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Abstract: As the capability and component count of high performance computing systems increase, the mean time

before failure correspondingly decreases. Typically, applications tolerate failures with checkpoint/restart, where an ap-

plication writes its state in checkpoints on the parallel file system (PFS); upon failure the application restarts from the

last checkpointed state. While simple, this approach suffers from high overhead due to contention for PFS resources. A

promising solution to this problem is multi-level checkpointing. However, while multi-level checkpointing is success-

ful on today’s machines, it is not expected to be sufficient for exa-scale class machines, where the total memory sizes

and failure rates are predicted to be orders of magnitude higher. Our solution to this problem is a system that combines

the benefits of asynchronous and multi-level checkpointing. In this paper, we present the design of our system and a

model describing its performance. Our experiments show that our system can improve efficiency by 1.1 to 2.0 × on

future machines. Additionally, applications using our checkpointing system can achieve high efficiency even when

using a PFS with lower bandwidth.

1. Introduction

The computational power of High Performance Computing

(HPC) systems is growing exponentially, which enables re-

searchers to conduct fine-grained scientific simulations. How-

ever, the overall failure rate of HPC systems increases with the

size of the system. For example, in the year and a half from

November 1st 2010 to April 6th 2012, the TSUBAME2.0 cluster

experienced 962 node failures due to a variety of failures ranging

from memory errors to whole rack failures [1]. This means that a

failure occurred every 13.0 hours on average. Moreover, in future

systems, the MTBF (mean time between failures) is projected to

shrink to only tens of minutes [2]. Without a viable resilience

strategy, it will be impossible for an application to run for even

one day on such a large machine. Thus, resilience in HPC has

become more important than ever as we plan for future systems.

Checkpointing is an indispensable fault tolerance technique,

commonly used by HPC applications that run continuously for

hours or days at a time. A checkpoint is a snapshot of application

state that can be used to restart execution if a failure occurs. How-

ever, when checkpointing large-scale systems, tens of thousands

of compute nodes write checkpoints to a parallel file system (PFS)

concurrently, and the low I/O throughput becomes a bottleneck.

Although simple, this straightforward checkpointing scheme can

impose huge overheads on application run times.
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Multi-level checkpointing [3], [4] is a promising approach for

addressing these problems. This approach uses multiple storage

levels, such as RAM, local disk, and the PFS, according to the

different degrees of resiliency and the cost of checkpointing in

those storage levels. Multi-level checkpointing systems typically

rely on node-local storage levels for restarting from more com-

mon failures, such as single-node failures, and the PFS for more

catastrophic failures. By taking frequent, inexpensive node-local

checkpoints, and less frequent, high-cost checkpoints to the PFS,

applications can achieve both high resilience and better efficiency.

However, the bandwidths of PFSs do not keep pace with in-

creases in computational capabilities, and the imbalance in per-

formance means applications can be blocked for tens of minutes

for a single checkpoint [3]. Thus, the overhead of checkpoint-

ing to the PFS can dominate the overall application run time even

with infrequent PFS checkpoints. Moreover, the huge number of

concurrent I/O operations from large-scale jobs burden the PFS

and are themselves a major source of failures. Thus, it is critical

to achieve both high reliability and efficiency while reducing the

load on the PFS.

Our solution to this problem is an asynchronous checkpoint-

ing system in which agents running on additional nodes asyn-

chronously transfer checkpoints from the compute nodes to the

PFS. Our approach has two key advantages. It lowers the over-

head of checkpointing on the application by allowing the overlap

of computation and writing checkpoints to the PFS. Also, it re-

duces the load on the PFS by reducing the number of concurrent

writers and moderating the rate of I/O operations to the PFS.

The major contributions of this paper are listed as follows:

• the design of an asynchronous checkpointing system
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Fig. 1 The asynchronous checkpointing system

• a Markov model of asynchronous checkpointing on top of

any multi-level checkpointing systems

• a comprehensive exploration of asynchronous checkpointing

on current and future systems.

Our experimental results show that our asynchronous check-

pointing system can improve efficiency by 1.1 to 2.0 times on

future systems. Additionally, we found that combining asyn-

chronous and multi-level checkpointing results in highly efficient

application runs with low requirements for PFS bandwidth.

2. Asynchronous Checkpointing System

Overlapping I/O with computation by delegating operations to

dedicated I/O nodes is known to improve application performance

and to mitigate workload imposed on the PFS [5], [6]. Further-

more, as aforementioned, an application using multi-level check-

pointing does not require frequent checkpoints to a PFS. By com-

bining long intervals between consecutive PFS checkpoints with

asynchronous flushes (which we refer to as asynchronous check-

points), data can be copied to the PFS at a slow rate to reduce

impact on the application as well as the PFS. Our asynchronous

checkpointing system is developed as an extension to the SCR

library [7]; it asynchronously transfers node-local checkpoints

written by SCR to the PFS. In this section, we cover the design of

our asynchronous checkpointing system.

2.1 Architecture

As shown in Figure 1, our asynchronous checkpointing system

has two types of nodes: compute nodes and staging nodes. The

compute nodes are the nodes on which an application is executed.

The staging nodes are a group of nodes that are used to trans-

fer checkpoints from the compute nodes to the PFS. The stag-

ing nodes asynchronously read checkpoint data from the compute

nodes and write data to the PFS while the application continues to

execute and write other checkpoints to cache as node-local check-

points. Generally, each staging node handles multiple compute

nodes, and the exact ratio is determined by modeling and experi-

mental testing (See Sections 3 and 4).

A staging client process runs on each compute node, and a

staging server process runs on each staging node. When SCR

finishes caching a checkpoint (node-local checkpoint) that is to

be flushed to the PFS, it signals the staging client process via a li-

brary function call. The staging client then sends a request to the

staging server and the two processes execute a protocol to trans-

fer the checkpoint; we give details in Section 2.2. The staging

server reads checkpoints from the compute nodes using Remote

Direct Memory Access (RDMA) to minimize CPU usage on the

compute nodes.
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Fig. 2 Proposed asynchronous checkpointing client/server using

RDMA

By using additional nodes to transfer checkpoint data with

RDMA, our asynchronous checkpointing system can drain a

checkpoint from compute nodes to a PFS while minimizing the

impact on the application runtime.

2.2 RDMA checkpoint transfers

We implemented an RDMA checkpoint transfer system for

asynchronous checkpointing based on the SCR library [7]. The

existing SCR asynchronous flush reads a checkpoint from a lo-

cal storage to a buffer and directly writes the checkpoint from

the buffer to the PFS. We extended this implementation to drain

a checkpoint from compute nodes to the PFS through a staging

node using RDMA transfers. The other checkpoint management,

such as version, checkpoint location and redundancy scheme, re-

lies on the original SCR library. Figure 2 describes the archi-

tecture. The staging client and server processes run on compute

nodes and staging nodes, respectively. These processes transfer

and write checkpoints to the PFS.

Here, we explain how a checkpoint on a compute node is writ-

ten to the PFS through a staging node. For simplicity, we assume

that the SCR library writes checkpoints to local storage according

to a particular redundancy scheme (Step 1 in Figure 2). After sev-

eral checkpoints are written to local storage, SCR writes transfer

information into a file called transfer.info to request the staging

client to transfer the checkpoint according to specified flush fre-

quency (Step 2). The transfer.info file includes the source and

destination paths from and to which the checkpoint should be

flushed. The staging client process periodically checks the trans-

fer.info file to see if SCR has issued the request (Step 3). If the

staging client detects a request in transfer.info, it reads the check-

point from the source path and writes to local RDMA buffer space

(Step 4). Once the staging client fills the buffer, it calls an RDMA

client function to send out the chunk of checkpoint data in the

buffer (Step 5). Since the RDMA client function returns control

immediately, the staging client process can read the next chunk

to one of the buffer entries in the buffer pool (Figure 2 shows the

double-buffering case) while the RDMA client transfers check-

point chunks to the staging server. The RDMA client issues a re-

quest for the chunk transfer to an RDMA server (Step 6). When

the RDMA server running on the staging node receives a transfer

request, an RDMA read request is issued to the staging client to

read the remote buffer space into a local buffer, which then sends

an acknowledgement to the RDMA client. The RDMA client is-

sues RDMA read requests until all chunks are sent to the staging
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Fig. 3 Asynchronous checkpointing can hide L2 checkpoint overhead

node (Step 7-9). Finally, the data writer threads write the check-

point to the PFS in parallel with RDMA reads by the RDMA

server (Step 10-11).

To transfer checkpoints from thousands of compute nodes with

fewer staging nodes, a staging server can concurrently handle

RDMA requests from multiple staging clients. However, a large

amount of incoming checkpoint data can cause a buffer overflow

on a staging node. To avoid this, if buffered checkpoint data ex-

ceeds a specified buffer size limit, the staging nodes throttle the

RDMA read rate to balance incoming and outgoing checkpoint

data. Thus, to avoid imbalance in incoming and outgoing data,

We discuss determination of the appropriate number of staging

nodes.

2.3 Synchronous and Asynchronous Checkpointing

While intuitively an asynchronous checkpointing is expected

to be efficient, an asynchronous one have advantages and disad-

vantages. Figure 3 shows the difference between synchronous

and asynchronous checkpointing. While an asynchronous one

writes checkpoints in the background of an application execution,

synchronous one blocks the application until the copy has com-

pleted. To clarify the differences, we characterize both schemes

with two metrics, checkpoint overhead and checkpoint latency.

Checkpoint overhead (C) is the increased execution time of an

application because of checkpointing. Checkpoint latency (L) is

the duration of time it takes to complete a checkpoint.

During synchronous checkpointing, each process writes its

own checkpoint data to the PFS, and blocks until the checkpoint

operation completes. Thus, the checkpoint overhead is identical

to the checkpoint latency, i.e., Cblk = Lblk = tb − ta. N itera-

tions of synchronous checkpointing result in N ×Cblk increase in

application runtime.

During asynchronous checkpointing, since each process con-

tinues computation during the PFS checkpoint, the checkpoint

overhead is generally smaller than the checkpoint latency, Cnblk ≤
Lnblk = tc−ta. Here, Cnblk and Lnblk are determined by the applica-

tion characteristics. If an application is computation or network

bound, Cnblk and Lnblk increase due to resource contention, and

Lnblk (= tc − ta) becomes larger than Lblk (= tb − ta). Actually, to

initiate an asynchronous checkpoint, an application need to write

its checkpoint data to local storages, such as RAM disks, SSDs.

During the write operations, an application is blocked, and the

overhead is added to Cnblk.

Asynchronous checkpointing has advantages over synchronous

checkpointing. With asynchronous checkpointing, Cnblk can be

minimized by slowly writing checkpoint data to the PFS, thereby

alleviating resource contention. Because lower-level checkpoints

can continue to be cached on the compute nodes during an asyn-

chronous checkpoint, the application can take more frequent

checkpoints and increase resiliency with low checkpoint over-

head. In contrast, when an application takes a synchronous

checkpoint to the PFS, the application loses Cblk potential com-

putation time, and it is significantly more vulnerable to failure, as

heavy load on the PFS increases the likelihood of failure of the

PFS.

Thus, intuitively we expect asynchronous checkpointing to be

more efficient than synchronous checkpointing. However, asyn-

chronous checkpointing has a disadvantage. In Figure 3, the

synchronous checkpoint completes at tb while the asynchronous

checkpoint finishes at tc. If a failure which requires PFS check-

point occurs in the period between tb and tc, an asynchronous

checkpointing system incurs a catastrophic rollback to much

older checkpoint, because the PFS checkpoint is not available at

the time of the failure. On the other hand, synchronous check-

pointing only rollbacks to tb. Therefore, with asynchronous

checkpointing, the checkpoint interval, Cnblk, Lnblk, and the fre-

quency of each level of checkpoint must be optimized to lower

the risk of the catastrophic rollback.

3. Asynchronous Checkpointing Model

As mentioned previously, with asynchronous checkpointing,

several factors are critical to performance: checkpoint interval,

Cnblk, Lnblk, and frequency of each level of checkpoint. To de-

termine the optimal values, we extend an existing model of a

multi-level checkpointing system [3] to support our asynchronous

checkpointing system.

3.1 Assumptions

For simplification, we make several assumptions in our asyn-

chronous checkpointing model. Because our model is constructed

on a top of an existing one, we include the assumptions made in

the existing model [3]. We highlight the important assumptions

here.

We assume that failures are independent across components

and occur following a Poisson distribution. Thus, a failure within

a job does not increase the probability of successive failures. In

reality, some failures can be correlated. For example, failure of a

PSU (Power supply unit) can take out multiple nodes. The XOR

encoding can actually handle failures category 2 and even higher.

In fact, using topology-aware techniques, the probability of those

failures affecting processes in the same XOR set is very low. In

such cases you don’t need to restart from the PFS. SCR also ex-

clude problematic nodes from restarted runs. Thus, the assump-

tion implies that the average failure rates do not change and dy-

namic checkpoint interval adjustment is not required during ap-

plication execution.

We also assume that the costs to write and read checkpoints

are constant throughout the job execution. In reality, I/O per-
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Fig. 4 The basic structure of the asynchronous checkpointing model

formance can fluctuate because of contention for shared PFS re-

sources. However, staging nodes serve as a buffer between the

compute nodes and the PFS. Thus, our system mitigates the per-

formance variability of the PFS.

If a failure occurs during asynchronous checkpointing, we as-

sume that checkpoints cached on failed nodes have not been writ-

ten to the PFS. Thus, we need to recover the lost checkpoint data

from redundant stores on the compute nodes, if possible, and if

not, locate an older checkpoint to restart the application. This

could be an older checkpoint cached on compute nodes, assum-

ing multiple checkpoints are cached, or a checkpoint on the PFS.

3.2 Basic model structure

As employed in the existing model [3], we use a Markov model

to describe run time states of an application. We construct the

model by combining the basic structures shown in Figure 4. The

basic structure has computation (white circle) and recovery (blue

circle) states labeled by a checkpoint level. The computation

states represent periods of application computation followed by

a checkpoint at the labeled level. The recovery state represents

the period of restoring from a checkpoint at the labeled level.

If no failures occur during a compute state, the application tran-

sitions to the next right compute state (gray arrow). We denote the

checkpoint interval between checkpoints as t, the cost of a level c
checkpoint as cc, and rate of failure requiring level k checkpoint

as λk. The probability of transitioning to the next right compute

state and the expected time before transition are p0(t + cc) and

t0(t + cc) where:

p0(T ) = e−λT

t0(T ) = T

We denote λ as the summation of all levels of failure rates, i.e.,

λ =
∑L

i=1 λi where L represents the highest checkpoint level. If

a failure occurs on during a compute state, the application tran-

sitions to the most recent recovery state which can handle the

failure (bule arrow). If the failure requires level i checkpoint or

less to recover and the most recent recover state is at level k where

i ≤ k, the application transitions to the level k recovery state. The

expected probability of i level failure in an interval t+ cc, and run

time before the transition from the compute state c to the recovery

state k are pi(t + cc) and ti(t + cc) where:

pi(T ) =
λi

λ
(1 − e−λT )

ti(T ) =
1 − (λT + 1) · e−λT
λ · (1 − e−λT )

During recovery, if no failures occur, the application transitions

to the compute state that took the checkpoint that was used for re-

covery (red arrow). If cost of recovery from a level k checkpoint is

rk, the expected probability of the transition and the expected run

time are given by p0(rk) and t0(rk). If a failure requiring i level

checkpoint occurs while recovering, and i < k, we assume the

current recovery state can retry the recovery. However, if i ≥ k,

we assume the application must transition to a higher-level recov-

ery state. The expected probabilities and times of failure during

recovery are pi(rk) and ti(rk). We also assume that the highest

level recovery state (level L) that uses checkpoints on the PFS,

can be restarted in the event of any failure i ≤ L.

3.3 Asynchronous checkpoint model
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Fig. 5 Transition diagram of the asynchronous checkpointing

We describe our model of asynchronous checkpointing by

combining the basic structures from Figure 4. We show a two

level example in Figure 5. If no failures occur during execution,

the application simply transitions across the compute states in se-

quence (Figure 5(a)). In this example, level 1 (L1) checkpoints

(e.g., XOR checkpoints) are taken as synchronous checkpoints,

and level 2 (L2) checkpoints (e.g., PFS checkpoints) are taken
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as asynchronous checkpoints. With synchronous checkpointing,

the checkpoint becomes available at the completion of the cor-

responding compute state. Thus, if an L1 failure occurs, the ap-

plication transitions to the most recent L1 recovery state (Figure

5(b)). On the other hand, with asynchronous checkpointing, the

L2 checkpoint is not finished when the L2 compute state com-

pletes. Therefore, compute states can be divided into two segment

types, incomplete segments and complete segments. A computa-

tion state in an incomplete segment represents a period where the

L2 checkpoint has started but is not yet complete. For example,

if an L2 failure occurs in incomplete segment 2, the application

transitions to the recovery state for the last completed L2 check-

point (L2-1 in Figure 5(c)). When an L2 failure occurs in a com-

plete segment 3, the application transitions to the recovery state

for the completed L2 checkpoint (L2-2 in Figure 5(c)).

In Figure 6, we show the general structure of our asynchronous

checkpointing model. Our model is composed of hierarchical

states, with the outermost state denoted as a W(k) state. The def-

inition of Z(k, c) and its expected probabilities and times for tran-

sition to other states were defined in the original exisiting model

[8]. In incomplete segments, interference from competing asyn-

chronous operations can inflate the time in compute states before

transitions; therefore, we extend the definition of Y(k, c) to re-

flect the interference. We introduce an overhead factor, α, which

quantifies the overhead induced upon compute states in incom-

plete segments by asynchronous checkpointing. We define the

time spent in compute states in an incomplete segment as (1+α)t,
where t is the sum of the computation time and the time to com-

plete an L1 checkpoint. Thus, the expected probability and time

for compute states in Yα(k, c), become p0 (T ), t0 (T ), pi (T ) and

ti (T ) where T = (1 + α) t+ cc. Using the model, we can compute

the expected time to complete a given number of compute states

with an arbitrary number of checkpointing levels.

4. Evaluation

In this section, we compare our asynchronous checkpointing

system to the synchronous, multi-level checkpointing system pre-

sented in [3]. For illustration, we model a two-level system where

the first level uses SSD on the compute nodes with a type of

RAID5 redundancy scheme and the second level is a PFS.

4.1 Tuning of asynchronous checkpointing

Checkpoint efficiency highly depends on I/O throughput, so it

is important to tune I/O operations such that the staging nodes

fully exploit the available I/O performance. Generally, I/O

throughput to a PFS can be accelerated by writing with multi-

ple threads, and so we designed the staging server process to be

multi-threaded. Our goal is to find the optimal numbers of threads

and staging nodes such that we can obtain near peak performance

from the PFS. As a target PFS, we use Lustre file system [9] on

TSUBAME2.0. A TSUBAME2.0 node has two sockets of In-

tel Xeon X5670, 58GB of DDR3 1333MHz memory, 120GB of

local SSD and three Tesla M2050 GPUs. The nodes are con-

nected through Dual-Rail QDR Infiniband(x4). Figure 7 shows

write throughput of one staging node in with different numbers of

data writer threads. The result shows that we achieve the highest

performance of 1.6 GB/s on a single stager node when using 16

threads. We then explore how many staging nodes can exploit the

Lustre file system. Figure 8 presents aggregate write throughput

with different numbers of staging nodes all using 16 data writer

threads. The result shows that aggregate write throughput rapidly

increases from 1 to 32 staging nodes, but then quickly saturates

around 8 GB/s beyond 32 staging nodes. Based on these results,

we choose 32 staging nodes and set the staging server to run with

16 data writer threads as an optimal configuration. Under this

condition, checkpoint data can be transferred to the PFS at a rate

of 6.4 GB/s via 32 staging nodes, which is only 2.3% of TSUB-

AME2.0 thin nodes (1408 nodes).

Whenever the staging client and server processes read check-

point data from compute nodes in the background, a measurable

amount of overhead is added to the application runtime due to re-

source contention, and the degree of this overhead depends on the

read rate. To estimate this overhead, we transferred checkpoints

while running the Himeno benchmark [10] as a target application.

This benchmark solves Poisson’s equation using the Jacobi iter-

ation method. The Himeno benchmark is a stencil application in

which each grid point is repeatedly updated using only neighbor

points in a domain. Such a computational pattern frequently ap-

pears in numerical simulation codes for solving partial differen-

tial equations. Many fluid dynamics phenomena can be described

by partial differential equations over multi-dimensional Cartesian

grids, including weather, seismic waves, heat flow, and electric

charge and magnetic field distribution in a domain.

Figure 9 shows the overhead factor imposed on the Himeno

benchmark while varying the checkpoint read rate of a staging

node. The result shows that the overhead factor roughly increases

linearly with the read rate. Based on the result, we model the

overhead factor (α) of the Himeno benchmark as α = cx where c
is 0.008768, and x represents the checkpoint read rate of a stag-

ing node in units of GB/s. The parameter c is derived from the

slope of the fitting line in Figure 9. With 32 staging nodes, we

calculate the read rate per staging node to be 209.5 MB/seconds,

which is derived by dividing the aggregate write throughput when

using 32 nodes in Figure 8 by 32, the number of staging nodes.

Thus, the overhead factor model gives us the overhead factor of

0.00184 (= 0.008768×0.20905). We add this overhead to the cost

of computation in our model when computing efficiency whenver

transferring checkpoint data in the background.

With the SCR library, an application can adjust a degree of

resiliency by changing the number of processes in each XOR
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Fig. 7 Write throughputs under varying

number of data write thread

Fig. 8 Aggregate write throughputs under

different number of nodes
Fig. 9 overhead factor under varying

checkpoint rate

Fig. 10 XOR encoding performance under varying # of nodes and

XOR group size

group used to compute redundancy data. Figure 10 shows en-

coding throughput for different XOR group sizes. Resiliency is

improved with smaller XOR groups, but at the cost of decreased

XOR encoding throughput. On a XOR checkpoint, SCR compute

a parity of each block in the same way as RAID-5 [11], [12], and

S = B + B
N−1

bytes of encoded checkpoint data is created from

B bytes of original checkpoint data within N members of a XOR

group. Since the encoding time increase linearly with the en-

coded checkpoint data size, S , XOR encoding rate is saturated

in the large XOR group size, N. Actually most of failures affect

just one node[1]. Therefore, we use XOR checkpoint to handle

one node failure failure, and we handle the rest failures by a PFS

checkpoint. Thus, we set XOR encoding rate (L1 checkpoint rate)

as the saurated maximal rate, 400MB/s.

4.2 Efficiency comparison

As future systems become larger and have more memory size,

failure rates and checkpoint size are expected to increase. To ex-

plore the effects, we increase failure rates and checkpoint costs

by factors of 1, 2, and 10, and compare efficiency between both

a synchronous checkpointing and an asynchronous one. As for

base checkpoint size per compute node, we employ 29GB, which

is just a half of memory size of TSUBAME2.0 thin nodes. As

show in Figure 10, a XOR encoding rate is constant regardless

of the number of compute nodes, which means XOR encoding

scales with system size. Thus, when we increase checkpoint

costs, we increase only PFS checkpoint cost.

Figure 11 shows that efficiency of both checkpointing methods

under different failure rates and checkpoint costs. We define the

efficiency as ideal time
expected time . Here, ideal time is the runtime assuming

the application encounters no failures and take no checkpoints,

Fig. 11 Efficiency comparison: Synchronous vs. Asynchronous

checkpointing

Fig. 12 Efficiency under varying the overhead factor: α

while expected time is the expected runtime computed from our

model for an asynchronous method and an existing model [3] for

a synchronous one. When we compute the efficiency, we optimize

(1) Level 1 counts between Level 2 checkpoints, and (2) the inter-

val between checkpoints, given failure rates and checkpoint costs.

The efficiency can be maximal efficiency. We found that the asyn-

chronous method achieves higher efficiency than a synchronous

method in any cases. Especially, the efficiency gap become more

apparent in higher failure rate and higher checkpoint cost because

longer PFS checkpoint time on a synchronous checkpointing is

easy to encounter a lower level failure during the PFS checkpoint,

and rollback to the beginning, while an asynchronous method can

rollback to the recent XOR checkpoint. Moreover, since overhead

of a synchronous checkpoint is identical to checkpoint latency,

which is directlly added to an application runtime, the efficiency

become lower than an asynchronous checkpointing.

Because an asynchronous checkpointing overlaps with an ap-

plication computation, the checkpointing method can imapct the

application runtime depending on overhead factor, α, in different

applications. If the overhead factor becomes larger, our asyn-
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Fig. 13 Required PFS throughput at different failure rates

chronous checkpointing can introduce lower efficiency than a

synchronous checkpointing. Figure 12 shows efficiency of sys-

tems with increasing overhead rate in different failure rates factor

and PFS checkpoint cost factor. F and C denote the base fail-

ure rate and PFS checkpoint cost. We found that a synchronous

checkpointing can become more efficient than our asynchronous

with larger overhead factor in current failure rates and cost. How-

ever, in future systems where the failure rates and cost become

larger, an asynchronous checkpointing can be effective even with

large overhead factor. In large failure rate and checkpoint cost

factors, checkpoint interval become short and the checkpoint

overhead dominate to the overall runtime in a synchronous check-

pointing. Especially, since an application is blocked with a syn-

chronous checkpointing, the checkpiont latency impacts an appli-

cation runtime rather than an asynchronous one in future systems.

4.3 Building an efficient and resilient system

When building a reliable data center or supercomputer, two

major concerns are cost of the PFS and how much throughput

a PFS should have to maintain high efficiency. Generally, we

want to minimize cost, but not sacrifice performance. Using our

model, we can predict the required PFS bandwidth for achieving

high system efficiency when using our checkpointing system.

Figure 13 presents the required PFS bandwidth to maintain

90%, 80%, and 70% efficiency under increasing failure rates. The

failure rates are scaled from 1× up to 16× today’s rates. Because

synchronous checkpointing requires extremely high PFS band-

width to achieve 90% efficiency, the line is not shown in the fig-

ure. On the other hand, our asynchronous checkpointing system

achieves 90% efficiency with a mere 10 GB/second bandwidth

for failure rates that are 1× and 4× today’s rates.

Overall, our checkpointing system outperforms synchronous

checkpointing. However, at 90% efficiency, the bandwidth re-

quirement rises sharply after a factor of 5. This is because the

time for L1 checkpoints begins to dominate application run time

due to shortened optimal checkpoint intervals. Here, improve-

ment of PFS bandwidth cannot increase efficiency. However,

we found that current levels of PFS throughput are adequate for

maintaining 80% and 70% efficiency.

With synchronous checkpointing, systems require higher PFS

throughput to minimize the risk of failure during a PFS check-

point. Moreover, synchronous checkpointing uses the PFS only

when a PFS checkpointing is being taken, which means the PFS

is not utilized during most of the application run. With our check-

pointing system, we not only hide PFS checkpoint overhead, but

the PFS is utilized throughout the application execution.

5. Related Work

Multi-level checkpointing [3], [4] is a promising technique for

fault-tolerant execution. Moody et al. [3] modeled a multi-level

checkpointing system and optimized the checkpoint frequency

based on collected failure rates and checkpointing costs with a

Markov model. We extend their model in this work. Bautista-

Gomez et al. [4] proposed multi-level checkpointing using lo-

cal SSDs and a PFS. They use Reed-Solomon (RS) encoding for

highly resilient cached checkpoints to reduce usage of the PFS.

Generally, usage of a PFS is costly when compared to local stor-

age, and the PFS is accessed less often in multi-level checkpoint-

ing. However, increasing failure rates require checkpoints to a

PFS more frequently. Thus, even with multi-level checkpointing,

checkpointing to a PFS is crucial for future systems.

Asynchronous I/O has long been used to hide I/O bottlenecks

[6], [13], [14] . These techniques enable applications to paral-

lelize I/O with computation, resulting in increased CPU utiliza-

tion and enhanced I/O performance. Patrick et al. [13] presented a

comprehensive study of different techniques of overlapping I/O,

communication, and computation, and showed the performance

benefits of asynchronous I/O. Nawab et al. [14] asynchronously

transfer multiple striped TCP data streams to increase I/O perfor-

mance in Grid environments. An asynchronous staging service

using RDMA proposed by Hasan et al. [6] is the closest research

to this work. The authors achieved high I/O throughput by using

additional nodes. As we observed, it is necessary to determine the

proper number of staging nodes for a given number of compute

nodes in order to optimize performance. However, the compre-

hensive study on the problem is not shown nor do they present

their solution.

Optimization of checkpoint interval is critical, because check-

pointing is an expensive operation. Several optimization tech-

niques have been studied. Young [15] proposed a method to

determine the optimal checkpoint interval for single-level, syn-

chronous checkpoints. Vaidya extended the model to support

asynchronous checkpoints, called fork checkpoint [16] , and two-

level checkpoints [17]. Vaidya also combined both methods to

support a two-level asynchronous checkpoint system to achieve

higher efficiency [18]. Vaidya’s model assumes that at most one

fast-level checkpoint is taken between each slow-level check-

point. However, in current multi-level checkpointing systems, the

fastest checkpoints, which are often saved to node-local storage,

are orders of magnitude faster than the slowest checkpoints saved

to the PFS. To account for this, we extend prior work to model an

arbitrary number of node-local checkpoints between consecutive

PFS checkpoints.

6. Conclusion

We have designed and modeled a asynchronous checkpointing

system as an extension to an existing multi-level checkpointing
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system. Our asynchronous checkpointing system enables appli-

cations to save checkpoints to fast, scalable storage located on

the compute nodes and then continue with their execution while

dedicated staging nodes copy the checkpoint to the PFS in the

background. This capability simultaneously increases machine

efficiency and decreases bandwidth required from the PFS. Since

applications spend less time in defensive I/O, we find that our

asynchronous checkpointing system can improve machine effi-

ciency by 1.1 to 2.0 times on future systems. Furthermore, our

model predicts that asynchronous checkpointing significantly re-

duces the bandwidth required from PFS to maintain 80% of ma-

chine efficiency on systems whose faiure rate is 10 times higher

than current peta-scale systems
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