
Electronic Preprint for Journal of Information Processing Vol.20 No.3

Regular Paper

Rolling Block Mazes are PSPACE-complete

Kevin Buchin1,a) Maike Buchin1

Received: August 30, 2011, Accepted: December 16, 2011

Abstract: In a rolling block maze, one or more blocks lie on a rectangular board with square cells. In most mazes, the
blocks have size k × m × n where k, m, n are integers that determine the size of the block in terms of units of the size
of the board cells. The task of a rolling block maze is to roll a particular block from a starting to an ending placement.
A block is rolled by tipping it over one of its edges. Some of the squares of the board are marked as forbidden to roll
on. We show that solving rolling block mazes is PSPACE-complete.

Keywords: constraint logic, puzzle, rolling block maze

1. Introduction

Rolling block mazes are a popular class of puzzles invented by
Richard Tucker *1. In a rolling block maze, one or more blocks
lie on a rectangular board with square cells. In most mazes, the
blocks have size k × m × n where k, m, n are integers that deter-
mine the size of the block in terms of units of the size of the board
cells. Also there are mazes with U-shaped blocks. Typically, the
dimensions of a block are small. The first and most rolling block
mazes use blocks of size 2×1×1. The task of a rolling block maze
is to roll a particular block from a starting to an ending placement.
A block is rolled by tipping it over one of its edges. Furthermore,
some of the squares of the board are marked as forbidden to roll
on. An example of a rolling block maze is shown in Fig. 1. In
this maze, a 2 × 1 × 1 block is standing upright on the square la-
beled ‘Start’ and needs to be rolled to stand upright on the square
labeled ‘Goal’. Forbidden squares are marked by a brick pattern.

Rolling block mazes differ in the number of blocks on the
board. Many mazes use only one block that has to be rolled from
start to goal. Other rolling block mazes, like Erich Friedman’s
mazes *2, use several blocks. In these mazes only one particu-
lar block has to be rolled to the goal, while the other blocks are
rollable obstacles.

In Section 2 we analyze the algorithmic complexity of rolling
block mazes. Our main result is that solving rolling block mazes
with several blocks is PSPACE-complete. This stands in contrast
to rolling block mazes with only one block, which can be solved
in linear time. Related puzzles and open problems are discussed
in Section 3.

1 Department of Mathematics and Computer Science, Technical Univer-
sity Eindhoven, North Brabant, Netherlands

a) k.a.buchin@tue.nl
*1 For examples and the history of rolling block mazes see Robert Abbott’s

website http://www.logicmazes.com/rb/column.html (accessed 2011-12-
28)

*2 See again Robert Abbott’s website and Erich Friedman’s website
http://www.stetson.edu/˜efriedma/rolling/ (accessed 2011-12-28)

Fig. 1 Rolling block maze by Robert Abbott. The objective is to roll a
2 × 1 × 1 block standing upright on ‘start’ to stand upright on ‘end’.
The block may only roll onto white squares. Figure used with per-
mission by Robert Abbott.

2. Complexity

Rolling block mazes with only one block can be solved in lin-
ear time in the size of the board, as briefly discussed in Sec-
tion 2.1. In Section 2.2 we recall the Constraint Logic frame-
work [2], which we use in Section 2.3 to show our main result:
that solving rolling block mazes with several blocks is PSPACE-
complete.

2.1 Mazes with Only One Block
Observation. Rolling block mazes with only one block can be

solved using linear time and space.

Proof. Consider the following graph that encodes all possible
states of the maze. The vertices of the graph are the possible
placements of the block on the board. An edge exists between two

c© 2012 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.20 No.3

such placements if one of the placement results from the other by
one roll of the block. The size of this graph is linear in the size of
the board, independent of the size of the block. The maze can be
solved by searching this graph for a path from the starting to the
ending placement. This can be done for instance using breadth
first search in time linear in the number of edges of the graph,
which is linear in the size of the board. �

The graph used in the above proof has been analyzed fur-
ther [9].

2.2 Constraint Logic Framework
The constraint logic framework was introduced by Demaine

and Hearn [2] and has been used to prove PSPACE-hardness and
other complexity results for various puzzles and games. Con-
straint logic consists of a class of games played on planar directed
graphs. The edges in the graph have a weight of 1 or 2, all vertices
have degree 3. There are two types of vertices: AND-vertices,
which have two incident edges of weight 1 and one incident edge
of weight 2, and OR-vertices, which have three incident edges of
weight 2.

In a game of constraint logic, players reverse edges of the
graph. At all times, the sum of the weights of ingoing edges at
every vertex has to remain at least 2. For OR-vertices this means
that an ingoing edge can be reversed only if both other edges are
ingoing. For AND-vertices this means that an ingoing weight-1
edge can be reversed if the weight-2 edge is ingoing, while an
ingoing weight-2 edge can be reversed if both weight-1 edges are
ingoing.

One player has the goal to reverse a given edge. If there is only
one player and edges can be reversed arbitrarily often, the prob-
lem of deciding whether a given edge can be reversed is PSPACE-
complete [6]. Using this framework it suffices to construct gad-
gets for AND- and OR-vertices (called AND- and OR-gadgets in
the following) and gadgets for connecting them (called wires).
The resulting planar directed graph can be assumed to be laid
out on a polynomial-size grid. Therefore only wire-gadgets for
vertical and horizontal connections and for right-angle bends are
needed. Furthermore, we can assume that the graph is laid out
on the grid such that the weight-1 edges of any AND-vertex are
both horizontal or both vertical. Also, the edge that needs to be
reversed can be assumed to be an ingoing weight-2 edge of an
AND-vertex (see Lemma 4 in Ref. [6]).

2.3 PSPACE-completeness
Theorem. Rolling block mazes with several blocks are PSPACE-

complete. This holds already for mazes where all blocks have size

2 × 1 × 1.

Proof. Rolling block mazes can easily be solved non-
deterministically with polynomial space. Since PSPACE=
NPSPACE holds [10], rolling block mazes are therefore in
PSPACE. It remains to prove that solving rolling block mazes
is PSPACE-hard. The gadgets for the reduction from constraint
logic are shown in Fig. 2. All blocks in the gadgets have size
2 × 1 × 1. They are shown in blue or red (mid-gray or dark-gray
in grayscale printouts). The cells indicated by ‘2’ are standing

(a) OR-gadget

(b) AND-gadget (c) inbetween-gadget

(d) Several gadgets connected by the construction in (c)

Fig. 2 Gadgets for the PSPACE-hardness reduction. A line across two
blocks indicates a lying 2×1×1 block. A ‘2’ indicates a standing
2 × 1 × 1 block.

blocks. Additional to the gadgets mentioned in the previous
section, we also use an inbetween-gadget as connectors between
the other gadgets. The figure only shows one orientation for
each gadget. Other orientations can be obtained by rotating the
complete gadget.

The AND- and OR-gadget both have the same ‘T’-shape and
the (core of the) gadget is the area inside the black square, adja-
cent to which are three pairs of adjacent squares where the gad-
gets are connected to other gadgets. An edge (of the planar di-
rected graph of the constraint logic instance) is directed inward
if and only if a block lies on the corresponding region. Recall
that all adjacent edges of an OR-gadget have weight 2, whereas
an AND-gadget has one adjacent edge of weight 2 and two adja-
cent edges of weight 1. In Fig. 2 (b) the edge of weight 2 is facing
downward. To prove the theorem, we need to show that the AND-
and OR-gadgets always have an inward weight of 2 and flipping
of edges (switching between states) is always possible. Further-
more we have to show that the orientations can be propagated
using the wire-gadgets.

Figure 2 (a) shows the three main states of the OR-gadget, i.e.,
three configurations of the OR-gadget in which one of the edges is
directed inward. Observe that the downward edge can only point
outward, if either the left or right edge is pointing inward. Thus,
at least one edge needs to point inward. It is possible to switch
between the states, for instance as follows: To go from the left
state of the OR-gadget to the middle state, first the two upper left
blocks are rolled one space to the left. Then, the lower two blocks
are rolled up. To go from the middle state to the right state, all
blocks in the upper row are rolled one space to the right.

Figure 2 (b) shows the two main states of the AND-gadget, i.e.,
a configuration where the edge of weight 2 is directed inward
and a configuration where both edges of weight 1 are directed in-
ward. Observe that the bottom edge (of weight 2) can only point
outward, if both the left and right edge are pointing inward. Thus,
the inward weight is always at least 2. It is possible to switch be-

c© 2012 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.20 No.3

tween the states, for instance as follows: To go from the left state
to the right state, first the two upper left blocks are moved one
space to the left and the two upper right blocks are moved one
the the right. Then the two standing blocks are each tipped on the
two squares above. Finally the lowest block can be rolled up.

Figure 2 (c) shows how to connect two gadgets (AND-, OR- or
wire-gadgets) using an inbetween-gadget. This construction en-
sures that the two outer blocks of the neighboring gadgets cannot
both be rolled outside the gadgets. This is prevented by the fur-
ther block, which has a different orientation than the outer blocks,
and which always covers (exactly) one square where one of the
outer blocks would need to roll on. Furthermore this construction
prevents a block of a gadget to “leave” its gadget, because the
outer blocks cannot roll over a space of one square and cannot be
made to stand up. Note that a (red) block of the connection be-
tween two gadgets may “enter” one of these gadgets but it cannot
leave this gadget in any other exit.

The wire-gadgets (horizonal, vertical and bend) are the same
as OR-gadgets but with only two exists. Figure 2 (d) shows an
OR-gadget, an AND-gadget, a horizonal wire, and a bend wire
connected by inbetween-gadgets.

Using the gadgets described and analyzed above, we can thus
construct a rolling block maze for any given instance of con-
straint logic. We assume that the instance is given by a planar di-
rected graph laid out on a polynomial-size grid, and by a weight-
2 edge of an AND-vertex that needs to be oriented outward (see
Section 2.2). The instance of constraint logic is solvable if and
only if the AND-gadget corresponding to the AND-vertex can be
switched from the left state in Fig. 2 (b) to the right state. This is
exactly the case if the lowest block (in the figure) can be rolled
upwards. We therefore declare this block as the block that has to
be rolled from its starting placement to its ending placement, the
two squares directly above it. Now the instance of constraint logic
is solvable if and only if the rolling block maze is. The number
of gadgets used is bounded by the size of the grid. Since every
gadget uses only a constant number of blocks, the reduction can
be done in PSPACE. �

3. Related Puzzles and Open Problems

Similar to rolling block mazes are rolling cube mazes *3. Here,
all blocks are cubes and faces of the cube and squares of the board
show a number. A cube may roll on a square if its number on
top coincides with the number on the square (depending on the
puzzle: either before or after rolling). The complexity of rolling
cube mazes has been studied for the case of a single cube [1]. De-
pending on the rules of the puzzle, the complexity varies between
polynomial time solvable and NP-complete.

An open question, which initiated this research and which re-
mains open, is to find rolling cube mazes with several cubes
that are PSPACE-complete. However, for these constructing the
AND-gadget is more difficult than for rolling blocks. The diffi-
culty comes from the small size (1 × 1 × 1) of the cubes. The
AND-gadget requires that rolling one cube into the gadget should

*3 See again Robert Abbott’s website, http://www.logicmazes.com/rc/
cubes.html

force two cubes out. A possible way to achieve this is to add spe-
cial kinds of squares or extra rules. For example, one could use
numbered grease spots *4. A grease spot is a square where a die
may slide over. We use a grease spot with a number where a die
slides over if it does not match the number on the grease spot but
the number behind the grease spot. Now if the cube that we want
to roll into the AND-gadget has such a grease spot in front of it
and does not show the corresponding number then it needs two
free squares to roll into the gadget: the grease spot and the square
behind the grease spot. Oriel Maxime *5 suggested instead adding
the rule that no two adjacent dice may have the same number on
top.

Rolling cube and block mazes are related to the puzzle Rush

Hour and sliding block puzzles. In Rush Hour pieces have size
1× 2, 1× 3, 2× 1, and 3× 1. The pieces do not roll but slide. Any
block can slide either only vertically or only horizontally depend-
ing on their orientation. Rush Hour is PSPACE-complete [4],
which even holds if the pieces are restricted to sizes 2 × 1 and
1 × 2 [11]. But as for rolling cube puzzles with several cubes the
complexity of Rush Hour with 1 × 1 pieces (each piece labeled
as either vertically or horizontally slidable) remains open. Sub-

way shuffle [7] is a generalization of Rush Hour with 1 × 1 pieces
played on a graph. For subway shuffle the complexity is also
still open. In contrast 1 × 1 sliding block puzzles, i.e., puzzles in
which the pieces can slide vertically and horizontally, are known
to be polynomial time solvable. Solving sliding block puzzles
with larger blocks is again PSPACE-complete [8].

A further puzzle that is similar to rolling block mazes is
TipOver. This is known to be NP-complete [5]. The difference
in TipOver that reduces the complexity of the puzzle is that ev-
ery block may be “tipped” only once. See Refs. [3], [7] for more
puzzles and their complexity.

Acknowledgments We would like to thank Robert Abbott,
Andrea Gilbert, Robert Hearn and Oriel Maxime for discussing
(PSPACE-complete) puzzles with us, and Robert Abbott for giv-
ing permission to include one of his great puzzles.

References

[1] Buchin, K., Buchin, M., Demaine, E.D., Demaine, M.L., El-Khechen,
D., Fekete, S.P., Knauer, C., Schulz, A. and Taslakian, P.: On Rolling
Cube Puzzles, Proc. 19th Canadian Conference on Computational
Geometry (CCCG), pp.141–144 (2007).

[2] Demaine, E.D. and Hearn, R.A.: Constraint Logic: A Uniform Frame-
work for Modeling Computation as Games, IEEE Conference on Com-
putational Complexity, pp.149–162 (2008).

[3] Demaine, E.D. and Hearn, R.A.: Playing Games with Algorithms:
Algorithmic Combinatorial Game Theory, Games of No Chance 3,
Albert, M.H. and Nowakowski, R.J. (Eds.), Mathematical Sciences
Research Institute Publications, Vol.56, pp.3–56, Cambridge Univer-
sity Press (2009).

[4] Flake, G.W. and Baum, E.B.: Rush Hour is PSPACE-complete, or
“Why you should generously tip parking lot attendants,” Theoretical
Computer Science, Vol.270, No.1–2, pp.895–911 (2002).

[5] Hearn, R.A.: TipOver is NP-complete, The Mathematical Intelli-
gencer, Vol.28, pp.10–14 (2006).

[6] Hearn, R.A. and Demaine, E.D.: PSPACE-completeness of sliding-
block puzzles and other problems through the nondeterministic con-
straint logic model of computation, Theoretical Compututer Science,
Vol.343, pp.72–96 (2005).

[7] Hearn, R.A. and Demaine, E.D.: Games, puzzles and computation,

*4 Grease spots in rolling cube mazes were suggested by Robert Abbott.
*5 Personal communication

c© 2012 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.20 No.3

A K Peters (2009).
[8] Hopcroft, J.E., Schwartz, J.T. and Sharir, M.: On the complexity of

motion planning for multiple independent objects: PSPACE-hardness
of the Warehouseman’s Problem, International Journal of Robotics
Research, Vol.3, No.4, pp.76–88 (1984).

[9] Jiang, M.: Flipping Triangles and Rectangles, Proc. 17th Internat.
Computing and Combinatorics Conference (COCOON), Fu, B. and
Du, D.-Z. (Eds.), Lecture Notes in Computer Science, Vol.6842,
pp.543–554, Springer (2011).

[10] Savitch, W.J.: Relationships between nondeterministic and determin-
istic tape complexities, Journal of Computer and System Sciences,
Vol.4, No.2, pp.177–192 (1970).

[11] Tromp, J. and Cilibrasi, R.: Limits of Rush Hour Logic Complexity,
Arxiv report arXiv:cs/0502068v1 (2005).

Kevin Buchin received his Ph.D. in com-
puter science from the Free University
Berlin in Germany. He was a post-
doctoral researcher at Utrecht University,
Netherlands, and the Technical Univer-
sity Eindhoven, Netherlands. Currently he
is an assistant professor at the Technical
University Eindhoven. His main research

interest lies in geometric and graph algorithms with the focus on
geographic analysis and visualization.

Maike Buchin received her Ph.D. in
computer science from the Free Univer-
sity Berlin in Germany. She was a post-
doctoral researcher at Utrecht University,
Netherlands, and is currently an assis-
tant professor at the Technical University
Eindhoven, Netherlands. Her research in-
terest lies mostly in geometric algorithms

with the focus on algorithms for geographic applications.

c© 2012 Information Processing Society of Japan


