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Abstract: From the program characteristics of applications like image processing, the loop index to control the ac-
cessing of all pixels is relatively more important than the pixel data themselves. This assumption can be usually used to
effectively balance the fault toleration coverage and the hardware cost to achieve a dependable execution with tolerable
error rates, especially when the fault rate is not high . However, it can also be expected that when the fault rate exceeds
some boundary, this partial error coverage will go unreliable. Furthermore, it also loses the track of the current error
information due to the incomplete coverage. For this purpose, we propose methods to help make a decision about the
switching between partial and full redundancies by dynamically monitoring the soft error rate. From our experiment
results, our method can achieve a steady dependability with a smallest hardware cost in an FU array based processor.

1. Introduction

Process technology has been scaled aggressively in past years
to continuously lower supply voltage, to fasten the transistor
switching speed, and shrink transistor sizes to increase the chip
density, which have both contributed mainly to the device per-
formance increases. However, the shrinking transistor size, de-
creasing node capacitance, increasing operating frequency, and
reducing switching voltage add new pressure to the switching
correctness of transistors, especially when working under pos-
sible transient fault attacks [1-4]. For all these reasons, it is thus
essential to embed architecture-level fault-tolerance in micropro-
cessors [5] to get the correct calculations with current or future
transistors which lack of sufficient reliability.

Redundancy, either in temporal or spatial duplication form, is
the usual architectural way to detect errors in devices and then
guarantee dependability after a proper recovery [6-9]. When ev-
ery operation is executed for multiple times, a full set of fault de-
tection and recovery in these technologies are supposed to guar-
antee a 100% dependability inside the redundant sphere.

Meanwhile, due to the high cost of duplicated execution time
or hardware resources, balancing the redundancy and cost is al-
ways an urgent issue for effective fault toleration. For exam-
ple, program characteristics of applications like image process-
ing have already demonstrated that the program flow controller,
which is usually the loop index, is relatively more important than
the pixels themselves. Like image processing, applications based
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on approximate calculation such as decision making from prob-
ability exploration, machine learning and etc, may similarly re-
quire a different dependability in control and data.

The above assumption is now gaining popularity in achieving
an effective dependable system. Partial redundancies [10-12]
have shown better performance to balance the energy and depend-
ability for the applications like image processing, communica-
tion signal processing and approximate programming. Relax [10]
proposed a handful of simple extensions to the programming lan-
guage, compiler, ISA, and microarchitecture levels that simplify
hardware design by enabling efficient software-level recovery of
hardware faults. This framework constructed a spectrum of lan-
guage models combining retry and discard behaviors with coarse
and fine recovery granularities to enable flexible application han-
dling of errors. Consequently, architecture support for the in-
order and the out-of-order processors has been proposed for the
disciplined programming in [11]. This study divide the program
based on the importance of the operations. For example, the loop
index calculation has a high priority than the other calculations
so that the dependability was only introduced for the loop index
calculation. Similar idea has been proposed for the functional
unit array in EReLA [12], which is a loop accelerator. A minor
hardware increase is used to double-check correctness of loop
counter. It can already achieve a near optimal error coverage for
image processing, especially in a low fault rate environment.

Partial redundancy has shown an excellent solution for normal
cases where the fault rate remains low and the program behav-
ior is clear. However, it certainly lacks the ability of tolerating
worst-case situation. Under a possible burst of fault occurrence,
it is still possible that the error rate in the data reaches an intoler-
able level, despite that the program flow is carefully maintained.
As the program flow controlling portion is usually small in code



IPSJ SIG Technical Report

space, it is possible that the remaining data calculation part is
much larger in size and thus is more likely to accumulate errors.
Furthermore, the partial redundancy structure make it impossible
to keep a track of the current execution information. All these
problems downgrade the availability of service of this program.

To solve the above problems, we propose a method to achieve
near optimal dependability by predicting the future error rate and
calibrating the past execution. We use LAPP [13, 14] and its de-
pendable execution EReLA [9, 12] as the baseline architecture
for this study. EReLA uses a VLIW ISA to give an easy way to
manipulate the dependability level by duplicating operations in-
side the VLIW instructions. Both partial redundancy and a higher
level full redundancy can be easily achieved. In this paper, a small
test program is executed to measure the error strikes during a cer-
tain period. Two counters are used to keep a track of a long-term
error rate of past 1—billion cycles and a short term error rate of the
current loop execution. Based on the error strike rate on the long
term error rate, decisions will be taken of the dependability for the
next loop execution. Differently, before ending the current loop,
the short term error counter will be checked to decide whether it
should be re-executed under a higher level of redundancy, in case
of many errors strike at the time of partially redundant execution.
This method thus adapts the execution redundancy according to
the error rate. Results show that, our proposed technique uses
7% hardware overhead as a test program to achieve the optimal
dependability. Under a relatively high fault rate, this method can
still achieve near-optimal dependability while the partial redun-
cancy one can only ensure the reliable execution of the control
information.

The rest of this paper is organized as follows. Background
studies are discussed in Section?2. Section 3 introduces our pro-
posed scheme and policies to achieve optimal reliability in FU
array. The results are given in Section4 and finally, Section5
concludes the paper.

2. Background Study

As discussed above, the partial redundancy [11,12] has shown
better performance for balancing the power consumptions and re-
liability in the executions of programs where approximate cal-
culation is allowed. As an example, Fig.1(a) shows an small
loop and the corresponding VLIW code based on the FR-V in-
struction set architecture, where partial redundancy is specifi-
cally applied by duplicating the loop index calculation. The loop
counter calculations are executed redundantly in the I, subicc
gr39,#1,9r39,icc3 and subicc gr7,#1,gr7,iccl. Their
results, gr39 and gr7, are compared by the dcei gr39,gr7 in-
struction in I1. The rest of the instructions are executed once,
under certain knowledge that imprecise data calculation may be
tolerable. As introduced in paper [12], any error on the loop in-
dex calculation is detected by this technique and will be recovered
by restarting the loop.

This architecture can thus guarantee a full execution of all loop
iterations. In Fig. 1(b), 1(c), 1(d), the blocks represent the loop
iterations. Each block has the instructions of that loop inside. As
shown in Fig. 1(b), when the loop counter becomes erroneous or
a branch takes place prior to the real ending in non-dependable
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int a[N; | oop:
for (i=N-1; i>=0; i--) 10: Id @gr4,0),gri2;
ali]++ subi cc gr39, #1,9gr39,icc3;
subicc gr7,#1,9r7,iccl;
1'1: dcei gr39,0ar7;
beq iccl, 0x0, end;
12: addi gr12,#1,gri12;
13: st grl2, @gr4,gr0);
addi gr4, #4, gr4;
bra | oop;
end:

(a) Partial Redundant VLIW code
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Fig. 1 Partial refundant execution

system, all the loop iterations thereafter may become totally un-
processed or shifted. Fig. 1(c) shows an example of a partial re-
dundant execution. By means of the keeping correct loop counter,
all the blocks are at least processed. However, there are some er-
rors on the instructions inside the loop and blacks dots inside the
square represent these errors. This technique, partial redundant
execution, is thereby showing better performance in a low error
rate environment.

Conversely, when the error rate is high, where the errors are
likely to strike frequently, this partial dependability is not enough
to keep the reliable execution of any program. Fig. 1(d) shows
an example of the partial dependable execution, where the error
rate is higher than in Fig. 1(c). Therefore, there are many black
dots in the figure, even though all the loop index calculations are
executed correctly. The overall quality of the program execution
is thus degraded significantly.

It can be expected that other program characteristics will also
affect the data accuracy in a partial redundant environment. As
we are studying the program in parallel loop form, two major pa-
rameters are the loop kernel size and the number of iterations.
For EReLA, a loop with a large size contains more instructions
and will use more functional units (FUs) inside the FU array. Un-
der a certain error rate, the ratio of data errors and control errors
will therefore increase. The partial redundancy will more likely
to miss the detection of data errors and thus degrade the quality
of data processing. Accordingly, keeping a track of the error rates
inside the data calculation part is more essential inside the large
loops.

The affects from number of loop iterations are more compli-
cated. In one hand, a small amount of loop iterations will make
the program short and have a small chance to be hit by the faults.
On the other hands, for extremely large number of loop iterations,
the possibility of fault hitting on loop counter will also increas-
ing, causing a roll-back of partial redundant execution to keep
dependability. However, frequent roll-back of large loops may
come with an affordable performance loss. There is also a bal-
ancing point to make decisions whether switch or not to a higher
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Fig. 2 Execution flow of the proposed technique

redundancy at the beginning of loops with many iterations, ac-
cording to the estimation of the error rate.

3. Proposed technique

The above background study requires a good estimation of ex-
ecution error rate which the partial redundancy is not able to pro-
vide. In this section, we introduce our hardware structure to esti-
mate the error rate and policies that adapt redundancy according
to the monitored error information.

3.1 Outline of our proposal

Fig.2 gives an outlined flow of our method to adapt the re-
dundancy level for the current and next loop execution, which is
accelerated by the FU array inside the LAPP and EReLLA archi-
tecture. Error sampling and counting schemes, known as test pro-
grams are added along the whole execution. As shown in Fig. 2,
the method starts by detecting the loop. Based on a long-term
measure of the number of errors detected error by the test pro-
gram for the past 10° cycles, the number of loop iterations and
instructions inside the loop, the expected error rate is calculated.
If the calculated expected error rate exceeds the threshold the next
loop execution will be executed with a higher level of redundancy
to keep the reliable execution of the loop, in which a full dupli-
cation and comparison are performed to guarantee all execution
results are finally checked before committing. Otherwise, the par-
tial redundancy is predicted to be sufficient to provide enough re-
liability and is thus used to save the working energy for this next
loop body.

In the second part, after a partial redundancy is scheduled, our
method also monitors the number of errors on the test program
during the real execution. This is known as a short and real-term
of error rate during the current execution. If this short-term error
rate exceeds the threshold, the loop execution will be re-executed
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Fig. 3 Test program in FU array

with a higher level of dependability to ensure the reliable execu-
tion.

Note that for LAPP and EReL A architecture follows idempo-
tent policy [15] which uses program itself to serve as a clean
check-point. Specifically, EReLLA holds the store data in a suf-
ficiently large local cache during the loop execution [9]. Before
the local cache is committed into the lower-level cache, the loop
can be safely restart as a roll-back to a previous processor state.

3.2 Monitoring error rate

Our proposed technique to monitor the error rate in FU array
by test program is depicted in Fig.3. In the figure, three func-
tional units in the first two stages have been used for the reliable
loop index calculation, in which a duplicated calculation and a
check in the next stage are used to verify the correctness of the
calculation. The black functional units of the FU array in the fig-
ure are for calculating the remaining instructions inside the loop,
which are without duplication under a partial redundancy. The
white ones are the spare functional units. Assuming that there is
always several spare units, we can put our test programs inside to
gather the information of errors. In this example, three units in
gray serve for this purpose. Any error detected by the loop index
calculation will restart the loop execution, whereas error detects
by the test program will only use for calculating the error rate.
A detail discussion about the architecture, instructions mapping
and loop acceleration on LAPP and error correction scheme in
EReL A and various level of redundancies can be found in litera-
ture [9, 12-14].

As discussed above, the EReL A architecture supports the error
detection and recovery. In order to report any error on the pipline
stages, the error propagates by a chain of flipflops and OR gates
to the final stage of the array. In this study we are adding two
counters at the end of the chain to calculate the number of errors.
One counter is used to calculate the long term errors for future use
and the other one starts from initial states at each loop execution,
which counts the short term errors.

3.3 Test Programs

In this study, different test programs have been used for moni-
toring the test programs, such as redundant execution of the ran-
dom operation, RAID-like execution with random input value,
parity checking and ECC protection. The test programs are de-
picted in Fig.4, 5. Fig. 4(a) shows the example of redundant ex-
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Fig. 4 Simple test programs
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C = ASOX7FFFFFFF| (PGEN(A) <<31); Error =
(C20X80000000) >>31 == PCHK( C&0X7FFFFFFF)

(a) Parity function as a test program

bit flip)

C = ECOGEN( A) 0X00000004;
Error = ECCCHK(A C) == (0X00000000| 0X00000002)

(b) Error correcting code as a test program

Fig. 5 Parity and ECC for test program

ecution of the random operation, where one random instruction
is executed on two different functional units of the same stage of
the array, and the results are checked by the functional unit of the
next stage. This test program requires three functional units in
two different stages. Besides, the random operation is selected
based on the number of gates used by the instruction. For ex-
ample, a multiplication is usually used due to its large number of
gates which is accordingly easy to catch error when transient fault
attacks. Similarly, Fig. 4(b) gives a test program based on RAID-
like execution. This test program also requires three functional
units, and they are mapped on three different stages. In the figure,
at the first stage one functional unit is performed the XOR opera-
tion between A and B. The output C is XOR with A in the next stage
and the result is written in D. Finally, B and D are compared in
the third stage. Both the above test programs can detects multiple
errors.

On the other hand, Fig.5(a) shows the test program by par-
ity bit. Two additional instructions, parity generation (PGEN) and
parity check (PCHK), have been introduced for this test program.

© 2012 Information Processing Society of Japan

PGEN instruction takes a 32—bit input value and generate parity
bit. In order to avoid propagation of the additional bit on the FU
array, the PGEN instruction takes a 32—bit input and generate a
parity bit based on the lower 31-bit, from 0 to 30. The most sig-
nificant bit (MSB) is discarded and the parity bit takes its place
in the result. The output is checked by the PCHK instruction in the
later stage. In the 32—bit output, the 31* bit is considered as par-
ity and the rest 31 bits are considered as data. This test program
can detect one bit error. Finally, Fig. 5(b) shows an example of a
test program by error correcting code. Two addition instructions
are newly introduced for this test program and they are mapped
on two different stages of the array. In the first stage ECC gener-
ation (ECCGEN) instruction takes a 32—bit input and generates the
ECC code and flips one bit intentionally. The ECC code and the
input data are checked by the ECCCHK instruction at the next stage
of the array and correct the flipped bit. However, this instruction
will report error for two bits error as well as for no error. One
error is introduced in ECCGEN instruction by flipping one bit. The
ECCCHK instruction will recover the error and reports a error for
another bit error, which is not the intentional error. There is a
possibility of error strike on the flipped bit at the ECCGEN. There-
fore, the ECCCHK instruction will also report error, while there is
no error. This test program can detect up to 2 bits error.

3.4 Error rate calculation and policies
The expected error rate, E.R., of a loop execution is calculated
as:

ER =[1-2xTxe"[1-(1-T-2)xTxe)* (1)

where, [1 — (2 X T X ¢)] calculates the correct execution for the
loop index and [1 — (1 — (I —2) X T x e)"] calculates the expected
error rate at the rest of the instructions, in which 7 is the number
of the transistors used in a functional unit, and [ is the number of
instructions inside a loop. The number 2 in Eq:1 refer to the two
FUs used for loop index processing. e is the fault rate, which can
be calculated by the detection test program, as

o= C
T 109X T xn

2

Here, C is the error count in the test program for past 10° cy-
cles and 7 is the number of functional units used by the test pro-
gram. Based on Eq:1, the expected error rate is calculated for
different error count (C) by the test program, different number
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Fig. 6 Expected error rate calculation

of loop iteration (N) and different program length(/) in Fig. 6.
In Fig. 6(a), the expected error rate is increasing with the number
of error strikes on the test program for a certain time. However,
it is assumed that for many strike on the test program, there will
be strikes on the loop index counter, which then recovers the er-
ror by restarting the loop and the expected error rate will reduce
significantly. This high error rate is notexpected as well as un-
practical. For this demonstration, the number of loop iteration is
103 and the number of instructions inside the loop body are 20
and the number of instructions in the test program are 2.

As discussed before, the expected error rate will vary for dif-
ferent number of loop iteration and number of instructions inside
the program. Fig. 6(b) and Fig. 6(c) show the example of the it-
eration and program length as a function of expected error rate,
while the number of strikes on the test program is constant. The
expected error rate is increasing with the number of iterations and
program length.
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4. Results

We tried our proposed technique on different benchmark loops
to evaluate the hardware overhead for different test programs.
Redundant operation and RAID-like test programs require three
functional units, whereas the parity and the ECC use two FUs.
Thus, we divide the test program in two categories. Fig.4 shows
the result of hardware overhead for different benchmark loops,
where the number of the instructions inside the loops are varies
from 72 to 15. In the figure, loops from Expand4k to Blur have
instructions over 40 and the overhead for these loops are 5.3%
for the redundant and RAID-like test programs and 4.1% for the
other test programs. On the other hand, loops, from F3 to Edge,
have instructions less than 30, where the overhead is 16.7% for
the test programs with three functional units and 11.3% for the the
test programs with two functional units. Finally, on an average
the overhead is 7% for the test programs on different benchmark
loops.

The results also have shown that the size of the loop body
and number of iterations mostly contribute the expected error rate
rather than the test program. Thus, according to the results, the
test programs behave equally, despite of the differences in the
number of FUs. The Redundant operation and the RAID-like test
programs require more functional units than the parity and the
ECC and the overhead is also low for the parity and ECC for the
large as well as for the small loops. However, both the parity and
the ECC require 2 additional instrions to the ISA, which is the
additional cost. Therefore, depending on the hardware overhead
and the implementation cost test program can be selected for.

Fig. 8 shows the dependability of the simple partial redundancy
mode without or with our test programs to give additional moni-
toring of data correctness. The Partial redundancy is reliable for
the low error rate, as shown in Fig. 8(a). The dependability is near
100% for the low error rate, whereas the partial redundancy be-
comes unreliable with the increment of the error rate. For exam-
ple, the dependability degrades from 90% to 50% for a medium
error rate and for very high error rate it becomes near 5%. On
the other hand, the high redundancy uses almost double hard-
ware to achieve the 100% dependability. EReLA [12] reports,
the high redundancy consumes 100% to 150% more energy on
an average than the partial redundancy. The above problems can
be overcome by improving the dependability of the partial redun-
dancy. By means of our proposed technique the dependability of
the partial redundancy has been improved. Fig.8(b) shows the
improvement of dependability by monitoring the data correctness
with test programs and giving another chance to the processor to
use high-level redundancy. Specifically, The dependability of the
partial redundancy for very high error rate has been reached to
80% from 5% and for the medium error rate has reached to 90%
from 50% with the additional test program.

5. Conclusion

In this paper, we have presented a technique to achieve near
optimal dependability by monitoring the error rate from test pro-
grams. Specifically, the level of dependability of a loop execution
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Fig. 8 Improvement of the dependability in partial redundancy by the proposed technique

is changed according to the error rate of the long term and short
term executions. Different test programs have been used to mon-
itor the error rate and the expected error rate is calculated based
on the detected error for past loop execution, number of itera-
tions and instructions of the next loop. As a result, this techniques
changes the dependability level of a processor when there is the
necessity of the improvement. Finally, our results have shown
that the overhead of the test program on an average is 7% for
different benchmark loops and the dependability for a very high
error rate improves from 5% to 80% with the test program giving
addtional measurement of data correctness.
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