事例

ファイル管理型電子カルテの 13年 ―システム化の本質―

村上公一 宮島孝直 (財団法人津山慈風会津山中央病院)

電子カルテのあるべき姿

電子カルテにかかわる IT ベンダの技術者は最新 の技術に目を向けがちだが、病院のシステム管理者 をやっていると、技術が最新だろうが古かろうが使 っている人には関係がないと痛感させられることが 多い. 近年, .NET や C# に代表される新言語が出て きたが、システムのアルゴリズムは昔と変わってい ない. 本当にシステムの利用者に必要なことは, ア プリケーションの処理速度が速く, トラブルが少な いことだ、実際、NASA(アメリカ航空宇宙局)な どで採用される技術はほとんどが「枯れた技術」と 言われている. 高い信頼性が求められるので、リス クの少ないハードウェアやソフトウェアが好まれる そうだ、津山中央病院では、次の点を中心に電子力 ルテのあるべき姿を求めた. ①迅速な情報収集②い つでもどこでもカルテが見える③直感的に扱える UI(できるかぎりワンクリックで)④何年経っても レスポンスが低下しない(患者を待たせない医療) ⑤カルテの一貫性(あるシステムを入れ替えても情 報の欠落がない)⑥トラブルレス(できるかぎりト ラブルが少ないシステム構造) ⑦紙媒体の有効利用 (電子化しても紙はなくならない) ⑧カルテの長期 保存⑨統計よりも現場の運用をいかに廻すか.

<カルテ>

狭義のカルテ:医師が診療に関する経過を記録したもの. 広義のカルテ:上記のほかに検査結果、手術所見、レント ゲン写真,看護記録などを含める.

その結果, 現在一般に使われている電子カルテと はまったく思想が異なるファイル管理型電子カルテ を創案し、実用化することになった、本稿では、一 般的電子カルテと区別するためにこれを津山方式電 子カルテと呼び、導入後13年経った今でも何ら変 わっていない優位性について述べる.

電子カルテシステムの概要

□紙カルテ時代

まだカルテが紙で管理されていた頃、1患者1カ ルテになっていない病院があった. 外来には各科ご との外来カルテ, 病棟には科別の入院カルテが存在 していた. 管理が一元化されていないため, 同じ病 院で同じ日に重複処方、重複検査をすることもあっ た. しかし医師や看護師の記事はそのまま紙に記載 され、管理倉庫さえ都合がつけば 100 年だって保 存が可能だった.

その反面,情報の共有となると紙の原本は1つ しかなく、カルテがあるところまで行かないと閲覧 ができない. 過去の情報を検索, 集計することには 時間がかかっていた.

□電子化の始まり

1970年代から医事課の職員が診療記録からデー タを入力し, 会計業務, レセプト請求業務を自動 化する医事会計システムの導入が始まった. 次に 1980年代から医師が診察室から処方・処置の指示

を行い、そのデータを医事会計システムに渡して医 事会計の処理を自動化したオーダリングシステムの 導入が始まった. オーダリングシステムの導入で他 科のデータの閲覧が可能になり、重複投与などが減 った.

□ 電子カルテ時代

1999年4月に診療記録の電子保存が承認され, 電子カルテの時代がスタートしたが、当時の電子カ ルテシステムはオーダリングシステムに SOAP (S: 主観的データ 患者の訴え, O:客観的データ 所 見・医学的データ, A:結果または考察, P:計画・ 立案)の入力機能がついただけのものが多く、他の 部門システム, たとえば病棟業務では看護システム などのサブシステムを別途購入する必要があり、そ の接続に費用がかなりかかっていた.

□ 現在の一般的電子カルテ

現在、ITベンダの構築する電子カルテにはさま ざまな機能が追加され、10年前と比べれば大変使 いやすくなり、そのままカスタマイズなしで使える ようになったが、依然として、Oracle や Microsoft SQL Server に代表されるデータベースを利用して いる. 情報の共有や検索, 統計作業はしやすくなっ たが, データベース^{☆1}を使ったカルテでは正規化 できない診療記録を無理やりデータベースに入れん データが飽和すれば, 使い物にならないくらい遅く なっている.

これは、現在のデータも 10 年前のデータも同じ テーブルに保存され, 重み付けがされていないせい で、過去のデータに引っ張られて検索速度が遅くな っているためだ. データをオフラインにすることも できず、別途サーバを用意しそれに合わせたシステ ムを作るしかないのが現実である. そしてデータベ ースのカラムも各社各様, リレーションの仕方も各 社各様なため、別の IT ベンダに電子カルテシステ ムを移行する場合、1,000万円以上の費用がかかっ

ている. 現実問題として, 容量制限, 応答速度, デ ータ移行の難しさなどのためにオンライン上に 100 年分のデータを持つことは不可能である.

現在でも電子カルテは医事会計・オーダリングシ ステムの延長であり、医療従事者が求めるカルテ は本来ドキュメントであることが見落とされてい る. このため XML でデータを保持していると謳っ ている IT ベンダのシステムが、XML ファイルの内 容を XML の形式のままデータベースへ登録したり, BMP 等のイメージデータをデータベースへ保存し たり、イメージのパスをデータベースへ保存したり して、データベースに依存したシステムとなってし まっている.

|津山方式電子カルテ(以下津山カルテ) の仕組みと利点

□扱いやすい UI

■システム化の目的

当院では診療にかかわるすべての記録を津山カル テに格納し、「ここになければどこにもない」の実 現を目指してシステム構築を行った.

■ エントリー画面

「電子カルテのあるべき姿」を追い求めた結果, 図 -1 に示す電子カルテシステムの UI ができあがっ た. 外来に診察に来た患者がチェックイン処理を受 付で行うと科別/医師別に患者リストが表示される. 患者を選択すると「補足情報」、「通知情報」、「現病 歴」、「診断履歴」が表示される.

これらの情報から、患者がどういった病気で現在 治療を受けているか、感染症、アレルギー情報等が 一目で分かる UI を構築した.

■ e- カルテ

エントリー画面のカルテのアイコンをクリックす るとカルテファイルを作成・閲覧するアプリケーシ ョン(以下 e-カルテ)(**図 -2**)が起動される. 最 初に書かれている目標①から⑨を満たすには、診察 の結果を細かいデータとして別々に登録して閲覧時 にそのデータから画面を生成するのではなく、最初

^{☆1} 編者注:著者は「リレーショナルデータベース」を意図している. 以下すべて同様。

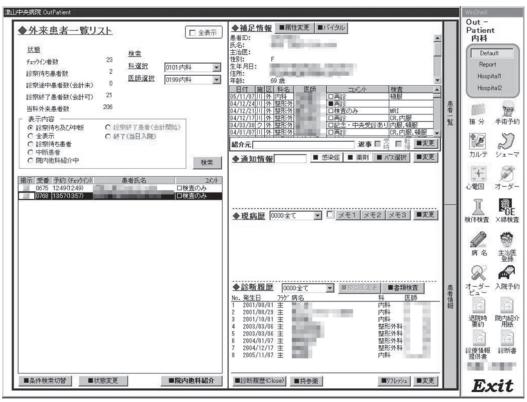


図-1 患者属性管理画面

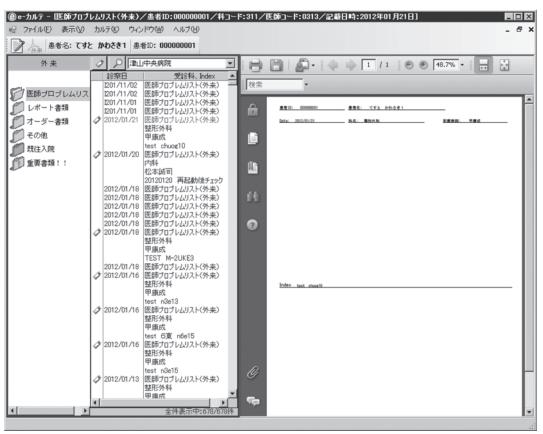


図 -2 e- カルテ画面

ファイル管理型電子カルテの 13 年 −システム化の本質−−

から PDF などの文書形式で登録してお く方がよいと考えられる. e- カルテの 右半分は、その考え方で登録された文 書のフォーマットが表示されている.

このフォーマットに医師が診療記録 を入力し内容を確定認証すると, 記載 内容は PDF ファイルとして生成され, 正しい患者の所定の書類として保存さ れ, e-カルテから閲覧できる仕組みに なっている.

- □ファイルベースによって得られる 利点
- 他システム (サブシステム) とのデータ 連携容易性

カルテの一貫性を保つため、各メー カのサブシステムには最新の患者属性のみを渡し, サブシステムから出力された結果は、純粋なテキス トデータではなく結果の印刷イメージを PDF 変換 して、ファイルの命名規則に則ったファイル形式で 受け取っている。したがって、サブシステムをリプ レイスしても複雑な連携仕様を必要とすることはな く、ファイルさえ病院指定の命名規則で渡されれば よく、システム間連携が疎結合となっている.

当院ではレポートシステムを FileMaker Pro で構 築し、作成した記事のデータを命名規則に従ったフ ァイルに変換し、ファイルサーバへ送信している. 同様に医事会計・オーダリングシステムも会計完了 後、ファイルに情報を出力している.

■ 紙運用との整合性

紙カルテを電子化しても、すべての診療記録をペ ーパーレス化することは不可能である. たとえば他 病院からの書類、同意書、入院誓約書等、患者のサ インといった必要書類は、スキャンして電子化し、 ファイルサーバへ保存している. そして e- カルテ を通して閲覧できカルテの一貫性が保たれている. 津山カルテはファイルベースで構築されているため, スキャンファイルの取り扱いは非常に容易である.

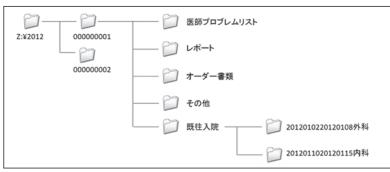


図-3 外来フォルダ構成(例)

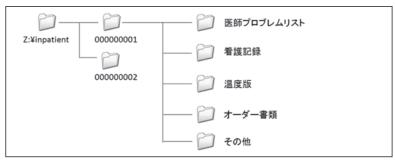


図-4 入院フォルダ構成 (例)

■ 長期間に渡るカルテのアクセス性能確保

カルテコンテンツは、患者の生涯を通じて保管さ れているべきものである。しかし、その診療上の価 値は、年月を追うごとに急激に低下する、それゆえ 1年以内のカルテはきわめて短時間で閲覧できる必 要があるが、2年・3年と経ったものは万一に備え てアクセスできればよいというレベルとなりアクセ ス所要時間は数分で構わない. すなわちカルテコン テンツの価値の逓減をフォルダ構成に反映させてい る、具体的には年次フォルダの考え方である、現年 のカルテコンテンツは高速にリトリーブできるよう になっている.「年次フォルダ」の下に「患者 ID フ ォルダ」を作成し、患者 ID フォルダの下に「医師 プロブレムリスト」、「レポート」などを作成したツ リー構造としている(図-3).

入院の場合は外来フォルダの構成に「看護記録」 と「温度版」が加わるが (**図-4**),「レポート書類」 フォルダは外来時のものを頻繁に参照するため、外 来の「レポート書類」フォルダに入院時に発生した レポート情報を保存し, e- カルテから参照したと きにはあたかも入院のレポートフォルダがあるかの ような見え方になっている.

また過去カルテについても図 -5 のように e- カル

年次	ファイル数	容量
2000年	1,804,003	33.2GB
2001年	2,179,373	43.4GB
2002年	2,031,347	45.7GB
2003年	2,401,686	47.7GB
2004年	2,236,905	53.2GB
2005年	2,339,138	61.5GB
2006年	2,363,654	58.5GB
2007年	2,436,620	59.5GB
2008年	2,470,261	66.2GB
2009年	2,590,313	73.9GB
2010年	2,560,615	75.5GB
2011年	2,735,254	92.3GB

項目	スペック	
CPU	Intel Xeon 5150 2.66GHz	
コア数	2	
メモリ	2GB	
HDD	300GB (RAID5)	
OS	Microsoft Windows Storage Server 2003 R2	

図 -5 過去カルテの参照方法

表-1 年次別ファイル数

表-2 サーバスペック

テの年次をクリックするだけで参照ファイルのパス が切り替えられ、遅延なくアクセス可能である.

■ 容易なシステム移行

ファイルサーバの冗長性を担保するため、バック アップをとっている. ファイルサーバのバックアッ プは、当財団が運営しているクリニックと内科の単 科病院にそれぞれの施設の電子カルテのファイルサ ーバを設置し、3施設のサーバが相互にファイルの コピーをとっている. つまり同時に3施設が同時 に破壊されない限り、カルテを失うことはない.

将来電子カルテシステムを別のメーカに入れ替え ることが考えられるため、当院では最初から移行を 考えて設計している. つまりファイル管理のシステ ムだと患者属性を管理するアプリケーションと e-カルテを用意するだけで、容易に移行が可能になる. 移行に多大なコストが発生することはほとんどない.

■ 障害対応とスケールアウトの容易性

電子カルテをファイルサーバで管理している場合、 ネットワークの不具合, サーバの定期再起動などに より、各サーバ間に不整合が生じることがある. そ こで年2回各サーバのファイル件数を合わせるこ とで整合させている.

また、カルテは書き損じた場合でも削除すること はできない、そこでカルテを書き損じた場合は、書 き損じたファイルを別のファイルサーバへ移動させ

て管理している.

またサーバ OS が WindowsNT 時代に同一サーバ 上で600万ファイルしか保証していないという情 報をカルテベンダから得たので, 2, 3年ごとのカ ルテサーバを作りカルテパスを切り替えることで対 応している.

この方法は津山カルテシステムがスケールアウト していくことを意味している.

津山カルテの性能データ

データベースをほとんど使っていない津山カル テと通常の電子カルテの性能の実測データを示す. 表-1 からうかがえるように PDF ファイルの数は 年々増え続けている. また, 患者に手書きをしても らう書類が年々増加しているので、スキャナでイメ ージ化して保存する書類の数が年々増えているため, 容量も大きくなっている.

■ サーバ性能

ファイルサーバを基本構成としているため、高ス ペックなサーバは要求されない. 容量重視の構成で ある (表-2).

■ 津山カルテの性能データ

ある1日のファイルサーバの同時オープンファ

患者	入院日数	カルテの	カルテを開くのに
心田	7 Mud	ファイル数	かかった時間
Α	1	27	2 秒以内
В	2	2	1 秒以内
C	3	2	1 秒以内
D	5	11	1 秒以内
Е	10	21	1 秒以内
F	20	31	2 秒以内
G	40	55	3 秒
Н	40	84	5 秒
1	132	98	7 秒
J	80	133	5 秒
K	177	301	9 秒
L	387	440	15 秒
М	266	443	8 秒
N	812	1776	60 秒

表-3 カルテを開くのにかかった時間

入院/外来	患者	ファイル数	津山カルテ	オーダリング システム
外来	a	10	2秒	5 秒
	b	45	3 秒	5 秒
	С	21	2秒	4秒
入院	d	34	2秒	4秒
	е	6	2秒	4秒
	f	216	2 秒	6秒

表-4 オーダー情報を開く速度の比較

患者	ファイル数	津山カルテ	FileMaker Pro
Х	18	3 秒	15
У	56	3 秒	20
Z	37	3 秒	25

表-5 レポート情報を開く速度の比較

イル数とカルテを開く速度に関して調査を行った.

最繁忙時間帯でのカルテを開く速度(カルテアイ コンをクリックしてから画面表示が完了するまでに かかった秒数) は表-3の通りである.

入院患者の平均在院日数が 15 日前後だと, 2 秒 以内にカルテを閲覧できている.

ファイルサーバの負荷などの影響で多少のばらつ きがあるが、ファイル数が多くなっても 15 秒程度 でカルテの閲覧が可能なことを示している.

当院にはデータベースオリエンテッドなオーダリ ングシステム,レポート作成システムがあるので, 同じ情報をこれらで見た場合と津山カルテで閲覧し た場合の速度を比較したデータを示す.

表-4には当日のオーダー情報を閲覧する速度に 関して比較したデータを示す.

オーダリングシステムは5年間のデータを保持

しており、2カ月間だけ表示されるようにスコープ を張っているにもかかわらず、津山カルテの方が速 く表示される.

表 -5 は目的のレポート書類を表示する速度の比 較を示した.

FileMaker Pro でデータを検索する速度よりもフ ァイルを検索して表示させる津山カルテの方が断然 速い.

10年以上運用している電子カルテで、この速度 を実現しているのは津山カルテだけだと思う. また, 参考までに、これらの測定を行った日のファイルサ 一バの時間帯ごとの同時オープンファイル数と最大 送受信量推移を図-6,図-7に示す.

今後の展望:津山カルテの強化

ファイルベースとすることで,将来的な強化も容 易である.

10年以上使ってきたカルテについて、現場(利 用者)からデータを取り出したいとの要望がある.

取り出したデータ量は莫大になると考えられ、で きるだけコストをかけないで保存したいと考え ている. そこで Hadoop を用いた DWH (Data WareHouse) を検討している.

HDFS (Hadoop Distributed File System) の利点 であるファイルシステムのスケールアウトする仕組 みを使えばファイルを大量に保存することが可能で あると考えられ、現在検証を行っている. 当然のこ とながら, 医事会計, オーダリングのデータも保存 し2次利用に活用する予定である.

コストをかけないで構築するために、Hadoop の データノードが活用できないかを検討している.

まとめ

システム化の本質とはコストをかけないで現場の 業務効率を上げ、利益を生み出すことだと信じてい

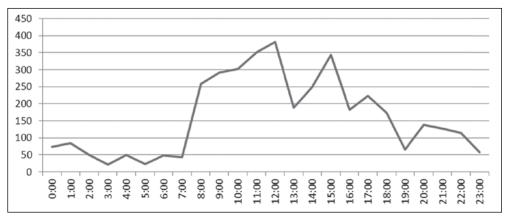


図-6 同時オープンファイル数(最大)

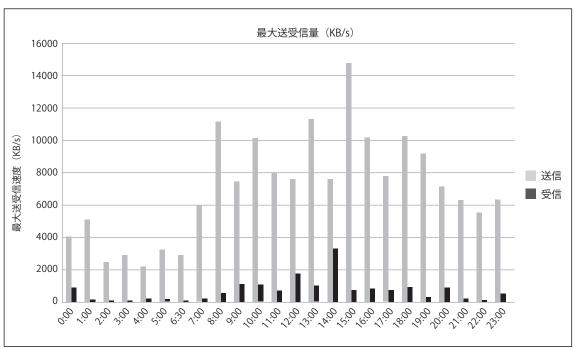


図-7 最大送受信量推移

る. つまりうまく運用が廻っているシステムという のは、現場の満足度が高く、トラブルが少なく、シ ステムの反応が速いと言える. 当院で実現してい る「カルテをいかに早く見せるか」、「長期保存をど うやって実現するか」という目的は、やみくもに最 新技術を使っても処理速度が遅くなるだけであると 考える. しかし, 医療従事者のカルテの使い方を知 りつくし、最適なアーキテクチャを採りさえすれば、 汎用技術であるファイルベースを採用することでハ ードウェアの進化に伴い速度が速くなる. またファ イルを管理する技術は永遠になくならない. だれも サポートしなくなることはない.

10年経っても消えていかない技術、つまり枯れ

た技術を使うことで理想的なシステムを構築できる ケースがあるということを知っていただきたい.

(2012年1月31日受付)

村上公一 k_murakami@tch.or.jp

1993 年東京都立大学工学部(首都大学東京)卒業. 1995 年同大学 院工学研究科修了後, オリンパス入社. 1997 年に財団法人津山慈風 会入職. 現在, 津山中央病院システム室副部長. 2003 年に診療情報 管理士取得, 2007年に医療情報技師取得. 津山中央病院を含めた 5 施設でのシステム構築を手がけている.

宮島孝直 taka-tch@tvt.ne.jp

1982年岡山大学医学部卒業. 1989年同大学院(病理学)修了,肝 胆膵外科医.1992 年より津山中央病院に勤務.現在副院長.1999 年 の津山中央病院移転新築の際、全面電子カルテ化に取り組み、PDF を 主体とするシステムを創案し、その運営・維持にあたっている.