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ウエーブレットパケット分解による
残響に頑健な音声認識

ゴメス・ランディ1 河原　達也1

概要：頑健な音声認識のための残響抑圧を目的として、複数の分解能からなるウエーブレット分析の手法

を述べる。提案するウエーブレットパケット分解では、遅い残響成分と音声の成分を効果的に分離するよ

うに、各々の分解能を設定する。これにより、各々に適切なウエーブレット基底を用いることで、観測さ

れた残響のある信号から効果的なウイナーゲインを計算することができる。残響抑圧は、ウエーブレット

パケットの係数をウイーナゲインでフィルタすることで行われる。大語彙連続音声認識 (JNASタスク)の

評価実験において、提案手法はウエーブレット分析に基づく従来法や他の残響抑圧手法と比べて、高い性

能を示した。

Wavelet Packet Decomposition Approach
to Reverberant Speech Recognition
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Abstract: This paper describes a multiple-resolution signal analysis to suppress late reflection of reverbera-
tion for robust automatic speech recognition (ASR). Wavelet packet tree (WPT) decomposition offers a finer
resolution to discriminate the late reflection subspace from the speech subspace. By selecting appropriate
wavelet basis in the WPT for speech and late reflection, we can effectively estimate the Wiener gain directly
from the observed reverberant data. Moreover, the selection procedure is performed in accordance with
the likelihood of acoustic model used by the speech recognizer. Dereverberation is realized by filtering the

wavelet packet coefficients with the Wiener gain to suppress the effects of the late reflection. Experimen-
tal evaluations with large vocabulary continuous speech recognition (LVCSR) in real reverberant conditions
show that the proposed method outperforms conventional wavelet-based methods and other dereverberation
techniques.
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1. Introduction

In reverberant environments, smearing of the observed

signal by the effects of reflection causes acoustic model

mismatch. Dereverberation methods based on the sup-

pression of late reflection have been proposed [1][2]. An
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expansion to this work using multi-band processing is also

proposed [3]. In these methods [1]-[3], it was established

that the effects of late reflection is more detrimental to

ASR. In general, estimating late reflection is pivotal to

the effectiveness of discriminating its subspace. How-

ever, the estimation is difficult especially if the late re-

flection subspace overlaps with speech. We have previ-

ously proposed a wavelet filtering approach based on pre-

determined bands [4] . Although this method works well,
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図 1 Block diagram of the proposed method.

fixing the bands limit the ability for the wavelet param-

eters to effectively capture the subspaces for both speech

and late reflection especially during mismatch conditions.

In this paper, we address the subspace discrimina-

tion problem with more precision through wavelet packet

(WP) analysis. Late reflection is suppressed by filtering

the reverberant wavelet packet coefficients with a Wiener

gain. Wavelet packet tree (WPT) decomposition is opti-

mized using acoustic model likelihood criterion to effec-

tively track both speech and late reflection, resulting to

an accurate Wiener estimate. The WPT which contains

the wavelet basis is kept for the actual online dereverber-

ation. Fig. 1 shows the online dereverberation scheme.

First, the room reverberation time T60 is estimated. The

corresponding WPTs are used to decompose the reverber-

ant speech resulting to three WPT decompositions (i.e.

late reflection, speech, reverberant speech). Through the

WP analysis using the wavelet basis associated with the

WPT, WP coefficients are calculated and used in WP fil-

tering. Finally, the enhanced signal is further processed to

extract features for ASR. Although WP analysis has been

primarily studied for speech enhancement, our study is

focused on its tight integration with ASR.

The paper is organized as follows; Section 2 shows the

concept of the dereverberation approach we adopt. In Sec-

tion 3, wavelet analysis through WPT is introduced. In

Section 4, we present the method of selecting appropriate

WPT based on the entropy and acoustic model likelihood

criterion. The actual dereverberation based on WP filter-

ing is described in Section 5, followed by the experimental

results in Section 6. Finally, we conclude this paper in

Section 7.

2. Dereverberation Concept

We denote the spectral feature (f :frequency, m:frame)

of the reverberant signal, clean speech signal, and room

impulse response (RIR) as R(f,m), S(f,m) and H(f,m),

respectively. The reverberant speech model [3] expressed

図 2 Wavelet Packet Tree (WPT) decomposition.

in terms of early and late reflections is approximated as

R(f,m) ≈ S(f,m)H(f, 0) +
∑D

d=1
S(f,m− d)H(f, d)

≈ E(f,m) + L(f,m)

(1)

where H(f, 0) is the RIR effect to the speech signal

S(f,m) attributing to the early reflection E(f,m). The

second term L(f,m) referred to as late reflection can be

viewed as smearing of the clean speech by H(f, d) which

corresponds to the d frame-shift effect of the RIR. D is

the number of frames over which the reverberation has an

effect. The early reflection is mostly addressed through

Cepstral Mean Normalization (CMN) in ASR. Therefore,

dereverberation is reduced to suppressing the effects of

the late reflection L(f,m). Since the late reflection can

be treated as additive noise formulated in Eq. (1), dere-

verberation is simplified to a denoising problem.

3. Wavelet Packet Tree (WPT) Analysis

A one-dimensional wavelet is generally expressed as

Ψj,k(t) = 2
−j

2 Ψ(2−jt− k), j ∈ Z k ∈ Z , (2)

where t denotes time, j is the depth of the dyadic scale

having a resolution of 2−j , and k is the dyadic translation.

Wavelet analysis offers a flexibility of scaling and translat-

ing the wavelets which controls the degree of representing

signals of interest. A proper choice of these parameters

would lead to a better representation of signals.

Fig. 2 shows the WPT decomposition method. The

scale j and translation k correspond to the depth and po-

sition of the wavelet packets w(j, k) in the tree structure.

For a WPT decomposition W , there exists a library of

wavelet packets w(j, k), and for every wavelet packet, a

wavelet basis Ψj,k is associated to it. The wavelet ba-

sis contains the orthogonal filter information (i.e. high

and low pass filters). Every wavelet packet splits the

bandwidth of the signal, and as this process continues

down the tree, the frequency resolution is further refined.

Thus, WPT decomposition is analogous to filterbank anal-
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図 3 Example of WPT decomposition.

ysis. The output of the WP analysis denoted as c(j, k) are

called WP coefficients, and from this, together with the

wavelet basis, we can synthesize the original signal x,

x =
∑

j∈Z

∑

k∈Z c(j, k)Ψj,k(t). (3)

The use of the tree structure decomposition allows us to

analyze the signal of interest in finer resolution by splitting

further the tree nodes. Although the WP method trades

time resolution with frequency resolution, time is already

set when selecting the window frame for the ASR. Thus,

the frequency resolution is significant in our application.

4. Selecting Wavelet Basis Function

With an appropriate training algorithm, we can select

j and k in the WPT decomposition to capture specific

characteristics of a certain signal of interest. The result-

ing wavelet packets are sensitive in detecting the presence

of this signal given any arbitrary signal. In our case, we

are interested in detecting the power of speech and late re-

flection given an observed reverberant signal to effectively

estimate the Wiener gain.

4.1 Entropy-based Decomposition

There exists at least 2N/2 binary subtrees in a complete

binary tree decomposition of a signal with N samples,

which may be a very large number. To control the split-

ting of the nodes, we use an entropy-based criterion. We

note that over-splitting may result to a large number of

nodes containing insignificant information. The resulting

leaves of the tree structure represent the spectral distri-

bution of the signal of interest. For typical speech sig-

nal, WPT should have more frequency resolution in the

lower frequency spectrum in which the speech energy is

concentrated, as depicted in Fig. 3. There exist several

entropy-based criteria as follows [6].

• logarithm of the energy entropy:

Ej,k =
∑

i log(x2
i ). (4)

• Shannon entropy:

図 4 Training wavelet parameters.

Ej,k = −
∑

i x
2
i log(x2

i ). (5)

• p norm entropy:

Ej,k =
∑

i |xi|
p

p = 1, 2 and 3. (6)

Here, Ej,k is the entropy at each packet and xi are the co-

efficients of the signal x in an orthonormal basis at node

(j, k). In each splitting process, the cumulative entropy

of two split packets are compared with the entropy of its

source node. Splitting terminates when the cumulative

entropy falls below the entropy of the source node. Specif-

ically, the entropy-based decomposition shown in Fig. 3

is realized as follows.

• At node (j,k), calculate the cumulative entropy of the

split packets w(j + 1, u) and w(j + 1, u+ 1):

Cumj+1 ,k = Ej+1,u + Ej+1,u+1 (7)

• if Cumj+1 ,k > Ej,k then split the node

• else terminate, resulting to terminal packet {w(j, k)}

The splitting can be conducted using several entropy

criteria, including the three listed above (e = 1 : E) re-

sulting to W e=1:E tree structures. Using the terminal

packets of these tree structures, we search for the best

tree W opt among W e=1:E by

• Synthesizing the signal xe for each tree in W e=1:E

using Eq. (3) (Note that this is possible since each

packet contains the wavelet basis ψj,k and the coeffi-

cient c(j, k).)

• Select optimal choice W opt by evaluating

opt = arg max
e
P (xe|λ), (8)

where λ is the acoustic model.

We search (e = 1 : E) entropy-based criteria for speech,

late reflection and the reverberant signal, respectively.

4.2 Training WPT for Speech and Late Reflection

For speech, a single WPT to capture the general speech

characteristics is sufficient since we are interested in the
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speech subspace in general. In Fig. 4, we illustrate the

method of selecting the wavelet packets for clean speech.

From the clean speech database, WPT is trained as de-

scribed in Section 4.1. For the acoustic model λs, a Gaus-

sian Mixture Model (GMM) of 64 components is used.

This is a text-independent model which captures the sta-

tistical information of the speech subspace. Specifically,

when using speech data s Eq. (8) becomes

opt = arg max
e
P (se|λs),

and the resulting tree structure W opt
s is kept.

For late reflection, we discretize T60 from 100 ms to

600 ms with 50 ms interval. WPT selection is conducted

for each of these. By using the method of T60 estimation

and synthetic impulse response generation [5][8][3], we can

identify the reverberation time T60 among the discretized

values mentioned above. Consequently, we can generate

the RIR h (time-domain equivalent of H in Eq. (1) and

its corresponding late reflection coefficients hl [3]. Then,

late reflection observations l are synthetically generated

by convolving the clean speech with hl. Next, WPT is

trained in the same manner as in the clean speech, except

that thresholding is applied to the WP coefficients prior

to synthesis. This ensures that the coefficients are void

of speech characteristics. Speech energy is characterized

with high coefficient values [7] and thresholding sets these

coefficients to zero.

c̄(j, k)l =

{

0 , | c(j, k)l | > thr

c(j, k)l , | c(j, k)l | ≤ thr
(9)

The thresholded coefficient is synthesized (Eq. 3) back to

time domain l̄ej,k and evaluated against a late reflection

model λl̄. Specifically, Eq. (8) becomes

opt = arg max
e
P (̄le|λl̄),

and the corresponding WPT W
opt
l that result to the high-

est likelihood score is kept. λl̄ is trained using the auto-

matically generated late reflection data with thresholding

applied.

The proposed WPT selection makes the signal sub-

spaces of speech and late reflection to be effectively dis-

criminated from each other. Thus, W opt
s and W

opt
l are

of different tree structures. We note that this is not

true when simply using very high-resolution filterbanks

in which subspaces of speech and late reflection are over-

lapped, resulting to poor power estimates.

5. Wavelet Packet Filtering

WP filtering is conducted framewise by weighting the

contaminated WP coefficient c(j, k)r

c(j, k)enhanced = c(j, k)r . κ(j, k), (10)

where the Wiener gain κ(j, k) dictates the degree of sup-

pression of the late reflection to the observed signal. The

general expression of the Wiener gain is given as

κ(j, k) =
c(j, k)2s

c(j, k)2s + c(j, k)
2

l

, (11)

where c(j, k)2s, and c(j, k)2l are the power estimates for the

clean speech and late reflection, respectively. Specifically,

these are the WP coefficients of the clean speech s and late

reflection l. However, we do not have access to both s and

l in the real scenario, but only to the observed reverberant

signal r. By using the appropriate WPT decomposition

W opt
s and W opt

l , we can estimate the speech power

c(j, k)2s ≈ c(jopt
s , kopt

s )
2

r, (12)

where jopt
s and kopt

s are the tree depth and position in the

W opt
s decomposition structure. The power estimate of the

late reflection is given as

c(j, k)2l ≈
1

D

D
∑

d=1

ǫd . cd(j
opt
l , k

opt
l )2r, (13)

where cd(j
opt
l , k

opt
l )2r are the estimates for the previous d

frames (d = 1, ...,D) (see Section 2). ǫd is the exponen-

tial decay of the reflection energy in the previous d frames

[8] which was experimentally derived in [3]. The summa-

tion over d represents the smearing effect of the previous

frames to the current frame. The left side of Eqs. (12)-

(13) are the speech and late reflection power using the

actual signal s and l, which is unavailable. The right side

is the corresponding approximation using the observed

reverberant signal r, when decomposed using W opt
s and

W
opt
l .

In the actual filtering, we use the tree structure of the

reverberant signal as shown in Eq. (10). But the tree

structures for both speech and late reflection used in cal-

culating the Wiener gain may be of different depth, result-

ing to a (usually) shorter terminal leaves. We extend the

leaves of these two to correspond to the generic structure

of the reverberant signal by padding with zeros. Then,

Wiener gain filtering is implemented as described above.

c© 2012 Information Processing Society of Japan 4

Vol.2012-SLP-92 No.11
2012/7/21



情報処理学会研究報告
IPSJ SIG Technical Report

図 5 Evaluation against mismatch in reverberant conditions.

6. Experimental Evaluations

We have evaluated the proposed method in a large vo-

cabulary continuous speech recognition (LVCSR) task.

The training database is the Japanese Newspaper Article

Sentence (JNAS) corpus with a total of approximately 60

hours of speech. The test set is composed of 200 sentences

uttered by 50 speakers. The vocabulary size is 20K and

the language model is a standard word trigram model.

Speech is processed using 25ms-frame with 10ms shift

using Daubechies wavelets. From the enhanced signal via

WPT decomposition, we reconstruct the time-domain sig-

nal and extract features for ASR. The features used are

12-order MFCCs, ∆MFCCs, and ∆Power. The acoustic

model is phonetically tied mixture (PTM) HMMs with

8256 Gaussians in total.

Reverberant training data are synthetically produced

with the automatically generated RIR as described in [3].

The test data were recorded in a room with known re-

verberation time: T60=200ms, 400ms and 600ms. Thus,

we used actual reverberant data for evaluation. For ref-

erence, the recognition performance for clean speech in

word accuracy is 94.0%.

6.1 Comparison with Other Methods

The methods compared in Table 1 are as follows;

• (A) Reverberant data (unprocessed) matched against

the clean acoustic model.

• (B) Reverberant data (unprocessed) matched against

the reverberant acoustic model.

• (C) A single-band dereverberation method combin-

ing linear prediction (LP) residual processing and the

spectral processing techniques [2].

• (D) Dereverberation based on the multi-band spec-

tral subtraction [3].

表 1 ASR Result in Word Accuracy (20K LVCSR)

Real reverberant data

Methods 200 ms 400 ms 600 ms

(A) No processing; clean model 68.6% 43.1% 21.4%

(B) No processing; reverb. model 72.2% 49.4% 30.3%

(C) Temporal Dereverberation 76.2% 66.0% 57.1%

(D) Multi-band SS 80.7% 71.4% 61.6%

(E) Wavelet-based Thresh. 76.5% 66.2% 57.8%

(F) Wavelet-based Clustering 77.6% 67.9% 59.0%

(G) Wavelet Filtering (fixed) 83.2% 74.5% 68.6%

(H) WP Filtering (Full decomp.) 83.2%83.2%83.2% 73.3%73.3%73.3% 63.7%63.7%63.7%

(I) WP Filtering (Proposed) 84.5%84.5%84.5% 76.8%76.8%76.8% 71.5%71.5%71.5%

• (E) Thresholding in the wavelet domain that incor-

porates voice activity detection and statistical infor-

mation [7].

• (F) Wavelet-based method that clusters extrema of

the LP coefficients in separating clean components

from reverberant components [9].

• (G) Wavelet filtering with pre-defined fixed bands [4].

• (H) WP filtering with conventional WPT full decom-

position

• (I) WP filtering with proposed WPT decomposition

separately conducted for clean speech, late reflection

and reverberant speech.

Table 1 shows the word accuracy for different T60. The

acoustic model for each of the methods compared in Ta-

ble 1 is matched corresponding to the processing of each

method. In this table, the proposed method (I) consis-

tently and significantly outperforms other existing meth-

ods. Moreover, it is apparent that by using appropriate

WPT decomposition (I), an improvement in the recogni-

tion performance is achieved from (H). This shows that

using different tree structures appropriate for speech and

late reflection is more effective than using the simple full

WPT decomposition.
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6.2 Evaluation in Mismatched Conditions

We investigate the performance of the proposed method

in mismatched reverberant conditions. We simulate the

mismatched scenario in which the system fails to classify

T60. Two models optimized for T60 of 200 ms and 600 ms

are tested against the data of T60 of 200 ms, 400 ms and

600 ms. Fig. 5 demonstrates that the proposed method

outperforms the existing methods even in mismatched re-

verberant conditions. As expected, our previous method

of wavelet filtering [4] lags behind the proposed one as the

fixed bands cannot cope with the change in reverberant

condition.

7. Conclusion

We have proposed a multiple-frequency resolution anal-

ysis through the wavelet packets in discriminating the sub-

spaces of clean speech and late reflection. Acoustic like-

lihood is incorporated with entropy criterion in wavelet

basis selection, resulting to a link between the enhance-

ment process and the acoustic model for ASR.

The resultant WPT represents an appropriate fre-

quency resolution of a signal of interest. Therefore, the

system can effectively estimate the power of speech and

late reflection in reverberant signals. This results to an

effective Wiener gain estimate for dereverberation. In the

experimental evaluations, the proposed dereverberation

method improves ASR performance.
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