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Abstract: The increasing complexity of embedded systems in information and communication technology causes a
problem with locating faults during system failures. One reason for this problem is that system components that receive
abnormal input data from other components may also output abnormal data, even if they are not in abnormal states,
and consequently many redundant faults are detected in the system. In this paper, we present a diagnosis method
for locating the origin of faults automatically in systems where fault propagation may occur. We use a model-based
diagnosis scheme and abstract behavior modeling technique to deal with complex software components. We propose
a new approach to diagnose systems that have data flow loops. Finally, we propose a one-stage approach for solving
the abstract model-based diagnosis based on its formulation into the partial maximum satisfiability problem.
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1. Introduction

Embedded systems are getting increasingly large-scaled and
complex in many fields of information and communication tech-
nology. The automotive control system is one of such complex
systems that is composed of a lot of electronic control units
(ECUs). For example, small-class vehicles are equipped with
dozens of ECUs, and this number reaches a hundred or more for
luxury-class vehicles. These ECUs communicate with one an-
other via automotive networks such as CAN, LIN, and FlexRay.
Increasing demands on vehicle safety, driver comfort, and envi-
ronmental protection will continue to drive this trend.

After product launch, complex embedded systems tend to suf-
fer from locating faults during system failures. Locating software
faults is more difficult than locating most hardware faults, be-
cause no software faults can be found by looking. Furthermore,
software components that receive abnormal input data from other
components may also output abnormal data, even if they are not
themselves in an abnormal state. Consequently, many redundant
faults are detected in the system and the root cause analysis be-
comes an increasing challenge. We call this problem the fault-
propagation problem, which will be more likely in systems in
which many software components collaborate closely.

In this paper, we aim to develop a diagnosis method to locate
the origin of faults automatically in a system where fault propaga-
tions may occur. We use a model-based diagnosis (MBD) scheme
developed in the field of artificial intelligence [3], [11]. It is nec-
essary to model the behavior of each component in a system to ap-
ply the original MBD scheme, in other words, we need to describe
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the relationship between the input and the output of each compo-
nent in a system precisely. Unfortunately, however, it is very diffi-
cult to model the behavior of complex software components, such
as ECUs, because they have too many branches in the calculation
of their output to describe the relationship between the input and
the output. Moreover, it will be computationally intractable to di-
agnose a system that includes complex software components even
though we managed to model their behavior. Therefore, we apply
the abstract behavior modeling technique proposed in Refs. [9]
and [13], which enables us to handle complex software compo-
nents within the MBD scheme without modeling their concrete
behavior. Instead, unlike for the original MBD, we need some
criteria to judge whether or not data flows in a system are normal.
Hereafter, we refer to such MBD as “abstract MBD” (AMBD).
Although the original AMBD can be applied to a system that has
no data flow loops, problems occur when it is applied to a system
with them. The original AMBD detects no faults when all data
flows on a loop are abnormal, because all components on the loop
can claim that they output abnormal data due to the abnormal in-
put data. Automotive systems that include ECU components may
have data flow loops because most communications among ECUs
are mutual and not one-way. In this paper, we propose a modified
AMBD to overcome this problem and enable a diagnosis that at
least one of the components on a loop is abnormal, even when all
data flows on the loop are abnormal.

MBD traditionally employs a two-stage approach based on
the notions of conflict and diagnosis. First, conflicts are cal-
culated using a theorem prover [11], [13] or constraint propa-
gation [2]. Second, diagnoses are calculated from conflicts us-
ing a hitting set algorithm [11], [13] or a prime implicant algo-
rithm based on boolean decision diagrams [2]. In this paper, we
formulate AMBD into a partial maximum satisfiability problem
(PMAXSAT). PMAXSAT is an optimization extension of the
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boolean satisfiability problem that has been studied for a long
time. Although PMAXSAT is an NP-hard problem, many of large
practical problems can be solved by state-of-the-art PMAXSAT
solvers due to technical advancements in recent years [6]. Com-
pared with traditional approaches, ours can receive the benefit
of modern sophisticated algorithms easily, because sound solvers
can be used to diagnose the system. Moreover, we extend our
method so as to get diagnoses in the order of their occurrence
probabilities.

This paper is organized as follows: Section 2 describes the ex-
isting AMBD. Section 3 discusses a drawback of the existing
AMBD and presents our modified approach. Section 4 describes
how we formulate AMBD into the partial maximum satisfiability
problem and proposes some extensions. Section 5 shows some
experimental results. Section 6 summarizes this work and dis-
cusses future work.

2. Abstract Model-based Diagnosis

The abstract behavior modeling technique in MBD was first
introduced in Ref. [9] for the purpose of VHDL debugging. Then
it was extended to diagnose robotic control systems that include
complex software components in Ref. [13]. We define terms and
review AMBD below.

2.1 Terms
First, we define terms required to explain AMBD.
Definition 1 COMP is a set of components in the system, and

DF is a set of data flows that includes both communication sig-
nals among components and input/output signals of the system.
OUT (c) is a function that returns a set of output data flows of
component c, and IN(c, s) is a function that returns a set of input
data flows of component c related to output s.

Example 1 Figure 1 is an example of an abstracted system
where COMP = {C1,C2,C3} and DF = {a, b, c, d, e, f }. In the
figure, OUT (C1) is {c, d}, and IN(C1, d) is {a, b} for example.

For an automotive system, we regard ECUs and signals com-
municated via networks as components and data flows, respec-
tively. Moreover, for a software system with an operating sys-
tem, we regard tasks and messages among them as components
and data flows, respectively.

2.2 System Description and Observations
We use the notions of system description (S D) and observa-

tions (OBS ) in AMBD which is the same as in the original MBD.
Definition 2 S D is a set of first-order sentences that repre-

sents obvious relationships among components and data flows in
a system. OBS is a set of first-order sentences that represents
observations of a system.

In AMBD, S D is basically derived in the following manner:

Fig. 1 An example of the abstracted system.

S D =
∧

c∈COMP

∧
s∈OUT (c)

⎡⎢⎢⎢⎢⎢⎢⎣ok(c) ∧
∧

s′∈IN(c,s)

ok(s′)→ ok(s)

⎤⎥⎥⎥⎥⎥⎥⎦ , (1)

where a predicate ok(x) means that x is normal. The idea behind
Eq. (1) is, if both a component and its input data flows are normal,
the corresponding output data flow must be normal. The main dif-
ference between the original MBD and AMBD is that there is no
need to describe components’ concrete behavior in AMBD while
it is essential to describe every component’s behavior in the orig-
inal MBD.

OBS is defined as a function of ok(s) where s ∈ DF in AMBD.
Unlike for the original MBD, we need some criteria to judge
whether or not data flows in the system are normal for AMBD.
For example, a criterion based on a periodic feature that data flow
s1 must be produced every n milliseconds is used in Ref. [13].

Example 2 S D for Fig. 1 is given by Eq. (1) as:

S D = {ok(C1) ∧ ok(a) ∧ ok(b)→ ok(c)}
∧ {ok(C1) ∧ ok(a) ∧ ok(b)→ ok(d)}
∧ {ok(C2) ∧ ok(c)→ ok(e)}
∧ {ok(C3) ∧ ok(d)→ ok( f )} . (2)

And if we observe that data flows {a, b, f } are normal, {c, e} are
abnormal, and the state of {d} is unknown in Fig. 1, we get the
following OBS :

OBS = ok(a) ∧ ok(b) ∧ ¬ok(c) ∧ ¬ok(e) ∧ ok( f ). (3)

Note that literals related to data flows whose states are unknown
do not appear in OBS , such as data flow d in Eq. (3).

2.3 Diagnoses
We first define a functionD in order to define diagnoses.
Definition 3 D is a function that assigns every component in

a system as either normal or abnormal. D is given as follows:

D(C f ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∧
c∈C f

¬ok(c)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∧
⎡⎢⎢⎢⎢⎢⎢⎢⎣
∧

c∈COMP\C f

ok(c)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

where C f is a set of components assigned to abnormal.
We define a diagnosis as follows:
Definition 4 C f ⊆ COMP is a diagnosis if the following is

satisfiable:

S D ∧ OBS ∧D(C f ). (4)

Given both S D and OBS , we calculate diagnoses from them us-
ing Eq. (4). However, there may be an exponential number of
diagnoses (2|COMP|). We define a minimal diagnosis as follows:

Definition 5 A diagnosis C f is a minimal diagnosis if no sub-
set of C f is a diagnosis.

Example 3 Let OBS in Fig. 1 be Eq. (3). Then we obtain
{C1} as a minimal diagnosis by using Eqs. (2), (3), and (4). Thus,
it is possible to locate the origin of a fault in a system where a
fault that occurs in C1 propagates to c and e through C2.

2.4 AMBD with Time Consideration
It is possible to incorporate the notion of time in AMBD. Let
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T IME be a set of discrete time points to be considered, e.g.,
T IME = {0, . . . ,T }. Then, we can derive S D that includes delays
between input and output as follows:

S D =
∧

t∈T IME

∧
c∈COMP

∧
s∈OUT (c)⎡⎢⎢⎢⎢⎢⎢⎣ok(c, t) ∧
∧

s′∈IN(c,s)

ok(s′, t)→ ok (s, t + δ(s, c))

⎤⎥⎥⎥⎥⎥⎥⎦ , (5)

where a predicate ok(x, t) means that x is normal at time t and
δ(s, c) means a delay of output s in component c. OBS is ex-
tended to include time and defined as a function of ok(s, t) where
s ∈ DF and t ∈ T IME. We also need to updateD as:

D(Ct
f ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∧
{c,t}∈Ct

f

¬ok(c, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∧
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∧

{c,t}∈CT\Ct
f

ok(c, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

where CT = {{c, t}|c ∈ COMP, t ∈ T IME} and Ct
f ⊆ CT . Then,

we can calculate diagnoses based on Eq. (4) where C f is replaced
with Ct

f .
Considering time in AMBD has the advantage that we can deal

with intermittent faults because component faults are detected
with time-indices. However, we need information about delays
between input and output and time-indexed observations to in-
corporate time in AMBD as mentioned above. For an automotive
system, it is quite difficult to estimate input-output delays in each
ECU because it changes depending on a lot of factors. Moreover,
if we use a periodic feature to judge whether or not data flows in
the system are normal, it is not easy to assign the result to partic-
ular time point observations. For that reason, we do not consider
time in AMBD in the following sections.

3. Diagnosing Systems with Loops

AMBD without time consideration works well when a system
has no data flow loops, as in Fig. 1. However, a problem can
arise when using AMBD to diagnose systems that have data flow
loops. In this section, we explain the problem and propose a mod-
ified approach.

3.1 A Problem of Existing Methods
Figure 2 is an example of a system that has data flow loops.

By using Eq. (1), we calculate S D for Fig. 2 as follows:

S D = {ok(C1) ∧ ok(a) ∧ ok(e) ∧ ok( f )→ ok(b)}
∧ {ok(C2) ∧ ok(b)→ ok(c)}
∧ {ok(C2) ∧ ok(b)→ ok(e)}
∧ {ok(C3) ∧ ok(b)→ ok(d)}
∧ {ok(C3) ∧ ok(b)→ ok( f )} . (6)

Now, assume that we have the following OBS :

Fig. 2 An example of a system with data flow loops.

OBS = ok(a) ∧ ¬ok(b) ∧ ok(c) ∧ ok(d) ∧ ¬ok(e) ∧ ok( f ).

(7)

Then, we get an empty set as a minimal diagnosis from Eqs. (4),
(6), and (7). However, it is inappropriate to conclude that no com-
ponents are abnormal even though abnormal data flows are ob-
served in the system. As this example shows, AMBD described
in Section 2 does not work well when the system has a data flow
loop and all data flows on the loop are abnormal.

3.2 A Modified Approach
We first define a nonrecurrent loop, and then propose our mod-

ified approach. A path p in the system is denoted as:

p = (s1, c1, s2, c2, . . . , sk), (8)

where si ∈ DF and ci ∈ COMP. A loop is a path such that
s1 = sk in Eq. (8). For example, (b,C2, e,C1, b) is a loop in Fig. 2.
We define a nonrecurrent loop as follows:

Definition 6 A nonrecurrent loop is a loop that does not con-
tain the same loop more than once.

Example 4 In Fig. 2, the path (b,C2, e,C1, b,C3, f ,C1, b) is a
nonrecurrent loop, whereas the path (b,C2, e,C1, b,C2, e,C1, b) is
not one because it contains the loop (b,C2, e,C1, b) twice.

Definition 7 Let Ln be a set of all nonrecurrent loops in the
system. For l ∈ Ln, π(l) is a function that returns a set of unique
components in l, φ(l) is a function that returns a set of unique data
flows in l, and in(l) is a function defined as follows:

in(l) =
⋂

c∈π(l),s∈φ(l)
IN(c, s) \ φ(l).

Example 5 In Fig. 2, there are three nonrecurrent loops: l1 =

(b,C2, e,C1, b), l2 = (b,C3, f ,C1, b), and l3 = (b,C2, e,C1, b,C3,

f ,C1, b). For example, π(l1) = {C1,C2}, φ(l1) = {b, e}, and
in(l1) = {a, f }.

In order to overcome the problem mentioned above, we derive
S D′ as:

S D′ = Φc ∧ Φl, (9)

where Φc is given by the right side of Eq. (1) and Φl is given as
follows:

Φl =
∧
l∈Ln

⎡⎢⎢⎢⎢⎢⎢⎣
∧

c∈π(l)
ok(c) ∧

∧
s∈in(l)

ok(s)→
∧

s′∈φ(l)
ok(s′)

⎤⎥⎥⎥⎥⎥⎥⎦ . (10)

The idea behind Eq. (10) is, if all components on a loop and input
data flows into the loop are both normal, all the data flows on the
loop must be normal. While Φc represents obvious relationships
that hold in each component, Φl represents obvious relationships
that hold in each nonrecurrent loop.

Example 6 S D′ for Fig. 2 is given as follows by using
Eq. (9):

S D′ = (the right side of Eq. (6))

∧{ok(C1) ∧ ok(C2) ∧ ok(a) ∧ ok( f )→ ok(b) ∧ ok(e)}
∧{ok(C1) ∧ ok(C3) ∧ ok(a) ∧ ok(e)→ ok(b) ∧ ok( f )}
∧{ok(C1) ∧ ok(C2) ∧ ok(C3) ∧ ok(a)

→ ok(b) ∧ ok(e) ∧ ok( f )}. (11)
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Let OBS be Eq. (7). Then we obtain {{C1}, {C2}} as a set of min-
imal diagnoses from Eqs. (4), (7), and (11). Thus, when all data
flows on a loop are abnormal, at least one of the components on
the loop is abnormal.

It is essential to take nonrecurrent loops into consideration,
otherwise problems occur when a system has overlapping ele-
mentary loops and all data flows on those loops are abnormal.
We show this through the following example.

Example 7 Let S D for Fig. 2 be Eq. (12), where clauses re-
lated to nonrecurrent loops are removed from Eq. (11):

S D = (the right side of Eq. (6))

∧{ok(C1) ∧ ok(C2) ∧ ok(a) ∧ ok( f )→ ok(b) ∧ ok(e)}
∧{ok(C1) ∧ ok(C3) ∧ ok(a) ∧ ok(e)→ ok(b) ∧ ok( f )}.

(12)

Assume that we have the following OBS :

OBS = ok(a) ∧ ¬ok(b) ∧ ok(c) ∧ ok(d) ∧ ¬ok(e) ∧ ¬ok( f ).

(13)

Then, we get an empty set as a minimum diagnosis from Eqs. (4),
(12), and (13). This happens because all elementary loops can
claim that they output abnormal data due to the abnormal input
data from other elementary loops.

3.3 Finding All Nonrecurrent Loops
In our modified approach, it is necessary to find all nonrecur-

rent loops in a system. In this section, we propose an algorithm
to find all nonrecurrent loops in a system based on the notion of
an elementary loop.

Definition 8 An elementary loop is a loop that does not con-
tain the same data flow more than once except for the beginning
and the end of the loop.

Example 8 In example 5, l1 and l2 are elementary loops, but
l3 is not an elementary loop because it contains data flow b more
than once.

We propose an algorithm for finding all nonrecurrent loops in
Fig. 3. We first find all elementary loops in the system, which is
done effectively using the BACKTRACK algorithm [14]. Then
we express the overlapping of elementary loops as a graph in
Step 2 and calculate the connected subgraphs of that graph in
Step 3. Note that each connected subgraph corresponds to a non-
recurrent loop in the system. Finally we calculate a component

� �
Step 1. Let Le be a set of all elementary loops in the system.
Step 2. Let Ge be a graph where each node represents an elementary

loop in Le. For every node pairs {li, l j} (i � j) in Ge, add an edge
between them if φ(li) ∩ φ(l j) � ∅.

Step 3. Calculate all connected subgraphs in Ge, and denote the set
of those subgraphs as S n.

Step 4. For each subgraph Gn ∈ S n, calculate π and φ of the corre-
sponding nonrecurrent loop ln as:

π(ln) =
⋃

le∈N(Gn)

π(le), φ(ln) =
⋃

le∈N(Gn)

φ(le),

where a function N(Gn) returns a node set of Gn.

� �
Fig. 3 An algorithm for finding all nonrecurrent loops.

set and a data flow set of the corresponding nonrecurrent loop in
Step 4.

4. Formulation into the Partial Maximum Sat-
isfiability Problem

Two-stage approaches based on the notions of conflict and di-
agnosis are used traditionally to diagnose systems in MBD [2],
[11] and in AMBD [9], [13]. In this section, we propose a new
one-stage approach for AMBD. We formulate the problem of di-
agnosing systems into the partial maximum satisfiability problem
that can be solved effectively using state-of-the-art solvers.

4.1 The Maximum Satisfiability Problem and Its Extensions
The maximum satisfiability problem (MAXSAT) is an opti-

mization problem of assigning variables so as to satisfy as many
clauses in a given boolean formula as possible. The input boolean
formula is given in conjunctive normal form (CNF). The par-
tial MAXSAT (PMAXSAT) is an extension of MAXSAT where
a certain subset of clauses in a given formula is treated as a
hard constraint that must be satisfied. In PMAXSAT, unsatisfi-
able (UNSAT) is returned as a solution if it is impossible to sat-
isfy all hard constraints simultaneously. The weighted MAXSAT
(WMAXSAT) is another extension of MAXSAT where each
clause has a weight and variables are assigned so as to maxi-
mize the sum of weights of satisfied clauses. The weighted par-
tial MAXSAT (WPMAXSAT) is a problem where both hard con-
straints and weights are considered.

Example 9 Let us consider the following formula with four
clauses:

(a ∨ ¬b) ∧ (¬a ∨ c) ∧ (b ∨ c) ∧ ¬c.

Assume that the first and second clauses are hard constraints, and
the weights of the third and fourth clauses are 3 and 4 respec-
tively. Then, the assignment (a, b, c) = (0, 0, 0) is a solution of
WPMAXSAT where the first, second, and fourth clauses are sat-
isfied.

MAXSAT is an NP-hard problem, so it would be intractable
as the size of the input formula gets larger. However, due to
technical advancements based on the Davis-Putnam-Logemann-
Loveland algorithm [1] and its recent extensions, state-of-the-art
MAXSAT solvers can solve large practical problems strictly. We
used YICES [6] as a MAXSAT solver in our experiments in Sec-
tion 5. Note that YICES is a solver for the satisfiability mod-
ulo theories problem, which is a generalization of the boolean
satisfiability problem, but can also deal in MAXSAT (including
PMAXSAT, WMAXSAT, and WPMAXSAT).

4.2 Formulating AMBD into PMAXSAT
We first need to convert Eq. (4) into CNF because the input for-

mula of MAXSAT must be in CNF. Suppose that OBS is given
in CNF as Eq. (3). Then we need only to convert S D′ into CNF
becauseD(C f ) is already CNF. We easily convert S D′ into CNF
using the following equation:

∧
x∈X

x→
∧
y∈Y
y =
∧
y∈Y

⎡⎢⎢⎢⎢⎢⎣
∨
x∈X
¬x ∨ y

⎤⎥⎥⎥⎥⎥⎦ , (14)

c© 2012 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.20 No.3

� �
Step 1. Let Ca = ∅ and Δ′ = Δ.
Step 2. Solve Δ′ as PMAXSAT and denote the solution as x∗.
Step 3. If x∗ � UNSAT, then go to Step 4, else go to Step 5.
Step 4. Let C∗ be a set of components assigned to ¬ok in x∗. Update

Ca and Δ′ as:

Ca = Ca ∪C∗,

Δ′ = Δ′ ∧
⎡⎢⎢⎢⎢⎢⎣
∨
c∈C∗

ok(c)

⎤⎥⎥⎥⎥⎥⎦ ,

where the added clause in the second equation is treated as a hard
constraint. Then go back to Step 2.

Step 5. Output Ca as a set of minimal diagnoses.

� �
Fig. 4 An algorithm for calculating all minimal diagnoses with PMAXSAT

solvers.

where X and Y are arbitrary sets of variables. We denote the CNF
conversion of S D′ as S D′c.

Now, define Δ as:

Δ = S D′c ∧ OBS ∧D(∅), (15)

where clauses in both S D′c and OBS are treated as hard con-
straints. Let x∗ be a solution of PMAXSAT of Δ. Then a set
of components that are assigned to ¬ok in x∗ is a minimal diag-
nosis of the corresponding AMBD because x∗ is a solution that
satisfies Eq. (4) and in which as many components are assigned
to ok as possible.

However, we can get only one of the whole minimal diagnoses
by solving Eq. (15) as PMAXSAT. Hence we propose an al-
gorithm for calculating all minimal diagnoses with PMAXSAT
solvers in Fig. 4. In Fig. 4, a new clause is added to Δ as a hard
constraint in Step 4 so as not to obtain the same diagnosis as a
solution of PMAXSAT again. If we do not need to get all mini-
mal diagnoses but only a subset of them, we can add a condition
to Step 3 such as “go to Step 5 if the size of Ca exceeds the given
threshold.” Furthermore, if we would like to get not only the
minimal diagnoses but also all possible diagnoses, it is enough to
modify the equation for updating Δ′ in Step 4 as follows:

Δ′ = Δ′ ∧
⎡⎢⎢⎢⎢⎢⎢⎣
∨

c∈COMP\C∗
¬ok(c)

⎤⎥⎥⎥⎥⎥⎥⎦ .

4.3 Consideration of Fault Probabilities
Suppose that a system has n components Ci (i = 1, . . . , n) and

the fault probability of Ci is pi. Define xi as:

xi =

⎧⎪⎪⎨⎪⎪⎩
1 if ok(Ci),
0 otherwise.

(i = 1, . . . , n) (16)

If each component is assumed to break down independently, then
the occurrence probability of x = (x1, . . . , xn) is given as follows:

P(x) =
n∏

i=1

(1 − pi)
xi p1−xi

i . (17)

By taking logarithms of both side of Eq. (17) and transforming its
right side, we obtain the following equation:

log P(x) =
n∑

i=1

{
log

1 − pi

pi

}
xi + Const, (18)

where Const =
∑n

i=1 log pi. From Eqs. (16), (18), and the fact that
log is a monotone increasing function, it follows that we can get
the diagnosis that has the highest occurrence probability by set-
ting the weights of clauses ok(Ci) (i = 1, . . . , n), which appears in
D(∅) of Eq. (15), as

log
1 − pi

pi
(i = 1, . . . , n)

respectively and solving Eq. (15) as WPMAXSAT. Moreover, we
can get diagnoses in the order of their occurrence probabilities
by applying the algorithm in Fig. 4 where PMAXSAT is replaced
with WPMAXSAT.

5. Experiments

In this section, we present experimental results to show how the
proposed method works. The experiment is done on a Microsoft
Windows XP machine with an Intel Core i7 CPU (2.80 GHz,
3.5 GB RAM).

5.1 Diagnosis of An Automotive Control System
5.1.1 System Overview

We assume the automotive control system in Fig. 5, which is
quoted from Ref. [12] and modified herein for the sake of sim-
plicity. There are 8 ECUs in the system and they communicate
with one another via the controller area network (CAN), which is
one of the commonly used automotive networks. The system has
20 data flows, labeled 9 to 28, which are shown in the figure as
the numbers on the arrows. The dashed lines in each ECU in the
figure indicate dependencies between the input data and the out-
put data of the ECU; however, we can only presume them because
we could not extract information about them from Ref. [12].
5.1.2 Observations and Fault Probabilities

Assume that we observe the abnormalities of the data flows in
the system as shown in Fig. 5 where solid, dashed, and dotted ar-
rows mean that the data flow is normal, abnormal, and unknown,
respectively. Then, OBS is derived in a form such as Eq. (3). And
we assume that the fault probability of ECU i (i = 1, . . . , 8) equals
0.001 × i (i = 1, . . . , 8) respectively.
5.1.3 Deriving the System Description

We implement the algorithm to derive S D′c automatically from
(COMP, DF, IN, OUT ) in the system according to Eqs. (9), (14),
and the algorithm in Fig. 3. We find 10 elementary loops and
77 nonrecurrent loops for the system in Fig. 5, resulting in an S D′c
with 946 clauses. S D′c becomes large for the size of the system
because the system has many overlapping elementary loops. If
the elementary loops were less overlapped, S D′c would be much
smaller.
5.1.4 Diagnosing the System

We implement the diagnosing algorithm described in Section 4
and calculate the minimal diagnoses of the system in Fig. 5. The
result is shown in Table 1 where minimal diagnoses are sorted
in the order of their occurrence probabilities. We can get mini-
mal diagnoses in the same order as in Table 1 one after another
using the proposed algorithm. All minimal diagnoses in the ta-
ble contain ECU1 because the abnormalities of the data flows
{10, 16} can be explained by fault propagation from the abnor-
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Fig. 5 Automotive control system that has 8 ECUs and 20 data flows (labeled 9 to 28). The solid arrow
means that the data flow is normal, the dashed arrow means that it is abnormal, and the dotted
arrow means that its state is unknown.

Table 1 Diagnostic results of the system in Fig. 5.

Minimal Diagnosis Probability
{ECU1, ECU8} 7.8 × 10−6

{ECU1, ECU7} 6.8 × 10−6

{ECU1, ECU5} 4.9 × 10−6

Table 2 An overview of nine synthetic systems and the average of computa-
tional time and peak memory usage for diagnosing these systems.

ID |COMP| |DF| |Ln | |S D′c | E[time] E[peakmem]
A 50 250 16 571 0.21 (0.01) 564.2 (1.5)
B 50 250 64 2,331 0.21 (0.01) 586.8 (38.2)
C 50 250 104 2,915 0.21 (0.01) 582.5 (33.0)
D 100 500 8 674 0.21 (0.01) 602.4 (5.3)
E 100 500 75 3,640 0.21 (0.01) 623.6 (51.0)
F 100 500 504 23,473 0.43 (0.04) 734.0 (333.2)
G 200 1,000 19 1,403 0.22 (0.01) 679.3 (10.6)
H 200 1,000 254 17,437 0.53 (0.09) 802.2 (360.6)
I 200 1,000 352 22,815 0.73 (0.07) 741.4 (349.6)

mality of ECU1. Conversely, the abnormalities of the data flows
{24, 25, 26, 28} can be explained by fault propagation from either
ECU7 or ECU8. Moreover, ECU5 can be the origin of fault prop-
agation through the data flows {24, 25, 26, 28} if we assume that
data flow 21 is abnormal. So {ECU1, ECU5} is also regarded as
a minimal diagnosis.

The computational time required to get each minimal diagno-
sis by solving WPMAXSAT is about 0.2 second. Consequently,
it takes about 0.6 second in total to get all minimal diagnoses in
Table 1.

5.2 Scalability Test with Synthetic Systems
Another experiment is done to check the scalability of the pro-

posed method. We have generated nine synthetic systems ran-
domly. Table 2 shows an overview of these systems. In Table 2,
|COMP| and |DF| means the number of components and data
flows in the system respectively. Nonrecurrent loops are calcu-
lated by the algorithm in Fig. 3, then S D′c is calculated according
to Eqs. (9) and (14) for each system. In Table 2, |Ln| means the
number of nonrecurrent loops in the system and |S D′c| means the
number of clauses in S D′c. We generate an OBS randomly and
calculate a minimal diagnosis by solving WPMAXSAT of Δ in
Eq. (15). This procedure is repeated a hundred times for each
system. The average time of obtaining a diagnosis is shown in

Table 2 as E[time] on the second time scale, and its standard devi-
ation is inside the parentheses. Also, the average of peak memory
usage is shown in Table 2 as E[peakmem] on the kilobyte scale.
From Table 2, we can see that |S D′c| largely depends on |Ln|, and
the average time of diagnosis increases with respect to |S D′c|. The
average of peak memory usage increases slightly depending on
|S D′c|, on the other hand, its standard deviation increases rapidly
as |S D′c| gets large. We have analyzed the results of the systems
{F, H, I} in detail and found that the peak memory usage rarely
gets large in these systems depending on the OBS . It seems that
the proposed method is applicable to a system whose size is com-
parable to that of a system in Table 2, because it will take less
than a second to diagnose the system with less than a megabyte
of memory consumption on average.

6. Summary and Future Work

In this paper, we proposed a method for diagnosing complex
embedded systems that include many software components based
on the abstract model-based diagnosis. We modified the existing
method for deriving the system description in order to diagnose
systems that have data flow loops. We also propose a one-stage
approach for solving the abstract model-based diagnosis based on
its formulation into the partial maximum satisfiability problem.

In using the abstract model-based diagnosis, we need criteria to
judge whether or not data flows in a system are normal. Therefore
it is necessary to develop methods to derive these criteria effec-
tively. One possible approach is to log the data communicated
among components and derive the criteria from them using data
mining, machine learning, or statistical methods. Another possi-
ble approach is to model software components using the frame-
work of formal methods and certify the criteria using software
verification methods. Consequently, the abstract model-based di-
agnosis can be a bridge between AI-based diagnosis methods and
other methodologies. Of course, it is possible to use the result of
system reliability analysis, such as failure mode and effect anal-
ysis (FMEA) or fault tree analysis (FTA), to derive the criteria
practically. Papadopoulos et al. [10] in particular proposed the
Interface Focused-FMEA (IF-FMEA) which is a modification of
classical FMEA that analyzes how a hardware or software com-
ponent reacts to failures generated by other components. The
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result of IF-FMEA can be applied to compose the diagnostic cri-
teria more effectively.

We need information about the system architecture to derive
the system description using the abstract model-based diagno-
sis. There are several languages to describe the system architec-
ture, such as EAST-ADL [5] or architecture analysis and design
language (AADL) [8]. Therefore it would be useful to develop
tools to extract the system description automatically from source
files written in such architecture description languages. More-
over, some of these languages have error modeling functions [7],
making it possible to construct the diagnosis system automati-
cally from source files that include information about both system
architecture and system errors.

The partial maximum satisfiability problem cannot be applied
to the original model-based diagnosis [2] because it can only deal
in boolean formulas. However, it is possible to formulate the orig-
inal model-based diagnosis into the satisfiability modulo theories
problem, which is a generalization of the boolean satisfiability
problem, and to solve it with the state-of-the-art solvers, such
as YICES [6] and Z3 [4], in a similar manner to the proposed
method.
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