    He got a loan.  

John and he 
are coreferent	


bank refers to  
a financial bank	


went to the bank  
is the purpose of  

got a loan	


hypothesized	


Observation	


Input	

hypothesized	


Fig. 1 Example of abductive discourse interpretation.

the literature, many researchers have tried to overcome abduc-
tion’s inefficiency by a range of methods from approximation to
exact inference [8], [18], [26], [34], etc. However, to the best of
our knowledge, most of the proposed methods are optimized for
propositional logic. It thus requires to transform knowledge bases
written in first-order predicate logic (FOPL) to propositional level
(i.e. grounding) in order to employ these methods. Typically,
grounding-based approaches generate a quite huge search space,
and does not scale to larger problems.

In this paper, we extend our prior work on the Integer Linear
Programming (ILP)-based formulation of first-order logic abduc-
tion [16], [17] in order to provide an expressive and scalable so-
lution to abductive inference problems. The proposed method ac-
cepts first-order logic as a meaning representation, and is shown
to work efficiently on the real-life NLP problem of RTE. The con-
tributions of this paper are the following:
(i) we describe how Cutting Plane Inference (CPI), an itera-

tive optimization strategy developed in Operations Research,
can be exploited for making FOPL abductive reasoning
tractable;

(ii) we show the runtime efficiency of CPI-based approach by
providing evaluation on a large and real-life NLP dataset,
while existing abductive reasoning systems [16], [17], [21],
[37], etc. are evaluated on rather small datasets;

(iii) the abductive inference engine presented in this paper is
made publicly available.

The structure of our paper is as follows. We start with a brief
review of abduction and abduction-based discourse processing,
taking Hobbs et al. (1993)’s Interpretation as Abduction frame-
work as an motivating example (Sec. 2). We give a brief review
of our prior work, the ILP-based formulation of abduction (Sec.
3.1), and then show how Cutting Plane Inference makes large-
scale FOPL abductive reasoning tractable (Sec. 3.2). We then
evaluate the efficiency of our CPI-based framework on a large and
real-life problem of natural language processing, RTE (Sec. 4).
Finally, we compare our work with existing abductive reasoning
approaches (Sec. 5).

2. Background
2.1 Cost-based abduction

Abduction is inference to the best explanation. Formally, logi-
cal abduction is defined as follows:
• Given: Background knowledge B, and observations O,

where both B and O are sets of first-order logical formulas.
• Find: A hypothesis (or explanation) H such that H ∪ B |=

O,H ∪ B 6|=⊥, where H is a set of first-order logical formu-
las. We say that p is hypothesized if H ∪ B |= p, and that p
is explained if (∃q) q→ p ∈ B and H ∪ B |= q.

Typically, there exist several hypotheses H explaining O. We call
each of them a candidate hypothesis, and each literal in a hy-
pothesis an elemental hypothesis. Cost-based abduction (CBA)
identifies the minimum-cost explanation H∗ among a set H of
candidate explanations. Formally, we find H∗ = argmin

H∈H
cost(H),

where cost is a function H → R, which is called the cost func-
tion. In the literature, several kinds of cost functions have been
proposed, including cost-based and probability-based [7], [14],
[27], [29], [37], etc. We elaborate on how abduction can be po-
tentially useful for solving NLP problems in the next section.

2.2 Interpretation as Abduction
Hobbs et al. [14] pioneered an abduction-based approach for

natural language understanding. The key idea is that “interpret-
ing sentences is to prove the logical forms of sentences, allow-
ing assumptions, merging redundancies where necessary.” They
demonstrate that a wide range of NLP tasks involved in discourse
interpretation, including anaphora resolution, discourse relation
recognition, etc., can be cast as the problem of finding an expla-
nation to the pieces of information observed from the discourse.
Figure 1 depicts an example taken from [14], where the coref-
erence relation between John and he, the intention of John, and
other implicitly stated information are identified as byproduct of
finding an explanation to a given text.

According to [14], one of the important things in abduction-
based NLP is that the cost function should be able to evaluate two
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Candidate Hypothesis: hq(y) hr(A) hs(x) h¬v(x) hs(y) ht(u) hr(x) hv(x) sx,A sx,y sy,A us(x),s(x) ur(x),r(A) 

H1: q(y) ∧ r(A) ∧ s(x) ∧ ¬v(A) 1 1 1 1 0 0 0 0 0 0 0 0 0 
H2: q(y) ∧ r(A) ∧ s(x) ∧ ¬v(A) ∧ s(y) ∧ t(u) 1 1 1 1 1 1 0 0 0 0 0 0 0 
H3: q(y) ∧ r(A) ∧ s(x) ∧ ¬v(A) ∧ r(x) ∧ v(x) 1 1 1 1 0 0 1 1 0 0 0 0 0 
H4: q(y) ∧ r(A) ∧ s(x) ∧ ¬v(A) ∧  
       s(y) ∧ t(u) ∧x=y 1 1 1 1 1 1 0 0 0 1 0 1 0 

Set of potential elemental hypotheses:!
  P ={s(y), t(u), r(x), v(x), q(y), r(A), s(x), ¬v(A), y=x, A=x, y=A} 

Input:!
  B: {r(x) ∧ v(x)→ s(x), s(x) ∧ t(y) → q(x)} 
  O: ∃x, y q(y) ∧ r(A) ∧ s(x) ∧ ¬v(A) 

∃x, y q(y) ∧ r(A) ∧ s(x) ∧ ¬v(A) 

r(x) ∧ v(x) s(y) ∧ t(u)  
y=x A=x 

Backward-chaining:!

ILP representation of search space:!
Output:!
  H*: ∃x, y q(y) ∧ r(A) ∧ s(x) ∧ ¬v(A) ∧ s(y) ∧ t(u) ∧ y=x 

Step 2. Solve ILP optimization problem 

Step 1. Generate P 
ILP constraints:!
C1: hq(y) = 1 
C2: rs(x) ≤ hr(x); hs(y)=ht(u) 
C3: 2ur(x), r(A) ≤ hr(x) + hr(A)  
C4: ur(x), r(A) ≤ sx,A 
C5: sx,A + sx,B ≤ 1 
C6: sy,A  - sx,A - sx,y ≥ -1 
C7: hv(x)  + h¬v(A) + sx,A  ≤ 2 

ILP variables:!

Fig. 2 Summary of Inoue and Inui [16], [17]’s ILP-based approach.

types of plausibility of explanations simultaneously: the correct-
ness and informativeness. The correctness represents how much
reliable the contents of information are. For instance, abduction-
based NLP systems should be able to judge which inference
“hate” or “like” is better to explain “holding one’s hand.” The
informativeness is how specific the information is. In abductive
inference, the more backward-chaining is performed, the more
specific an explanation becomes. However, we want to stop at
some appropriate level because there are often little evidence to
support too specific explanations.

To measure the two types of plausibility, Hobbs et al. [14] pro-
pose the cost function that gives a penalty for assuming specific
and unreliable information but rewards for inferring the same in-
formation from different observations. The resulting framework
is called Weighted Abduction. To the best of our knowledge,
Hobbs et al. [14]’s weighted abduction is the only framework
that concerns the appropriateness of hypothesis specificity. Be-
cause our prior study [16], [17] implements the cost function of
Weighted Abduction, the framework proposed in this paper can
also accommodate the appropriateness of hypothesis specificity.

3. Extending ILP-based Abductive Reasoning
with Cutting Plane Inference

In this section, we extend Inoue and Inui’s ILP-based frame-
work of CBA [16], [17] to make the framework more scalable to
larger domains. We first give a brief review of Inoue and Inui’s
ILP formulation, and then propose to apply Cutting Plane Infer-
ence to CBA for improving the inefficiency of Inoue and Inui’s
formulation.

3.1 ILP formulation of CBA
The key idea of Inoue and Inui’s formulation [16], [17] is that

explanation finding of first-order logic CBA can be regarded as
the constrained combinatorial optimization problem of literals
and variable substitutions. In principle, this way of problem for-

mulation gives us three benefits. First, we can reduce the search
space of candidate hypotheses in comparison to fully grounding
approach, because we are able to avoid instantiating FOPL for-
mula with all possible constants. Second, we can exploit the
state-of-the-art combinatorial optimization technology developed
in Operations Research to find the best explanation. Specifically,
our optimization problem can be naturally formulated as the Inte-
ger Linear Programming (ILP) problem, which can be efficiently
solved by existing ILP solvers. Third, the resulting framework
is highly extensible; e.g., we can easily incorporate linguisti-
cally motivated heuristics by simply adding some ILP variables
and/or constraints to an optimization problem, keeping the overall
framework unchanged.

Let us first give an intuitive description of their approach, using
the diagram illustrated in Figure 2. Given an abduction problem
(i.e., background knowledge B and observations O), they first cre-
ate set P of potential elemental hypotheses, a set of instantiated
literals that are potentially included as constituents of explana-
tions of O (i.e. Step 1 in Figure 2). This procedure is called
the search-space generation. For enumerating potential elemen-
tal hypotheses, they apply backward-chaining with axioms in B,
and instantiate the body of axioms. For instance, in Figure 2, we
add two instantiated literals s(y), t(u) to P, which might be the
explanations of q(y) ∈ O, performing backward-chaining on q(y)
with axiom s(x) ∧ t(y) → q(x). Using the set P, they represent
the search space of explanations as an ILP optimization problem
as follows.

Hypothesis inclusion: For each p ∈ P, ILP variables hp ∈
{0, 1} are introduced to represent whether p is hypothesized (hp =

1) or not (hp = 0). For example, H2 in Figure 2 holds hr(x) = 1,
where r(x) is included in H2.

Cost of hypothesis: The cost cost(H) of each candidate hy-
pothesis H is represented by the sum of the costs for p ∈ P such
that p is included in the hypothesis (i.e., hp = 1). Since they
follow Hobbs et al. [14]’s weighted abduction, they introduce an-
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other ILP variable r ∈ {0, 1} for representing whether p should
pay cost (rp = 0) or not (rp = 1). The final objective function of
the ILP problem is given by:

minimize cost(H) =
∑

p∈{p|p∈P,hp=1,rp=0}
cost(p), (1)

where cost(p) is the cost of a literal p. The cost function can be
automatically learned from datasets. For instance, Yamamoto et
al. [20] propose a supervised approach to learn the cost function
of Weighted Abduction from partially annotated explanations.

The optimization process amounts to Step 2 in Figure 2. Inoue
and Inui [16], [17] optimize this objective with the seven types of
ILP constraints as shown in Figure 2. In the rest of section, we
describe only three of them, which are necessary for the readers
to follow the discussion below.

To handle first-order predicate logic, variable substitution must
be taken into account to control the unification of elemental hy-
potheses. For representing the status of unification, they intro-
duce another class of variables up,q ∈ {0, 1} for each p, q ∈ P,
which takes 1 if p is unified with q. Concerning variable sub-
stitution, another type of ILP variables s are introduced, where
sx,y = 1 if x is substituted for y, 0 otherwise. s is symmetric
(i.e., sx,y = sy,x). In Figure 2, ur(x),r(A) and sx,A are introduced. In
H3, the variables ur(x),r(A), sx,A are set to 1 because r(x) is unified
with r(A), and x = A is assumed. Note that unification of r(x)
with r(A) is allowed only if x are substituted with A. In addition,
the substitution relation must be transitive (e.g. y = A must hold
if x = y and x = A hold). For keeping those consistency, they
impose two ILP constraints:

Constraint 4*1: Two literals q(x1, x2, ..., xn) ≡ q(x) and
q(y1, y2, ..., yn) ≡ q(y) are allowed to be unified (i.e., uq(x),q(y) = 1)
only if all variable substitutions x/y involved in the unification
are activated (i.e., sxi ,yi = 1 for all i ∈ {1, 2, ..., n}). This can be
expressed as:

n · uq(x),q(y) ≤
n∑

i=1

sxi ,yi (2)

In Figure 2, the constraint ur(x),r(A) ≤ sx,A is generated since x
needs to be substituted for A when r(x) and r(A) are unified.

Constraint 6: s is transitive; namely sx,z must be 1 if sx,y = 1
and sy,z = 1. This can be expressed as the following constraints*2:

sx,z − sx,y − sy,z ≥ −1 (3)

−sx,z + sx,y − sy,z ≥ −1 (4)

−sx,z − sx,y + sy,z ≥ −1 (5)

They generate O(n3) transitivity constraints, where n is the num-
ber of logical terms. As the reader will see in Sec. 4, this makes
inference intractable in large-scale inference. To handle logical
negation, [16] introduce the following constraint.

Constraint 7: Two literals q(x1, x2, ..., xn) ≡ q(x) and
¬q(y1, y2, ..., yn) ≡ ¬q(y) cannot be both hypothesized (hq(x) = 1
and h¬q(y) = 1) if variable substitutions xi/yi are activated (sxi ,yi =

*1 The numbers of constraints correspond to the numbers presented in [17].
*2 Inoue and Inui [17] introduce the form of inequality sx,y+ sy,z ≤ 2 · sx,z as

transitivity constraints. However, this constraint does not appropriately
represent transitivity; thus we replace them with inequalities (3)–(5).

Algorithm 1 CPI4CBA(Background Knowledge B, Observation
O)
1: (Ψ, I)← createBaseILP(B,O)
2: repeat
3: S ← solveILP(Ψ, I); V ← {}
4: for (x, y) ∈ unifiedTerms(S ) do
5: for z ∈ termsUnifiableWith(x)∪ termsUnifiableWith(y) do
6: if (sx,z = 0 and sy,z = 1) or (sx,z = 1 or sy,z = 0) then
7: V ← V ∪ {−sx,y − sx,z + sy,z ≥ −1,−sx,y + sx,z − sy,z ≥ −1}
8: end if
9: end for

10: end for
11: I ← I ∪ V
12: until V , φ

1) for all i ∈ {1, 2, ..., n}. This can be expressed as follows:

hq(x) + h¬q(y) +

n∑
i=1

sxi ,yi ≤ 1 + n. (6)

Note that the case where x = y reduces to hq(x) + h¬q(x) ≤ 1. This
type of constraint grows in O(nm) for each predicate p, where
n is the number of positive instantiation of p in P, and m is the
number of negative instantiation of p in P.

3.2 Cutting plane inference for CBA
The major drawback of the presented ILP formulation is that it

generates a large number of transitivity constraints and negation-
handling constraints. Consequently, it often makes inference in-
tractable (see Sec. 4 for empirical evidence).

Our solution to this problem is that “all the transitivity con-
straints may not be violated all at once; so we gradually optimize
and add transitivity constraints if violated in an iterative man-
ner.” More formally, we propose to apply Cutting Plane Infer-
ence (CPI)*3 to the CBA. CPI is an exact inference optimization
technique that is originally developed for solving large linear pro-
gramming (LP) problems in Operations Research [10]. CPI has
been successfully applied to a wide range of constrained opti-
mization problems from probabilistic deductive inference prob-
lems [31] to machine learning problems [19], where constraints
are very large [2], [19], [31], [32], etc. To the best of our knowl-
edge, however, our work is the first successful work to apply CPI
to abductive reasoning tasks. In principle, CPI solves optimiza-
tion problem in an iterative manner as follows: it solves an op-
timization problem without constraints, and then adds violated
constraints to the optimization problem. When the iteration ter-
minates, it guarantees solutions to be optimal. The proposed al-
gorithm, called CPI4CBA, is also an exact inference framework.

How do we apply the technique of CPI to cost-based abduc-
tion problems? Intuitively, we iterate the following two steps: (i)
solving an abduction problem without enforcing transitivity on
logical atomic terms, and (ii) generating transitivity constraints
dynamically when transitiveness of unification is violated (e.g.
x = y ∧ y = z ∧ z , x). The iteration terminates if there is
no violated unification transitivity. The pseudo-code is given in
*3 [16] propose equivalence cluster-based representation of variable unifi-

cation to improve the inefficiency of transitivity constraints. We will
compare cutting plane inference-based approach with the equivalence
cluster-based approach in future work.
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Algorithm 1. In line 1, we first create an ILP optimization prob-
lem without transitivity constraints (i.e. Constraint 6), where Ψ
denotes a set of ILP variables, and I denotes a set of ILP con-
straints. In line 2–12, we repeat: checking consistency of unifica-
tion transitiveness, adding constraints for violated transitiveness,
and re-optimizing. In line 3, we find the solution S for the current
ILP optimization problem. Then, for each pair (x, y) of logical
atomic terms unified in the solution S (line 4), find the logical
term z which is unifiable with x or y (line 5). If the transitive
relation x, y with respect to z is violated (i.e. sx,z = 0 ∧ sy,z = 1
or sx,z = 1 ∧ sy,z = 0), then we generate constraints for prevent-
ing this violation, and keep it in set V of constraints (line 6–8).
Finally, we again perform an ILP optimization with newly gener-
ated constraints (line 11 and 3). The iteration ends when there is
no violated transitiveness (line 12).

The key advantages of CPI4CBA is that it can reduce the time
of search-space generation, and it is also expected to reduce the
time of ILP optimization. CPI4CBA does not generate all the
transitivity constraints before optimization, which saves the time
for search-space generation. In addition, optimization problems
that we solve would become smaller than the original problem in
most cases, because not all the transitivity constraints may not be
necessary to be considered. In the worst case, we need to solve
the optimization problem that is same as the original one; but in
most cases we found out that we do not need to. We will show its
empirical evidence through large-scale evaluation in Sec. 4.

4. Runtime Evaluation
How much does CPI improve the runtime of ILP-based rea-

soner? Does CPI scale to larger real-life problems? To answer
these questions, we evaluated the CPI4CBA algorithm in two set-
tings: (i) STORY, the task of plan recognition, and (ii) RTE, the
popular, knowledge-intensive, real-life natural language process-
ing task of Recognizing Textual Entailment (RTE). While most
of the existing abductive reasoning systems, including Inoue and
Inui [16], [17]’s system, are evaluated on rather small, and/or ar-
tificial datasets [21], [29], [37], etc, our evaluation takes a real-
life, much larger datasets. In our experiments, we compare our
system with the systems [3], [21], [37] based on Markov Logic
Networks (MLNs) [30]. For our experiments, we have used a 12-
Core Opteron 6174 (2.2GHz) 128 GB RAM machine. We used
Gurobi Optimizer*4, which is an efficient ILP solver. It is com-
mercial but an academic license is freely available.

4.1 Settings
STORY: For this setting, we have used Ng and Mooney (92)’s

story understanding dataset, which is widely used for evalua-
tion of abductive plan recognition systems [16], [21], [29], [37].
In this task, we need to abductively infer the top-level plans
of characters from actions which are represented by the logical
forms (e.g. getting off(Getoff16)∧ agent get off(Getoff16,Fred16)∧
name(Fred16,Fred)). The dataset consists of 50 plan recognition
problems and 107 background Horn clauses (e.g. go step(r, g) ∧
going(g)→ robbing(r)). The dataset contains on average 12.6 liter-

*4 http://www.gurobi.com/

als in observed logical forms. To make the predicates represent-
ing top-level plans (e.g. shopping, robbing) disjoint, we gener-
ated 73 disjointness axiom by using the formulation*5 described
in Sec. 3.1. Regarding a cost function, we followed Hobbs et al.
[14]’s weighted abduction theory. For each axiom, we have set
each weight so that the sum of the axiom weights equal to 1.2
(e.g. inst shopping(s)0.6 ∧ store(t, s)0.6 → shopping place(t) ).

RTE: For observations (input), we employed the second chal-
lenge of RTE dataset*6. In the task of RTE, we need to correctly
determine whether one text (called text, or T) entails another
(called hypothesis, or H) or not. The dataset consists of develop-
ment set and test set, each of which includes 800 natural language
text-hypothesis pairs. We have used all of the 800 texts from test
set. We have converted texts into logical forms presented in [13]
using the Boxer semantic parser [4]. The number of literals in
observations is 29.6 literals on average. For background knowl-
edge, we have extracted 289,655 axioms*7 from WordNet 3.0
[11], and 7,558 axioms from FrameNet 1.5 [33] following [24].
In principle, the WordNet knowledge base contains several kinds
of lexical relations between words, such as IS-A, ontological re-
lations (e.g. dog(x) → animal(x)). FrameNet knowledge bases
contain lexeme-to-frame mappings, frame-frame relations, etc.
For example, the mapping from surface realization “give to” to a
frame “Giving” is given by: Giving(e1, x1, x2, x3)1.3∧donor(e1, x1)0.1

∧recipient(e1, x2)0.2∧ theme(e1, x3)0.1 → give(e1, x1, x3)∧ to(e2, e1, x2)
. We again followed Hobbs et al. (1993)’s weighted abduction
theory for calculating the cost of hypothesis. We calculated the
costs by following Ovchinnikova et al. (2011) in this setting.

4.2 Results and discussion
The reasoner was given a 2-minute time limit for each infer-

ence step (i.e. search-space generation and ILP optimization).
In Table 1, we show the results of each setting for two infer-
ence method in Table 1: (i) IAICBA: the inference method with-
out CPI (i.e. Inoue and Inui’s system [16]), and (ii) CPI4CBA:
inference method with CPI. In order to investigate the relation
between the size of search space and the runtime, we show the
results for each depth, which we used for limiting the length of
backward-chaining. In the “Generation” column, we show the
runtime that is taken for search-space generation in seconds aver-
aged over all problems whose search-space generation is finished
within 2 minutes. In the parenthesis, we show the percentage of
those problems. In the column “ILP inf”, we show the runtime
of ILP optimization averaged on only problems such that both
search-space generation and ILP optimization are finished within
2 minutes, as well as the percentage of those problems (e.g. 80 %
means “for 80 % of all the problems, search-space generation was
finished within 2 minutes, and so was ILP inference.”). In the “#
of ILP cnstr” column, we show the averaged number of generated
ILP constraints. Concerning CPI4CBA, the number denotes the
total number of constraints considered in the end, including the
constraints added by CPI. The number marked by ∆ indicates the

*5 For example, we generate hrobbing(x) + hshopping(y) + sx,y ≤ 2.
*6 http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/
*7 Extracted relations are: word-to-synset mapping, hypernym-hyponym,

cause-effect, entailment, derivational, instance-of relations.
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Setting Method Depth Generation [sec.] ILP inf [sec.] # of ILP cnstr
(timeout = 120) (timeout = 120)

STORY

IAICBA

1 0.02 (100.0 %) 0.60 (100.0 %) 3,708
2 0.12 (100.0 %) 5.34 (100.0 %) 23,543
3 0.33 (100.0 %) 8.11 (100.0 %) 50,667
∞ 0.35 (100.0 %) 9.00 (100.0 %) 61,122

CPI4CBA

1 0.01 (100.0 %) 0.34 (100.0 %) 784 (∆ 451)
2 0.07 (100.0 %) 4.15 (100.0 %) 7,393 (∆ 922)
3 0.16 (100.0 %) 3.36 (100.0 %) 16,959 (∆ 495)
∞ 0.22 (100.0 %) 5.95 (100.0 %) 24,759 (∆ 522)

RTE

IAICBA

1 0.01 (100.0 %) 0.25 (99.7 %) 1,104
2 0.08 (100.0 %) 2.15 (98.1 %) 5,185
3 0.56 (99.9 %) 5.66 (93.0 %) 16,992
∞ 4.78 (90.7 %) 15.40 (60.7 %) 36,773

CPI4CBA

1 0.01 (100.0 %) 0.05 (100.0 %) 269 (∆ 62)
2 0.04 (100.0 %) 0.35 (99.6 %) 1,228 (∆ 151)
3 0.09 (100.0 %) 1.66 (99.0 %) 2,705 (∆ 216)
∞ 0.84 (98.4 %) 11.73 (76.9 %) 10,060 (∆ 137)

Table 1 The results of averaged inference time in STORY and RTE.

number of constraints that are added during CPI (i.e. how many
times line 7 in Algorithm 1 executed).

Overall, the runtimes in both search-space generation and ILP
inference are dramatically improved from IAICBA to CPI4CBA
in both settings, as shown in Table 1. In addition, CPI4CBA can
find optimal solutions in ILP inference for more than 90 % of the
problems, even for depth∞. This indicates that CPI4CBA scales
to larger problems. From the results of IAICBA in RTE settings,
we can see the significant bottleneck of IAICBA in large-scale
reasoning: the time of search-space generation. The search-space
generation could be done within 2 minutes for only 90.7 % of
the problems. CPI4CBA successfully overcomes this bottleneck.
CPI4CBA is clearly advantageous in the search-space generation
because it is not necessary to generate transitivity constraints, an
operation that grows cubically before optimization.

In addition, CPI4CBA also reduces the time of ILP inference
significantly. In ILP inference, CPI did not guarantee the reduc-
tion of inference time in theory; however, as shown in Table 1, we
found that the number of ILP constraints actually used is much
less than the original problem. Therefore, CPI4CBA success-
fully reduces the complexity of the ILP optimization problems in
practice. This is also supported by the fact that CPI4CBA keeps
76.9% in “ILP inf” for Depth = ∞ because it solves very large
ILP optimization problems that fail to be generated in IAICBA.
In order to see how CPI contributes to the improvement of ILP
inference time, we show how the runtime of IAICBA is affected
by CPI4CBA method for each problem in Figure 3. Each data
point corresponds to one problem in STORY and RTE settings.
We show the data points for problems that we found optimal so-
lutions in ILP inference for Depth = ∞. Overall, the runtime of
CPI4CBA is smaller than IAICBA in most problems. In partic-
ular, we can see that CPI4CBA successfully reduces the time of
ILP inference for larger problems by exploiting the iterative op-
timization technique. In the larger domain of RTE setting, we
found that the performance was improved in 81.7 % of the prob-
lems.

Finally, we compare our results with other existing systems.
First, we immediately see that the proposed method is more effi-
cient than Inoue and Inui [17]’s formulation (i.e. IAICBA). Re-
garding the MLN-based systems [3], [21], [37], our results are

comparable, or more efficient than the existing systems. For the
STORY setting, Singla and Mooney (2011) report the results
of two systems with an exact inference technique using CPI for
MLNs [31]: (i) Kate and Mooney (2009)’s approach: 2.93 sec-
onds, and (ii) Singla and Mooney (2011)’s approach: 0.93 sec-
onds*8. MLN-based approaches seem to be reasonably efficient
for small datasets. However, it does not scale to larger problems;
for the RTE setting, Blythe et al. (2011) report that only 28 from
100 selected RTE-2 problems could be run to completion with
only the FrameNet knowledge bases. The processing time was
7.5 minutes on average (personal communication)*9. On the other
hand, our method solves 76.9% of all the problems, where sub-
optimal solutions are still available for the rest of 21.5%, and it
takes only 0.84 seconds for search-space generation, and 11.73
seconds for ILP inference.

5. Related work
A number of efficient methods for solving cost-based abduc-

tion have been proposed [1], [8], [12], [18], [28], [34], etc; how-
ever, most of them focus on improving the inefficiency of proposi-
tional logic-based abduction. Although propositionalization tech-
niques are available for applying these methods to FOPL abduc-
tion, it will lead to an exponential growth of ground instances.
Hence they would not scale to larger problems for performing
FOPL abduction with large knowledge bases, as discussed in Sec.
3.1.

One important work for FOPL abduction is Inoue and Inui
[16], [17]’s approach formulating first-order predicate logic ab-
duction as an ILP optimization problem. It supports FOPL as
a meaning representation, and provides a scalable solution. The
key idea to make FOPL inference tractable is that they avoid ex-
panding first-order logic formulas with all possible bindings, and
formulate the task of FOPL inference as the constrained combina-
torial optimization problem of literals and variable substitutions.
However, as mentioned in Sec. 3.1, this formulation still has a

*8 This is the result of MLN-HC in [37]. MLN-HCAM cannot be directly
compared with our results, since the search space is different from our
experiments because they unify some assumptions in advance to reduce
the search space.

*9 They used 56,000 FrameNet axioms in the experiments, while we used
289,655 WordNet axioms and 7,558 FrameNet axioms.
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Fig. 3 Runtime comparison between IAICBA and CPI4CBA (logarithmic scale). The left figure shows
the results of STORY dataset, and the right figure shows the results of RTE datasets.

significant drawback for large-scale reasoning on real-life prob-
lems: the combinatorial growth of transitivity constraints which
arises from support for FOPL (see Sec. 3.2). Our work success-
fully overcomes the significant drawback by employing Cutting
Plane Inference-based approach.

Recently, researchers in the field of Statistical Relational
Learning have been emulated abductive inference [3], [21], [37],
etc. on Markov Logic Networks (MLNs) [30]. MLNs provide full
support of first-order predicate logic and the software packages of
inference and learning; however, MLN-based approaches require
special procedures to convert abduction problems into deduction
problems because of the deductive nature of MLNs. The pio-
neering work of MLN-based abduction [21] converts background
axioms into MLN logical formulae by (i) reversing implication
and (ii) constructing axioms representing mutual exclusiveness
of explanation (e.g. the set of background knowledge axioms
{p1 → q, p2 → q, p3 → q} is converted into the following MLN
formulae: q → p1 ∨ p2 ∨ p3, q → ¬p1 ∨ ¬p2, q → ¬p1 ∨ ¬p3

etc.). As the readers can imagine, MLN-based approach suffers
from the inefficiency of inference due to the increase of converted
axioms. As for learning, we are also working on developing a ma-
chine learning-based approach for cost assignments (see [20] for
further detail).

6. Conclusion
We have proposed an efficient ILP-based formulation for cost-

based abduction in first-order predicate logic, extending Inoue
and Inui [16], [17]’s approach. Compared to prior work, our
method is more expressive and efficient. Although FOPL rea-
soning is computationally expensive, the proposed optimization
strategy using Cutting Plane Inference brings us to a significant
boosting of the efficiency of the reasoner. We have evaluated our
method on two datasets, including a real-life problem (i.e. RTE
dataset with axioms generated from WordNet and FrameNet).
Our evaluation revealed that our inference method CPI4CBA was

highly efficient than other existing systems. The abductive infer-
ence engine presented in this paper is made publicly available.

In future work, we plan to apply Cutting Plane Inference to
both the search-space generation and ILP inference, repeating the
generation of potential elemental hypotheses and ILP optimiza-
tion interactively, as in cutting plane MAP inference in MLNs
[31]. We are also planning to develop a machine learning-based
approach for automatic tuning of cost functions. Our group has
already achieved neural networks-based approach to learn the
cost function of Weighted Abduction [20], but we are also ex-
ploring another direction: to generalize the cost function as a
weighted linear feature function, and then apply a standard linear
training algorithm such as perceptrons. We will then evaluate the
abduction-based framework in terms of the prediction accuracy
on real-life tasks. We intend to apply abduction to co-reference
resolution as a first step.

Acknowledgments
This work was partially supported by Grant-in-Aid for JSPS

Fellows (22-9719) and Grant-in-Aid for Scientific Research
(23240018).

References
[1] A. M. Abdelbar and M. Hefny. An efficient lp-based admissible

heuristic for cost-based abduction. JETAI, 17(3):297–303, 2005.
[2] J. Berant, T. Aviv, and J. Goldberger. Global Learning of Typed En-

tailment Rules. In ACL, pages 610–619, 2008.
[3] J. Blythe, J. R. Hobbs, P. Domingos, R. J. Kate, and R. J. Mooney.

Implementing Weighted Abduction in Markov Logic. In IWCS, pages
55–64, Oxford, UK, 2011.

[4] J. Bos. Wide-Coverage Semantic Analysis with Boxer. In STEP, pages
277–286, 2008.

[5] T. Bylander, D. Allemang, M. C. Tanner, and J. R. Josephson. The
computational complexity of abduction. Artificial Intelligence, 49(1-
3):25–60, may 1991.

[6] N. Chambers and D. Jurafsky. Unsupervised Learning of Narrative
Schemas and their Participants. In ACL, pages 602–610, 2009.

[7] E. Charniak and R. P. Goldman. A Probabilistic Model of Plan Recog-
nition. In AAAI, pages 160–165, 1991.

[8] S. T. Chivers, G. A. Tagliarini, and A. M. Abdelbar. An Evolutionary
Optimization Approach to Cost-Based Abduction, with Comparison
to PSO. In IJCNN, pages 2926–2930, 2007.

c© 2012 Information Processing Society of Japan 7

Vol.2012-NL-208 No.5
2012/9/2



IPSJ SIG Technical Report

[9] I. Dagan, B. Dolan, B. Magnini, and D. Roth. Recognizing textual
entailment: Rational, evaluation and approaches - Erratum. NLE,
16(1):105, 2010.

[10] G. B. Dantzig, R. Fulkerson, and S. M. Johnson. Solution of a large-
scale traveling salesman problem. Operations Research, 2(4):393–
410, 1954.

[11] C. Fellbaum, editor. WordNet: an electronic lexical database. MIT
Press, 1998.

[12] C. Guinn, W. Shipman, and E. Addison. The Parallelization of Mem-
brane Computers to Find Near Optimal Solutions to Cost-Based Ab-
duction. In GEM, pages 241–2–47, 2008.

[13] J. R. Hobbs. Ontological promiscuity. In ACL, pages 61–69, Chicago,
Illinois, 1985.

[14] J. R. Hobbs, M. Stickel, P. Martin, and D. Edwards. Interpretation as
abduction. Artificial Intelligence, 63:69–142, 1993.

[15] D. Hovy, C. Zhang, E. Hovy, and A. Penas. Unsupervised discovery
of domain-specific knowledge from text. In ACL, pages 1466–1475,
2011.

[16] N. Inoue and K. Inui. An ILP Formulation of Abductive Inference
for Discourse Interpretation. In IPSJ SIG Technical Reports, volume
2011-NL-203.

[17] N. Inoue and K. Inui. ILP-Based Reasoning for Weighted Abduction.
In AAAI Workshop on Plan, Activity and Intent Recognition, 2011.

[18] M. Ishizuka and Y. Matsuo. SL Method for Computing a Near-optimal
Solution using Linear and Non-linear Programming in Cost-based Hy-
pothetical Reasoning. In PRCAI, pages 611–625, 1998.

[19] T. Joachims, T. Finley, and C. J. Yu. Cutting-plane training of struc-
tural svms. In Machine Learning, pages 27–59, 2009.

[20] K. Yamamoto and N. Inoue and Y. Watanabe and N. Okazaki and
K. Inui. Backpropagation Learning for Weighted Abduction (in
Japanese). volume 2012-NL-206, 2012.

[21] R. J. Kate and R. J. Mooney. Probabilistic Abduction using Markov
Logic Networks. In PAIRS, 2009.

[22] R. Mulkar, J. Hobbs, and E. Hovy. Learning from Reading Syntacti-
cally Complex Biology Texts. In Commonsense, Palo Alto, 2007.

[23] H. T. Ng and R. J. Mooney. Abductive Plan Recognition and Diagno-
sis: A Comprehensive Empirical Evaluation. In KR, pages 499–508,
1992.

[24] E. Ovchinnikova, N. Montazeri, T. Alexandrov, J. R Hobbs, M. Mc-
Cord, and R. Mulkar-Mehta. Abductive Reasoning with a Large
Knowledge Base for Discourse Processing. In IWCS, pages 225–234,
Oxford, UK, 2011.

[25] S. Espinosa Peraldi, A. Kaya, S. Melzer, R. Möller, and M. Wessel.
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