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Feature Scaling for Online Learning of Binary Classifiers

Danushka Bollegala1,a) Hitoshi Iba1,b)

Abstract: Scaling feature values is an important task in numerous machine learning tasks. Often feature scaling is
conducted in an unsupervised manner as a preprocessing task prior to learning. By conducting feature scaling at train
time, we can quickly adapt to the changes in data stream as well as scale features to optimize classification accuracy.
We study the effect of feature scaling at training time for one-pass online binary classification algorithms. We pro-
pose a joint supervised feature scaling method to simultaneously scale features during training time. We incorporate
the proposed method into a binary logistic regression model and train using stochastic gradient descent in a one-pass
online learning setting.
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1. Introduction
Machine learning algorithms require train and test instances to

be represented using a set of features. For example, in supervised
document classification [6], a document is often represented as a
vector of its words and the value of a feature is set to the number
of times the word corresponding to the feature occurs in that doc-
ument. However, different features occupy different value ranges,
and often one must scale the feature values before any supervised
classifier is trained. In our example of document classification,
there are both highly frequent words (e.g. stop words) as well as
extremely rare words. Often, the relative difference of a value of
a feature is more informative than its absolute value. Therefore,
feature scaling has shown to improve performance in classifica-
tion algorithms.

Typically, feature values are scaled to a fixed range in a pre-
processing step before using the scaled features in the subsequent
learning task. However, this preprocessing approach to feature
value scaling is problematic because of several reasons. First,
often feature scaling is done in an unsupervised manner without
consulting the labels assigned to the training instances. Although
this is the only option in unsupervised learning tasks such as doc-
ument clustering, for supervised learning tasks such as document
classification, where we do have access to the label information,
we can use the label information also for feature scaling. Sec-
ond, it is not possible to perform feature scaling as a preprocess-
ing step in one-pass online learning setting. In one-pass online
learning we are allowed to traverse through the set of training in-
stances only once. Learning from extremely large datasets such
as twitter streams or Web scale learning calls for algorithms that
require only a single pass over the set of training instances. In
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such scenarios it is not possible to scale the feature values be-
forehand by using statistics regarding the entire training set and
then perform supervised learning using the scaled feature vec-
tors. Simple feature scaling methods such as fitting a zero mean
and unit variance Gaussian for each feature requires a large sam-
ple of training instances to accurately compute the mean and the
standard deviation for each feature, and cannot be performed only
using a single training instance as in the case of one-pass online
learning. Third, even if we pre-compute scaling parameters for a
feature, those values might become irrelevant in an online learn-
ing setting in which properties of the training instances vary over
the time. For example, a twitter text stream regarding a particular
keyword might change overtime and the scaling factors computed
using old data might not be appropriate for the new data.

We propose a joint supervised feature scaling method that can
learn both the optimal feature scalings as well as the weight of
each feature in an online binary classification setting. The pro-
posed algorithm can be trained under the one-pass online learn-
ing setting, where only a single training instance is provided at a
time and only the scale parameters and feature weights are stored
in the memory. In particular, we do not require any preprocess-
ing of the training instances prior to training. This enables the
proposed method to (a) efficiently adapt to the varying statistics
in the data stream, (b) compute the optimal feature scales such
that the likelihood of the training data under the trained model is
maximized, and (c) train from large datasets where batch learning
is impossible because of memory requirements. We present our
learning algorithm for the case of binary classification. Extend-
ing it to multi-class and regression tasks is our future work. We
perform an extensive evaluation using numerous popular online
learning algorithm and several variants of the proposed method,
including an unsupervised online feature scaling method. It turns
out that the unsupervised method outperforms supervised meth-
ods for feature scaling.
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2. One-Pass Online Learning
Before we proceed to explain the proposed feature scaling

method, we must first state the problem setting, One-Pass On-
line Learning. In the One-Pass Online Learning (OPOL) we im-
pose the restriction that only a single-pass is allowed over the set
of train instances by the learning algorithm. Moreover, because
we are interested in the online learning algorithms, we assume
that we can process only a single feature vector at train or test
time. The OPOL setting is more restrictive than the classical on-
line learning setting where a learning algorithm is allowed to tra-
verse multiple times over the training dataset. However, OPOL
becomes the only possible approach in following scenarios.
( 1 ) The number of instances in the training dataset is so large

that it is impossible to traverse multiple times over the
dataset.

( 2 ) The dataset is in fact a stream where we encounter new in-
stances continuously. For example, consider the situation
where we want to train a sentiment classifier from tweets.

( 3 ) The data stream changes over time. In this case, even if we
can store old data instances they might not be much of a help
to predict the latest trends in the data stream.

It must be noted that OPOL is not the only solution for the first
scenario where we have a large training dataset. One alternative
approach is to select a subset of example from the dataset at each
iteration and only use that subset for training in that iteration. One
promising criterion for selecting examples for training is curricu-
lum learning [1]. In curriculum learning, a learner is presented
with easy examples first and gradually with the more difficult ex-
amples. However, determining the criteria for selecting easy ex-
amples is a difficult problem itself, and the criterion for selecting
easy examples might be different from one task to another. More-
over, it is not clear whether we can select easy examples from
the training dataset in a sequential manner as required by online
learning without consulting the unseen training examples.

The requirement for OPOL ever increases with the large train-
ing datasets and data streams we encounter on the Web such as so-
cial feeds. Most online learning algorithms require several passes
over the training dataset to achieve convergence. For example,
Passive-Aggressive algorithms require at least 5 iterations where
as, for Confidence-Weighted algorithms the number of iterations
has shown to be less (ca. 2). Our focus in this paper is not to de-
velop online learning algorithms that can classify instances with
high accuracy by traversing only once over the dataset, but to
study the effect of feature scaling in the OPOL setting. To this
end, we study both an unsupervised feature scaling method (Sec-
tion 3) and several variants of a joint supervised feature scaling
methods (Section 4).

3. Unsupervised Feature Scaling for OPOL
Before we discuss supervised feature scaling methods in Sec-

tion 4, it is worthwhile to introduce a simple yet effective unsuper-
vised approach to feature scaling. In this unsupervised approach,
given a feature x j, we compute the mean, E(x j) and the standard
deviation

√
(V(x j) of the feature and perform an affine transfor-

mation as follows,

x′j =
x j − E(x j)√

V(x j)
. (1)

This scaling operation corresponds to a linear shift of the fea-
ture values by the mean value of the feature, followed up by a
scaling by its standard deviation. From a geometric point of view,
this transformation will shift the origin to the mean value and then
scale axis corresponding to the j-th feature to unit standard devi-
ation. It is used popularly in batch learning setting, in which one
can compute the mean and the standard deviation using all the
training instances in the training dataset. However, this is not
possible in OPOL, in which we encounter only one instance at a
time. However, even in the OPOL setting, we can compute the
mean and the standard deviation on the fly and constantly update
our estimates of those values as new training instances (feature
vectors) are observed. The update equations for the mean Mk

j

and the standard deviation
√

S k
j/(k − 1) for the j-th feature are as

follows [4], [12],

Mk
j = Mk−1

j +
xk

j − Mk−1
j

k
, (2)

S k = S k−1 + (xk
j − Mk−1

j )(xk
j − Mk

j ). (3)

As we will later see in Section 6, this simple unsupervised ap-
proach to feature scaling significantly outperforms all the super-
vised feature scaling approaches described in Section 4.

4. Supervised Feature Scaling for OPOL
We define the supervised feature scaling task for binary classi-

fication in the one-pass online learning setting as follows. Given
a stream of labeled training instances (xn, tn), in which the class
label tn of the n-th training instance xn, denoted by a feature vec-
tor xn, is assumed to be either +1 (positive class) or −1 (negative
class). Furthermore, let us assume that the feature space is M
dimensional and the value of the i-th feature of the n-th instance
in the training data stream is denoted by xn

i . In this paper, we
consider only real-valued features (i.e. xn

i ∈ R) because feature
scaling is particularly important for real-valued features.

We define the feature scaling functionσi(xn
i ) for the i-th feature

as a function that maps R to the range [0, 1] as follows:

σi(xn
i ) =

1
1 + exp(−αixn

i + βi)
. (4)

Here, αi and βi are the scaling parameters for the i-th dimen-
sion of the feature space. Several important properties of the
feature scaling function defined by Equation 4 must be noted.
First, the feature transformation function maps all feature val-
ues to the range [0, 1] irrespective of the original range in which
each feature value xi was. For example, one feature might orig-
inally be limited to the range [0, 0.001], whereas another feature
might have values in the full range of [0, 10000]. By scaling each
feature into a common range we can concentrate on the relative
values of those features without being biased by their absolute
values. Second, the scaling parameters αi and βi are defined per-
feature basis. This enables us to scale different features using
scale parameters appropriate for their value ranges. Third, the
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the linear transformation αixn
i − βi within the exponential term of

the feature scaling function resembles the typical affine transfor-
mations performed in unsupervised feature scaling. For example,
assuming the mean and the standard deviation of the i-th feature
to be respectively µi and δi, in supervised classification, features
are frequently scaled to (xi − µi)/δi prior to training and testing.
The linear transformation within the exponential term in Equa-
tion 4 can be seen as a special case of this approach with values
αi = 1/δi and βi = µi/δi.

Then, the posterior probability, P(t = 1|xn, b,α,β) of xn be-
longing to the positive class is given as follows according to the
logistic regression model [3]:

P(tn = 1|xn, b,α,β) =
1

1 + exp
(
−

∑M
i=1 wiσi(xn

i ) − b
) , (5)

P(tn = 1|xn, b,α,β) =
1

1 + exp
(
−

wi
1+exp(−αi xn

i +βi)
− b

) .
Here, wi is the weight associated with the i-th feature and b ∈ R
is the bias term. We arrange the weights wi, scaling parameters αi

and βi respectively using RM vectors w, α, and β.
The cross-entropy loss function per instance including the L2

regularization terms for the weight vector w and scale vector β
can be written as follows:

L(w, b,α,β) = −tn log yn − (1 − tn) log(1 − yn) (6)

Here, we used yn = P(t = 1|xn, b,α,β) to minimize the clutter-
ing of symbols in the Equation. To avoid overfitting to training
instances and to minimize the distortion of the training instances
we impose L2 regularization on w, α, and β. Therefore, the final
objective function that must be minimized with respect to w, α,
β, and b is give by,

E(w, b,α,β) = L(w, b,α,β) + λ ||w||2 + µ ||α||2 + ν ||β||2 (7)

Here, λ, µ and ν respectively are the L2 regularization coeffi-
cients corresponding to the weight vector w and the scale vectors
α, β. Because we consider the minimization of Equation 7 per
instance basis, in our experiments we divide the regularization
parameters λ, µ, and ν by the total number of training instances N
in the dataset such that we can compare the values those parame-
ters across datasets of different sizes.

By setting the partial derivatives ∂E
∂w j

, ∂E
∂b , ∂E

∂α j
, and ∂E

∂β j
to zero

and applying Stochastic Gradient Descent (SGD) update rule the
following updates can be derived,

wk+1
j = wk

j(1 − 2ληk) + ηk(tn − yn)σ j(xn
j ), (8)

bk+1 = bk + ηk(tn − yn), (9)

αk+1
j = αk

j(1 − 2µηk) + ηk xn
jw jσ j(xn

j )(1 − σ j(xn
j ))(tn − yn),(10)

βk+1
j = βk

j(1 − 2νηk) − ηk(tn − yn)w jσ j(xn
j )(1 − σ j(xn

j )). (11)

In Equations 8-11, k denotes the k-th update and ηk is the learn-
ing rate for the k-th update. We experimented with both linear and
exponential decaying and found linear decaying to perform better

for the proposed method. The linear decaying function for ηk is
defined as follows,

ηk =
η0

1 + k
T×N

. (12)

Here, T is the total number of iterations for which the training
dataset containing N instances will be traversed. Because we are
considering OPOL, T = 1. The initial learning rate η0 is set
to 0.1 throughout the experiments described in the paper. This
value of 0.1 was found to be producing the best results in our pre-
liminary experiments using development data, which we selected
randomly from the benchmark datasets described later in Section
5.

Several observations are in order. First, note that the scaling
factors α j and β j distort the original value of the feature xi. If
this distortion is too much, then we might loose the information
conveyed by the feature xi. To minimize the distortion of x be-
cause of scaling, we have imposed regularization on both α and
β. This treatment is similar to the slack variables often used in
non-separable classification tasks and imposing a penalty on the
total slackness. Of course, the regularization on α and β can be
removed simply by setting the corresponding regularization co-
efficients µ and ν to zero. Therefore, the introduction of regular-
ization on α and β does not harm the generality of the proposed
method. The total number of parameters to train in this model is
M + M + M + 1 = 3M + 1, corresponding to w, α, β, and b. Note
that we must not regularize the bias term b and let it to adjust
arbitrarily large. Doing so also act as a dynamic scaling for the
score (i.e. inner-product between w and x), although this type of
scaling is not feature specific.

The feature scaling function given by Equation 4 is by no
means the only function that satisfies the requirement for a scal-
ing function (i.e. maps all feature values to the same range such
as [0, 1]). Next, we introduce several important variants of Equa-
tion 4 and present the update equations for each variant. We omit
the derivation of the update equations due to the limited avail-
ability of space. In Section 6, we empirically study the effect of
the different variants discussed in the paper. For the ease of ref-
erence, we name the original formulation given by Equation 4 as
FS (Feature Scaling) method.

The objective function given by Equation 7 is convex with re-
spect to w. This can be easily verified by computing the second
derivative of the objective function with respect to wi, which be-
comes

∂2E
∂w2

i

= σ(xi)2yn(1 − yn) + 2λ. (13)

Because 0 < σ(xi) < 1, 0 < yn < 1, and 0 < λ hold, the second
derivative ∂2E

∂w2
i
> 0, which proves that the objective function is

convex with respect to wi. Likewise, the objective function can
be shown to be convex with respect to the bias term b. It is inter-
esting to note that the convexity holds irrespective of the form of
the scaling function σ for both w and b as long as σ(xi) , 0 satis-
fies If σ(xi) = 0 for some value of xi, then the convexity of E also
depends upon λ not being equal to zero. Although, in the case of
sigmoid feature scaling functions σ(xi) → 0 when xi → −∞ this
is irrelevant because feature values are finite in practice.
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Unfortunately, the objective function is non-convex with re-
spect to α and β. Although SGD updates are empirically shown
to work well even when the objective function is non-convex,
there is no guarantee that the update Equations 8 - 11 will find
the global minimum of the objective function.

4.1 FS-1
In this variant we fix the scaling factor α = 1, thereby reducing

the number of parameters to be tuned. However, this model can-
not adjust for the different value range of features and can only
learn the shiftings required. We name this variant as FS-1 and is
given by,

σi(xn
i ) =

1
1 + exp(−xn

i + βi)
. (14)

The update equations for w j, b, and β j are as follows,

wk+1
j = wk

j(1 − 2ληk) + ηk(tn − yn)σ j(xn
j ), (15)

bk+1 = bk + ηk(tn − yn), (16)

βk+1
j = βk

j(1 − 2νηk) − ηk(tn − yn)w jσ j(xn
j )(1 − σ j(xn

j )). (17)

Note that although the update Equations 15, 16, and 17 appears
to be similar in their form to Equations 8, 9, and 11, the trans-
formation functions in the two sets of equations are different. As
discussed earlier, FS-1 is convex with respect to w and b, but non-
convex with respect to β.

4.2 FS-2
We design a convex form of the objective function with respect

to all parameters by replacing the sigmoid feature scaling func-
tion with a linear combination as follows,

σi(xi) = αixi + βi. (18)

The class conditional probability is computed using the logistic
sigmoid model as,

P(tn = 1|w, b,α,β) =
1

1 + exp(−
∑M

j=1 w j(α jxn
j + β j) − b)

.(19)

Then the update equations for w, b, α, and β are given as fol-
lows,

wk+1
j = wk

j(1 − 2ληk) − ηk(yn − tn)(α jxn
j + β j), (20)

bk+1 = bk − ηk(yn − tn), (21)

αk+1
j = αk

j(1 − 2µηk) − ηk(yn − tn)w jxn
j , (22)

βk+1
j = βk

j(1 − 2νηk) − ηk(yn − tn)w j. (23)

Here, we used yn = P(tn = 1|w, b,α,β) to simplify the equations.
Moreover, the second-order partial derivatives of the objective

function E, with respect to w, b, α, and β can be computed as
follows,

∂2E
∂w2

j

= yn(1 − yn)(α jxn
j + β j)2

+ 2λ,

∂2E
∂α2

j

= yn(1 − yn)w2
j x

n2
j + 2µ,

∂2E
∂β2

j

= yn(1 − yn)w2
j x

n2
j + 2µ,

∂2E
∂w2

j

= yn(1 − yn).

From, 0 < yn < 1, λ > 0, µ > 0, and ν > 0 it follows that all
the above-mentioned second-order derivatives are positive, which
proofs the convexity of the objective function. We name this
convex formulation of the feature scaling method as the FS-2
method.

4.3 FS-3
Although FS-2 is convex, there is an issue regarding the de-

terminability among w, α, and β because the product between w
and α, and the product between w and β appears inside the ex-
ponential term in Equation 19. This implies that the probability
P(tn = 1|w, b,α,β) will be invariant under a constant scaling of
w, α, and β. We can absorb the w j terms from the objective func-
tion into the corresponding α j and β j terms thereby effectively
both reducing the number of parameters to be trained as well as
eliminating the issue regarding the determinability. We name this
variant of the feature scaling method as the FS-3 method.

The class conditional probability for FS-3 is give by,

P(tn = 1|b,α,β) =
1

1 + exp(−
∑M

j=1(α jxn
j + β j) − b)

. (24)

This can be seen as a special case of FS-2 where we set w = 1
and λ = 0.

The update equations for FS-3 can be derived as follows,

bk+1 = bk − ηk(yn − tn), (25)

αk+1
j = αk

j(1 − 2µηk) − ηk(yn − tn)xn
j , (26)

βk+1
j = βk

j(1 − 2νηk) − ηk(yn − tn). (27)

Here, we used yn = P(tn = 1|b,α,β) to simplify the equations.
Because FS-2 is convex and FS-3 is a special case of FS-2, it
follows that FS-3 is also convex.

5. Datasets
To evaluate the performance of the numerous feature scaling

methods introduced in Section 4, we train and test those meth-
ods under the one-pass online learning setting. We use three
datasets in our experiments: heart dataset, liver dataset, and the
diabetes dataset. All three datasets are popularly used as bench-
mark datasets to evaluate binary classification algorithms. More-
over, all three datasets contain real-valued and unscaled features
values, which suits our purpose. All three datasets can be down-
loaded from the UCI Machine Learning Repository*1. Details of
the three datasets are summarized in Table 1.
*1 http://archive.ics.uci.edu/ml/
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Table 1 Statistics regarding the three datasets used in the experiments.

Dataset Attributes Train instances Test instances
heart 13 216 54
liver 6 276 69
diabetes 8 611 157

6. Experiments and Results
We compare the performance of the following approaches on

the three benchmark datasets.
SGD: This method implements logistic regression using

stochastic gradient descent. It does not use any feature
scaling and uses the original feature values as they are for
training a binary classifier. This method demonstrates the
lower baseline performance for this task.

SDG+avg: This method is same as SGD described above, ex-
cept that it uses the average weight vector during training and
testing. Specifically, it computes the average of the weight
vector w over the updates and uses this average vector for
prediction. By considering the average weight vector instead
of the final weight vector we can avoid any bias toward the
last few training instances encountered by the online learner.
Moreover, it has been shown both theoretically and empiri-
cally that consideration of the average weight vector results
in faster convergence in online learning [5].

GN: This is the unsupervised feature scaling method described
in Section 3. It trains a binary logistic regression model by
scaling the features using the unsupervised approach.

GN+avg: This is the unsupervised feature scaling method de-
scribed in Section 3 using the average weight vector for pre-
dicting instead of the final weight vector. It trains a binary
logistic regression model by scaling the features using the
unsupervised approach.

FS: This is the method described in Section 4.
FS+avg: This is the FS method, where we use the average val-

ues for all parameters: w, b, α, and β.
FS-1: This is the method described in Section 4.1.
FS-1+avg: This is the method described in Section 4.1 with av-

eraged parameter vectors.
FS-2: This is the method described in Section 4.2.
FS-2+avg: This is the method described in Section 4.2 with av-

eraged parameter vectors.
FS-3: This is the method described in Section 4.3.
FS-3+avg: This is the method described in Section 4.3 with av-

eraged parameter vectors.
PA: This is the Passive-Aggressive binary linear classification

algorithm proposed in [6].
PA+avg: This is the Passive-Aggressive binary linear classifi-

cation algorithm proposed in [6] using the averaged weight
vector to predict during both training and testing stages.

PA-1: This is the Passive-Aggressive PA-I version of the binary
linear classification algorithm proposed in [6].

PA-1+avg: This is the Passive-Aggressive PA-I version of the
binary linear classification algorithm proposed in [6] using
the averaged weight vector to predict during both training
and testing stages.

PA-2: This is the Passive-Aggressive PA-II version of the bi-

Table 2 Results on the heart dataset.
Algorithm Train Error Test Error Best Parameters
SGD 0.537037 0.574074 λ = 0.01
SGD+avg 0.481481 0.435185 λ = 0
GN 0.87037 0.824074 λ = 0.01
GN+avg 0.777778 0.768519 λ = 0.1
FS 0.592593 0.49537 λ = 0.1, µ = 1.0, ν = 0
FS+avg 0.481481 0.435185 λ = 0, µ = 0ν = 0
FS-1 0.703704 0.564815 µ = 100.0, ν = 0.1
FS-1+avg 0.759259 0.564815 µ = 0.1, ν = 10.0
FS-2 0.740741 0.569444 λ = 10.0, µ = 0, ν = 10.0
FS-2+avg 0.574074 0.467593 λ = 0, µ = 1.0, ν = 0
FS-3 0.592593 0.476852 µ = 0.1, ν = 0
FS-3+avg 0.574074 0.421296 µ = 0.1, ν = 1.0
PA 0.648148 0.675926 c = 0.01
PA+avg 0.611111 0.662037 c = 0.01
PA1 0.648148 0.675926 c = 0.01
PA1+avg 0.611111 0.662037 c = 0.01
PA2 0.648148 0.675926 c = 0.01
PA2+avg 0.611111 0.662037 c = 0.01

Table 3 Results on the liver dataset.
Algorithm Train Error Test Error Best Parameters
SGD 0.608696 0.561594 λ = 0.1
SGD+avg 0.550725 0.586957 λ = 0
GN 0.695652 0.637681 λ = 100.0
GN+avg 0.777778 0.768519 λ = 0.1
FS 0.637681 0.586957 λ = 10.0, µ = 0.1, ν = 0.1
FS+avg 0.550725 0.586957 λ = 0, µ = 0ν = 0
FS-1 0.623188 0.413043 µ = 1.0, ν = 0
FS-1+avg 0.623188 0.413043 µ = 0.1, ν = 0.1
FS-2 0.681159 0.59058 λ = 0, µ = 0.01, ν = 0
FS-2+avg 0.550725 0.586957 λ = 0, µ = 0, ν = 0
FS-3 0.623188 0.550725 µ = 0, ν = 0
FS-3+avg 0.550725 0.586957 µ = 0, ν = 0
PA 0.434783 0.427536 c = 0.01
PA+avg 0.565217 0.594203 c = 0.01
PA1 0.434783 0.427536 c = 0.01
PA1+avg 0.565217 0.594203 c = 0.01
PA2 0.434783 0.427536 c = 0.01
PA2+avg 0.565217 0.594203 c = 0.01

Table 4 Results on the diabetes dataset.
Algorithm Train Error Test Error Best Parameters
SGD 0.643312 0.653028 λ = 1.0
SGD+avg 0.643312 0.653028 λ = 0
GN 0.656051 0.656301 λ = 0.01
GN+avg 0.656051 0.671031 λ = 100.0
FS 0.643312 0.653028 λ = 0, µ = 0, ν = 0
FS+avg 0.643312 0.653028 λ = 0, µ = 0ν = 0
FS-1 0.643312 0.653028 µ = 10, ν = 0
FS-1+avg 0.643312 0.653028 µ = 0, ν = 0
FS-2 0.643312 0.653028 λ = 0, µ = 0, ν = 1.0
FS-2+avg 0.643312 0.653028 λ = 0, µ = 0, ν = 0
FS-3 0.643312 0.653028 µ = 0.01, ν = 100.0
FS-3+avg 0.643312 0.653028 µ = 0, ν = 0.01
PA 0.611465 0.656301 c = 0.01
PA+avg 0.636943 0.657938 c = 0.01
PA1 0.648148 0.675926 c = 0.01
PA1+avg 0.636943 0.657938 c = 0.01
PA2 0.611465 0.656301 c = 0.01
PA2+avg 0.636943 0.657938 c = 0.01

nary linear classification algorithm proposed in [6].
PA-2+avg: This is the Passive-Aggressive PA-II version of the

binary linear classification algorithm proposed in [6] using
the averaged weight vector to predict during both training
and testing stages.

We measure train and test error for each of the above-
mentioned 18 algorithms using the three benchmark dataset, The
experimental results are shown in Tables 2, 3, and 4. Error is
computed as follows,
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total no. of misclassified instances
total no. of instances in the dataset

. (28)

We vary the parameter values for the numerous parameters
in a pre-defined set of values for each parameter and experi-
ment with all possible combinations of those values. For the
regularization coefficients λ, µ, and ν we experiment with the
values in the set {0, 0.01, 0.1, 1, 10, 100}. For the c param-
eter in passive-aggressive algorithms we chose from the set
{0.01, 0.1, 1, 10, 100}. We show the results for the parameter val-
ues that yields the best test accuracy on each dataset. Therefore,
the results reported in the paper can be considered as the best pos-
sible results that can be achieved with each method on the bench-
mark datasets. In a more conservative setting, in which one might
select the parameter values using a separate development dataset
independent from both the train and test datasets, the results on
the test dataset might be lower.

Online learning algorithms have been shown to be sensitive to
the order in which training examples are presented to them. Fol-
lowing the suggestions in prior work, we randomize the sequence
of training data instances during training [2].

As can be seen from Tables 2, 3, and 4 the unsupervised fea-
ture scaling methods (GN and GN+avg) consistently outperform
joint supervised feature scaling methods and PA algorithms. This
result can be imply several possibilities. First, it could be that it is
possible to accurately estimate the mean and standard deviation
for each feature accurately even in the one-pass online learning
setting for the three datasets used for evaluation. Although the
estimates for mean and standard deviation of a particular feature
might be incorrect at the initial stages of the learning, when we
encounter more and more training instances we will be able to ac-
curately estimate the mean and standrad deviation of a particular
feature. It also helps for the unsupervised feature scaling method
that all the three datasets used in the paper consist of dense feature
vectors without any missing values. For example, if a particular
feature only appears in a small subset of the training instances,
then it would be difficult to accurately estimate the mean and the
standard deviation of that feature, hence unable to scale that fea-
ture correctly using the unsupervised method. Therefore, we plan
to repeat the experiments with feature sparse datasets such as ones
that are frequently encountered in the text classification tasks.
However, those features values are either binary (i.e. whether
a particular word occurs in a particular document) or integer (i.e.
the frequency of a particular word in a particular document) or a
computed real-valued score from frequency counts such as tfidf
[16]. values. Because feature scaling becomes an issue mostly
with real-valued features, it is unknown whether document clas-
sification datasets, as used by most online learning algorithms for
evaluation purposes, it suitable to demonstrate the effect of a fea-
ture scaling algorithm.

Among the variants of the proposed FS methods, the FS-2
method reports the best performance. This can be attributable to
the convexity of the objective function. Because we are allowed
only a single pass over the training dataset in OPOL setting, con-
vergence becomes a critical issue compared to the classical online
learning setting where the learning algorithm traverses multiple
times over the dataset. Therefore, the convexity of the objective
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Fig. 1 Cumulative training errors on the heart dataset.
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Fig. 2 Cumulative training errors on the liver dataset.

function might be an important factor that assists the process of
convergence to a global optimal solution in a single pass over the
dataset.

The difference between a particular learning algorithm and
its averaged counterpart (+avg version) is mixed. On the liver
dataset we see that the averaged version always outperforms the
non-averaged version for the same algorithm. However, the trend
is reversed on the heart dataset, whereas in the diabetes dataset
there is not much difference between the two versions.

To study the behavior of the different learning algorithms dur-
ing train time, we compute the cumulative number of errors. We
plot the cumulative number of errors against the total number of
training instances encountered as shown in Figures 1, 2, and 3 re-
spectively for heart, liver, and diabetes datasets. During training,
we use the weight vector (or the averaged weight vector for the
+avg algorithms) to classify the current training instances and if
it is misclassified by the current model, then it is counted as an
error. The 45 degree line in each plot correspond to the situation
where all instances encountered during training are misclassified.
All algorithms must lie below this line. If the cumulative number
of error curve for an algorithm becomes closer to the x-axis, it is
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Fig. 3 Cumulative training errors on the diabetes dataset.

considered superior because it will be making lesser number of
errors even during the train stage. To avoid cluttering, we only
show the cumulative number of error curves for the following six
methods: FS-2, FS-2+avg, SGD, SGD+avg, GN, and GN+avg.
We see that GN method stands out among all the methods shown
in Figure 1 in the heart dataset. The difference among the meth-
ods compared is less apparent for the other two datasets. FS-
2+avg method shows the best cumulative number of errors on
the diabetes dataset as can be seen from Figure 3.

7. Related Work
To our knowledge, the topic of feature scaling has not yet been

studied in a supervised setting. However, the unsupervised fea-
ture scaling approach presented in Section 3 has been used both
in batch as well as online learning settings. On the other hand,
the previous literature on online learning is extensive and we
cannot cover all in this Section. Some notable algorithms are
the passive-aggressive algorithms [6], confidence-weighted lin-
ear [10] and multi-class classifiers [7], [8], [11], [13], [14], [15],
active-learning [9] and transfer learning [17] approaches based on
online learning.

The confidence-weighted approaches for online classifier
learning are closest in spirit to our objective of feature scaling.
In confidence-weighted learning, a Gaussian prior is imposed on
each weight of a feature. During training, these algorithms not
only learn the value (corresponds to the mean) of the weight of a
feature, but also its confidence (standard deviation). Full covari-
ance matrices that can account for the inter-feature relations as
well as a diagonal approximations of the feature covariance ma-
trix have been studied in previous work. However, the relation-
ship between feature scaling and confidence-weighted learning is
not made explicit thus far.

8. Conclusion
We studied the problem of feature scaling in one-pass on-

line learning of binary linear classifiers. We presented both su-
pervised as well as unsupervised approaches for feature scaling
and evaluated 18 different learning methods using three popular

datasets. Our experimental results show that the unsupervised
approach clearly outperformed the supervised approaches on all
three datasets. Among the several variants of the supervised fea-
ture scaling approach we evaluated, the convex formulation per-
formed best. In future, we plan to explore other forms of fea-
ture scaling functions and evaluate on larger real-valued sparse
datasets.
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