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Abstract: Pandemic is a multi-player board game which simulates the outbreak of epidemics and the human effort to
prevent them. It is a characteristic of this game that all the players cooperate for a goal and they are not competitive.
We show that the problem to decide if the player can win the generalized Pandemic from the given situation of the
game is NP-complete.
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1. Introduction

Much research have been conducted on the computational
complexity of games. Games are generalized so that the games
can be played on arbitrary large game boards and the problems
to decide if the first player can win the game starting from the
given situation of the game are considered. For example, it has
been shown that Chess [1], Checkers [2], Go [3] and Shogi (or
Japanese Chess) [4] are EXPTIME-complete and Reversi [5] and
HEX [6] are PSPACE-complete. In addition to such traditional
games, many new games have been created and some of them
have become very popular. Among such games, it is shown that
Scotland Yard is PSPACE-complete [7]. In this paper, we deal
with a board game called Pandemic [8] and prove that general-
ized Pandemic is NP-complete.

Pandemic is a cooperative board game designed by Matt
Leacoc and published in 2008. This game has won several fa-
mous awards given to excellent board games and is played very
widely. Pandemic simulates the outbreak of epidemics and the
human effort to prevent them. It is a characteristic of this game
that all the players cooperate for a goal and they are not compet-
itive. In this game, four epidemics have broken out in the world,
each threatening to wipe out a region. The goal of the players is
to discover cures for all the epidemics before it is too late.

2. Rules of Generalized Pandemic

In this section, we explain the rules of generalized Pandemic.
We generalize Pandemic so that the underlying graph of the game
board, the number of players and the number of epidemics can be
arbitrary. Other rules are almost the same as usual Pandemic.

A situation of generalized Pandemic is given by the game
board, cards in the hands of players and two piles of cards.
The game board with s players and k epidemics is B =

(G,R, L, g, u,C, o), where G = (V, E) is a graph which we call
the map of the game, R is a collection of functions ra : V →
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{0, 1, 2, 3}(1 ≤ a ≤ k) that represents the infection rate of epi-
demic a at each vertex, L ⊆ V is the set of vertices with a labora-
tory, u : {1, 2, . . . , s} → V is a function that represents the vertex
in which the pawn of each player is placed, g : V → {1, 2, . . . , k}
is a function that represents what is the epidemic each vertex is
mainly infected by, C ⊆ {1, 2, . . . , k} is the set of epidemics whose
cures are already discovered, o ∈ {0, 1, 2, 3, 4, 5, 6, 7} is the num-
ber of occurred outbreaks. Let the set of vertices with the same
value of g be the area of the epidemic. In the following, we call
u(i) the position of player i.

In addition, two kinds of cards are used in this game: infection
cards and player cards. Both of them are piled face down when
the game starts. There exist |V | infection cards. Each infection
card indicates a vertex of G, one card for each vertex. When the
card indicating vertex v is drawn from the pile of infection cards,
the infection rate rg(v) of vertex v is increased by one.

Player cards consist of city cards and epidemic cards. There
exist |V | city cards and four epidemic cards. Each city card indi-
cates a vertex of G, one card for each vertex. City cards are used
by the players in making actions as described below. Each player
can keep seven city cards in his hand. If the number of cards in
hand exceeds seven, the player must immediately discard arbi-
trary extra cards. Epidemic cards are special cards that increase
the infection rate.

The game consists of turns of players. Player i plays in the
(s j + i)-th turn ( j ≥ 0) for each s = 0, 1, 2, . . .. The player who
plays the turn is called the turn-player. A turn consists of three
phases: an action phase, a draw phase and an infection phase, ex-
ecuted in this order. Actions that the turn-player can execute in
an action phase are as follows.
• Drive: Move the player’s pawn to an adjacent vertex.
• Direct Flight: Discard a city card from the player’s hand and

move the player’s pawn to the vertex that the card indicates.
• Charter Flight: Discard the city card that indicates the posi-

tion of the player and move to an arbitrary vertex when he
has the card.

• Shuttle Flight: Move the player’s pawn to any other vertex
with a laboratory when the player’s pawn is on a vertex with
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a laboratory.
• Build a Laboratory: Discard the city card indicating the

player’s position and build a laboratory on the vertex when
he has the card.

• Share Knowledge: Transfer the city card indicating the
player’s position to another player when the turn-player and
the other player are in the same vertex and the turn-player
has the card.

• Discover a Cure: Discard five city cards indicating the ver-
tices with the same value of g to discover the cure of the cor-
responding epidemic when the player is on the vertex with a
laboratory.

• Treat Disease: Decrease by one the infection rate of the ver-
tex of the player’s position.

In an action phase, the turn-player executes four actions. Note
that the same actions can be made more than once in one turn.

In a draw phase, the turn-player draws two player cards from
the pile and adds city cards to his hand. If the player draws an epi-
demic card, take the bottom card from the pile of infection cards
and increase by three the infection rate rg(v) of city v indicated by
the card. Then shuffle all the normal infection cards which are
already drawn and put them onto the pile of infection cards.

In an infection phase, two infection cards are drawn from the
pile and increase by one the infection rate rg(v) of each vertex v
indicated by the cards. When the infection rate of epidemic a is
increased at vertex v with infection rate ra(v) = 3, an outbreak

occurs. If an outbreak occurs, instead of increasing the infection
rate of v, for each vertex u adjacent to v, increase the infection
rate ra(u) by one. Though infection cards indicating city v only
increases the infection rate of the epidemic by which v is mainly
infected, when an outbreak occurs, cities that are not in the area
of the epidemic g(v) can be infected by epidemic g(v). An out-
break in vertex v may cause another outbreak in its adjacent ver-
tex, causing a chain reaction. Note that each vertex causes an
outbreak at most once in each chain reaction.

All the players lose the game when outbreaks occur eight times
or when there remains no card to draw in a draw phase. All the
players win if cures for all k epidemics are discovered before then.

3. NP-completeness of Generalized Pandemic

We define Generalized Pandemic Problem (GPP for short) as a
problem to decide if players can win from a given situation of the
Generalized Pandemic when all the cards to be drawn from the
piles are given as a part of the input, including the infection cards
put onto the pile after an epidemic card is drawn.

Theorem 3.1 GPP is NP-complete for any number of play-
ers.

It is easy to show that GPP ∈ NP. As the game ends when
there remains no player card to draw in a draw phase and two
player cards are drawn in one turn, the game ends in at most
(|V | + 4)/2 + 1 = |V |/2 + 3 turns. Thus, given the play history
of Pandemic, we can check if the players win or lose in polyno-
mial time. Therefore, GPP ∈ NP.

We prove the NP-hardness of GPP in the following of this sec-
tion.

3.1 Reduction
At first, we prove NP-hardness of the case when p = 1, that is

the case of a single player. We show later that GPP is NP-hard for
any number of players. We give a reduction from the Hamiltonian
cycle problem [9].

Let H = (V ′, E′) be an instance of the Hamiltonian cycle prob-
lem. Let |V ′| = n. In the following, we call V ′ the set of nodes in
order to distinguish them from the vertices of the map of GPP.

The outline of the reduction is as follows. We transform a node
of H to a gadget including a vertex which is about to make an
outbreak. The player must visit all such vertices, go back to the
node where he started and discover a cure in a fixed number of
turns. Otherwise the unvisited vertex will outbreak, causing a
game over.
3.1.1 Game Board

The instance of Generalized Pandemic obtained from H is as
follows. First, we explain how to construct the game board of
GPP. We now assume that n is even. We call vertex v which sat-
isfies rg(v)(v) = 3 an alert point. Any vertex which is not an alert
point has infection rate 0 for any epidemic and is called a normal
vertex. From the order of infection cards in the pile, which we ex-
plain later, outbreaks can occur at any alert point unless the player
makes actions to prevent them. We call the action to decrease the
infection rate of an alert point as the release of the alert point.

An arbitrary node of H is replaced by the starting node gadget

and all the other nodes of H are replaced by node gadgets. Edge

gadgets are placed on all the edges between the starting node gad-
get and adjacent node gadgets.

An example of a graph H and the map of GPP that is obtained
from H by our reduction are shown in Fig. 1 and Fig. 2.

Fig. 1 An instance H of the Hamiltonian cycle problem.

Fig. 2 Game board of BPP obtained from H.
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Fig. 3 An edge gadget.

Now we explain the detail of the above gadgets. A node gadget
consists of two vertices as shown in Fig. 2. One vertex is an alert
point and the other is a normal vertex. A starting node gadget is
as shown in Fig. 2. The vertices called the start vertex and the
goal vertex are in the starting node gadget. The player’s pawn is
on the start vertex and there exists a laboratory in the goal vertex.
To win the game, the player must release all the alert points in the
node gadgets and then go to the goal vertex to discover a cure.

An edge gadget is a path with 2n normal vertices as shown in
Fig. 3. Edge gadgets are placed on the edges between the start-
ing node gadget and adjacent node gadgets. The leftmost vertex
of the gadget is connected to the start vertex and the rightmost
vertex is connected to the normal vertex of a node gadget. If H

has a Hamiltonian cycle and the player makes appropriate moves,
infection cards of the alert points in the node gadgets are drawn
from the pile when the player is on an edge gadget to go back to
the starting node gadget. Thus, if an alert point in a node gadget
is not released, an outbreak occurs before the cure is discovered.

There exist two epidemics 1 and 2 in the game board and 1 � C

and 2 ∈ C hold. That is, there remains only one epidemic whose
cure is not discovered. g(v) = 1 holds for five isolated vertices
and g(v) = 2 for all the other vertices. The number of occurred
outbreaks is seven.
3.1.2 Cards

The piles of cards obtained from our reduction is as follows.
An infection card that indicates an alert point is called a dan-

gerous infection card. An infection card which is not dangerous
is called a safe infection card. The pile of infection cards consists
of 3n − 2 safe infection cards, n − 1 dangerous infection cards
and one safe infection card from top to bottom. Dangerous infec-
tion cards are drawn from the pile between the 3n/2-th turn and
(2n − 1)-st turn. No dangerous infection cards are drawn before
the turns.

The player has no card in his hand. The pile of player cards
consists of 4n − 7 city cards indicating isolated vertices that sat-
isfy g(v) = 2 and five city cards indicating isolated vertices that
satisfy g(v) = 1 from top to bottom.

It is obvious that the game board and the piles of cards can be
constructed in logarithmic space.

3.2 Correctness of the Reduction
In this section, we prove the correctness of the reduction.
First, we prove that the player can win the game if H has a

Hamiltonian cycle. If H has a Hamiltonian cycle, the player,
starting from the start vertex, visits the vertex gadgets in the or-
der corresponding to the Hamiltonian cycle and releases the alert
points. Then the player goes to the goal vertex and discovers the
cure.

We show that the above actions can be completed before the
player loses. It takes n/2 turns to go to the right end of an edge

gadget. For each node gadget, the player needs one turn; go to
an adjacent node gadget, go to the alert point, release the alert
point and go back to the normal vertex in the gadget. Thus, it
takes n/2 + (n − 1) = 3n/2 − 1 turns to release all the alert points
in the node gadgets. As the dangerous infection cards are drawn
after the (3n/2− 1)-st turn, no outbreak occurs at the alert points.
After that, n/2 rounds are needed to go through another edge gad-
get, and one more round is needed to go back to the goal vertex
and discover the cure. Since the player has five player cards cor-
responding to the vertices with epidemic 1 after the draw phase
of the (2n − 1)-st turn, the player can discover the cure in the
2n-th turn. Though the pile of the player cards becomes empty
after the draw phase of the (2n − 1)-st turn, the player can dis-
cover the cure before the next draw phase. Therefore, if H has a
Hamiltonian cycle, the player can win the game.

Next, we prove that the player cannot win if H does not have
a Hamiltonian cycle. To begin with, observe that the player can
only use drive actions to move on the map to win the game. As all
the player cards that the player draws indicate isolated vertices,
obviously a charter flight action cannot be executed, and a shuttle
flight action cannot be executed because no new laboratory can
be built. Also, even if the player uses a direct flight action, the
player can go only to isolated vertices and cannot go back to the
other gadgets.

In order to discover the cure for epidemic 1, the player must
go to the goal before the 2n-th turn. Thus the player must be in
the normal vertex of a node gadget which is connected to an edge
gadget at the end of the (3n/2 − 1)-st turn. Clearly, if H does not
have a Hamiltonian cycle, the player cannot go to the vertex after
releasing all the alert points in the node gadgets. If an alert point
in a node gadget is not released before the (2n − 1)-st turn, as the
player has to go to the goal, an outbreak occurs at the alert point
and the player loses. Therefore, if H does not have a Hamiltonian
cycle, the player cannot win the game.

With a slight modification, the above proof can be applied to
the case when n is odd. It is sufficient to adjust the length of edge
gadgets and the number of cards in the piles so that it takes 4	n/2

drive actions to go through an edge gadget.

From above, the correctness of our reduction is proved. There-
fore, it is shown that GPP is NP-complete.

3.3 Discussions
First, we extend the proof for the case of multiple players. To

the above construction, we add players in a way that they cannot
be concerned with discovering cures. By locating the added play-
ers on added isolated vertices, they can make no useful actions.

Next, we take the rules into consideration that we have not con-
sidered in our definition of GPP for simplicity. In real Pandemic,
each player has one of five occupations. Each player has a special
ability depending upon their occupation. We can see that even if
the players have special abilities, and there must exist at least one
player for each occupation, GPP remains NP-complete. Among
the special abilities, that of the dispatcher requires a little modifi-
cation of our reduction. A dispatcher can move another player’s
pawn on his turn as if it were his own pawn. He can also move
any pawn to any vertex where another pawn is placed. Our reduc-
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tion must be modified so that each player except player 1, who is
in the start vertex, is located in an end vertex of a path of length
8n−4, not an isolated vertex. The other end of the path is an alert
point and an outbreak can occur in the (2n − 1)-st turn. Then, to
release the alert point, each player except player 1 must drive to
the alert point and has no time to use their special ability.

4. Conclusion

In this paper, we have proved that Generalized Pandemic is NP-
complete. Additionally, with most of the expansion rules, Gen-
eralized Pandemic is still NP-complete. In an additional package
for Pandemic, the rule called bio-terrorist challenge is introduced.
Under this rule, a player called the bio-terrorist plays against the
other players. Thus the problem to decide if the bio-terrorist or
the other players can win from the given situation is probably
PSPACE-complete because the bio-terrorist and the other players
play to beat each other.
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