Electronic Preprint for Journal of Information Processing Vol.20 No.2

Regular Paper

Max-Shift BM and Max-Shift Horspool:
Practical Fast Exact String Matching Algorithms

MOHAMMED SAHLI'+?

TETSUO SHIBUYAZ

Received: September 8, 2011, Accepted: January 13, 2012

Abstract: Exact string matching is the problem of finding all occurrences of a pattern P in a text 7. The problem is
well-known and many sophisticated algorithms have been proposed. Some fast exact string matching algorithms have
been described since the 80's (e.g., the Boyer-Moore algorithm and its simplified version the Boyer-Moore-Horspool
algorithm). They have been regarded as the standard benchmarks for the practical exact string search literature. In this
paper, we propose two algorithms MSBM (Max-Shift BM) and MSH (Max-Shift BMH) both based on the combina-
tion of the bad-character rule of the right-most character used in the Boyer-Moore-Horspool algorithm, the extended
bad-character rule and the good-suffix rule used in the Gusfield algorithm, which is a modification of the Boyer-Moore
algorithm. Only a small extra space and preprocessing time are needed with respect to the BM and BMH algorithms.
Nonetheless, empirical results on different data (DNA, Protein and Text Web) with different pattern lengths show that
both MSBM and MSH are very fast in practice. MSBM algorithm usually won against other algorithms.

Keywords: exact string matching, information retrieval, Boyer-Moore algorithm, linear time, sublinear time

1. Introduction

Exact string matching problem consists in finding all occur-
rences of a string P (generally called Pattern) of length m within
a larger string T (called Text) of length n. There are different
ways to scan the text 7 in order to find occurrences of P. Ac-
cording to the survey of Charras and Lecroq [11], we can classify
exact string-matching algorithms into four categories From Left-
to-Right, From Right-to-Left, In a specific order and In any order.
However, the last category (i.e., In any order) can also be consid-
ered as a subcategory of the second one (i.e., From Right-to-Left).
We redescribe and summarize these categories as follows:

Forward Orientation (Left-to-Right): One way is to scan the
text by moving forward and comparing characters of the pattern P
to characters of the text 7. Several algorithms use this idea such
as: the Brute Force algorithm, Knuth-Morris-Pratt algorithm [12]
which was the first linear-time algorithm that tackles this prob-
lem, the Apostolico-Crochemore algorithm [16] and the Forward
Dawg Matching algorithm [17] that builds a suffix automaton of
the pattern as a scanning strategy.

Backward Orientation (Right-to-Left): The idea is very sim-
ple: instead of comparing characters by moving from left to right
(Forward Orientation), we can compare them starting from the
opposite side (Right-to-Left). This category has led to creat-
ing very sophisticated and fast algorithms after the publication
of the algorithm of Boyer and Moore in 1977[8]. The origi-

Department of Computer Science, Graduate School of Information Sci-
ence and Technology, The University of Tokyo, Bunkyo, Tokyo 113—
0033, Japan.

Human Genome Center, Institute of Medical Science, The University of
Tokyo, Minato, Tokyo 108-8639, Japan.

¥ mohammed @hgc.jp

© 2012 Information Processing Society of Japan

nal Boyer-Moore algorithm uses two shift functions: the bad-
character rule and the good-suffix rule. Since that time, several
variants of this algorithm and simplifications have been intro-
duced such as Horspool algorithm [7], Tuned Boyer-Moore of
Hume and Sunday, Quick Search by Sunday [5], [6], Turbo-BM
by Crochemore et al. [3], [5], the Smith algorithm [4] and Raita
algorithm [13]. Please refer to [11] for further information.

Specific Orientation: Such as partitioning the pattern into
two parts as shown in the algorithms of Colussi[18] and Galil-
Giancarlo[19]. The partitioning is done by first searching for
the right part of the pattern from left to right and then if no
mismatch occurs the search is done for the left part. There is
also another strategy in which the pattern character positions are
sorted according to their frequency and their leading shift respec-
tively [11].

In this paper, we introduce new variants of BM algorithm
which have not been reported previously. In order to acceler-
ate the search, another rule called the extended bad-character
rule [14] was added in addition to the bad-character rule and the
good-suffix rule [8]. By taking the maximum of these three rules,
we created new variants of BM and Horspool algorithms (we call
them MSBM and MSH algorithms respectively). The extended
bad-character rule has not been evaluated rigorously in the lit-
erature (according to our knowledge). The fact that we chose
the extended bad-character rule is because it allows larger shifts
than the normal bad-character rule especially when we deal with
small alphabet size such as DNA and protein. Yet, relying only
on the extended bad-character rule will not lead to an important
enhancement [14]. Experiments showed that incorporating these
rules all together gives a significant improvement upon previous
algorithms.



Electronic Preprint for Journal of Information Processing Vol.20 No.2

The rest of this paper is organized as follows. Section 2 shows
a brief description of Boyer-Moore algorithm and related work is
given in Section 3. Section 4 describes our contribution by in-
troducing the Multi-Shift strategy and illustrating it by a small
example. In Section 5, two new variants of Boyer-Moore algo-
rithm and Horspool algorithm respectively are given respectively
by applying the Max-Shift rule. Then, Experimental results and
comparison are shown in Section 6.

In this paper, we consider the following terms :

o T: refers to the text.

e P: refers to the pattern,

e n = |T|size of the text,

e m = |P| size of the pattern.

e T1[i]: is the i-th character in the text T'.

o TYi...j]:is the substring of the text 7 starting from the i-th

character and ending at j-th character.

e S;orS[i...m— 1]: is the i-th pattern suffix.

e P;or P[0...i]: is the i-th pattern prefix.
All indices start at position 0 and end at position n—1 (of T) or
m— 1 (of P).

2. Brief Description of Boyer-Moore Algo-
rithm

The Boyer-Moore algorithm has been the standard benchmark
for the practical string search literature and the most efficient
string-matching algorithm in usual applications [5]. The charac-
ters of the pattern are scanned by the algorithm from right to left
beginning with the rightmost one. When there is a match of the
whole pattern or a mismatch, it uses two pre-computed functions
to shift the window to the right. These two shift functions are
called the good-suffix rule and the bad-character rule: “Assume
that a mismatch occurs between the character P[i] = a of the pat-
tern and the character T'[i + j] = b of the text during an attempt
at position j. Then, Pli+1...m—-1]=T[i+j+1...j+m—1]
and P[i] # T[i + j]. The bad-character shift consists in align-
ing the text character T'[i + j] with its rightmost occurrence in
P[0...m —=2]. If T[i + j] does not occur in the pattern P, no oc-
currence of P in T can include T[i + j], and the left end of the
window is aligned with the character immediately after T[i + j],
namely T'[i + j + 1]. The good-suffix shift consists in aligning
the segment 7[i + j+1...j+m—1] = Pli+ 1...m — 1] with
its rightmost occurrence in P which is preceded by a character
different from P[i]. If there exists no such segment, the shift con-
sists in aligning the longest suffix of T[i + j+ 1...j +m — 1]
with a matching prefix of P. Note that the bad-character shift can
be negative, thus for shifting the window, the Boyer-Moore al-
gorithm applies the maximum between the good-suffix shift and
bad-character shift” as explained in Ref. [8].

3. Related Work

Since Quick Search algorithm [6], [11] scans the text with the
bad-character rule; it is slightly similar to the Horspool algorithm
whereas the only difference is the choice of rightmost character.
Horspool [7] uses the text character (say 7' [k + m — 1]) that corre-
sponds to the rightmost character of the pattern (say P[m —1]) for
calculation. Sunday [6] noticed that the text character T'[k + m]

© 2012 Information Processing Society of Japan

just next to the rightmost text character can be involved too and
then it could become useful for the bad-character shift. Another
improvement was done by Smith [4] when he noticed that Quick
Search algorithm gives sometimes shorter shift than that of the
rightmost text character, he suggested the maximum of the two
shifts.

The preprocessing algorithm for the bad-character algorithm
runs in O(m) time and requires O(|Z|) space [7], [8], [11]. The ex-
tended bad-character rule was mentioned in Ref. [14] by Gusfield.
He discussed the matter of using the extended bad-character rule
in the Boyer-Moore algorithm. In our paper, however, for creat-
ing our algorithm MSH we are combining the benefit of two rules:
the extended bad-character and the simple bad-character of the
rightmost character of the pattern (as in Horspool algorithm). In
addition, the good-suffix rule will be used with latter rules in order
to create our second algorithm MSBM. Several experiments and
comparisons have been done for exact string algorithms, for fur-
ther information on the subject we refer to Refs. [1], [2], [5], [11].

4. The Multi-Shift Algorithm

4.1 The Extended Bad-character Rule

The extended bad-character rule can be defined as follows:
“When a mismatch occurs at position i of P and the mismatched
character in 7 is a, then shift P to the right so that the closest a to
the left of position i in P is below the mismatched a in 77 [14].

4.2 Description of the Overall Algorithm

Boyer and Moore proposed to use two shift functions: the
good-suffix rule and the bad-character rule [8], whereas Horspool
suggested a simplified variant by using only the bad-character
rule [7]. In the Horspool algorithm, computing shifts by the right-
most character of the pattern led to an efficient algorithm in prac-
tice. However, relying on the rightmost character of the pattern
alone does not yield larger shifts in all cases especially when we
deal with small alphabet size such as DNA or Protein data. For
instance, consider the case when a mismatch occurs between the
character P[i] of the pattern and the character T'[k + i] of the text
during an iteration k. Thus, suffix P[i + 1...m — 1] of the pattern
and factor Tk +i+ 1...k + m — 1] of the text are matched. Let
dy-1 = BadShift(T[k + m — 1]) and d; = BadShift(T [k + i]), that
is, the bad-character rule of the rightmost character P[m — 1] =
Tk +m—1] and that of the i-th position of P where the mismatch
occurred respectively. There are two cases here: if d; > d,,—; we
shift by d;, otherwise we shift by d,,_;. To sum up, we shift by
max(d,,_,d;).

Note: Readers should notice that d; refers to the shift by the
rightmost character of the prefix P[0...{] (i.e., P[i]).

4.3 Example

Consider the text ¥ = GCATCGCGGAGAGTATACAGTACG
and the pattern X = GCGGAGAG. The example was taken from
Ref. [11], but it is modified from its original form. Table 1 shows
that we gain two iterations by applying the Max-Shift rule in this
small example. It could be concluded that if the Max-Shift rule is
applied on a large text, more iterations will be skipped and there-
fore makes much contribution to the overall speed.



Electronic Preprint for Journal of Information Processing Vol.20 No.2

Table 1 Bad-character rule vs. extended bad-character rule vs. Max-Shift rule.

Step

Bad-character rule = d,,_;

Extended Bad-character rule = d;

Max-Shift rule = max(d;, d,,—;)

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 2)

GCATCGCGGAGAGTATACAGTACG
GCGGAGAG (shift by 5)

GCATCGCGGAGAGAATACAGTACG

GCGGAGAG (shift by 5)

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 1)

GCATCGCGGAGAGTATACAGTACG
GCGGAGAG (shift by 1)

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 2)

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 2)

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 1)

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 1)

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 2)

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 1)

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 8)

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 1)

GCATCGCGGAGAGAATACAGTACG

GCATCGCGGAGAGAATACAGTACG

GCGGAGAG (shift by 8) (shift by 5) GCGGAGAG

GCATCGCGGAGAGAATACAGTACG
GCGGAGAG (shift by 8)

GCATCGCGGAGAGAATACAGTACG

(shift by 5) GCGGAGAG

GCATCGCGGAGAGAATACAGTACG
(shift by 2) GCGGAGAG

4.4 Computation

The basic bad-character rule of the Horspool algorithm and the
extended bad-character rule are given below. Since the BC-Shift
(Bad-Character-Shift) algorithm computes shifts of the rightmost

Algorithm: BC-Shift( P, ASIZE, Bc[ ] )

Output: Integer Be[ASIZE];

String P; //Pattern
Integer m = |P|;  //Pattern Size
Integer ASIZE;  //Alphabet Size
Begin

fromi= 0to ASIZE-1 do //nitialization

Bcli] = m;

from i = 0 to m-2 do
Be[P[i]] = m-1-i;
End.

Procedure suffixes(X, suff[])
Integer f,g,i;
Integer m = |X|;
Begin
sufffm-1] = m;
g=m-1;
for i = m-2 downto 0
begin

ifi > g and suffli+m-1-f] < i-g then

sufffi] = sufffi+m-1-f];

//Computation

Algorithm: Ext-Shift( P, ASIZE, MsBc[ ][] )
Output: Integer MsBc[m][ASIZE];

String P;
Integer m = |P|;
Integer ASIZE;
Begin

from i = 0to m-1do /Initialization
from j = 0 to ASIZE-1 do
MsBcli][j] = m-i;
from i = 0 to m-2 do //Computation
from j = 0 to m-2-i do
MsBce[iJ[P[j]] = m-1-i;

End.

Procedure preBmGs(X, bmGs[])

Integer m = |X|;
Integer ij,suffim];
Begin

suffixes( X, suff);

fori=0tom-1do
bmGs[i] = m;

j=0

fori = m-1 downto -1 do
ifi= -1 or sufffi] = i+1

else begin

begin while j < m-1-i do
ifi<gtheng=i begin
f=i if bmGs[j] = m then
while g >= 0 and X[g] = X[g+m-1-f] do bmGs[j] = m-1-i;

g=g-1 J=ir1;

sufffi] = f-g; end

end end

end fori=0to m-2 do
End. bmGs[m-1-sufffi]] = m-1-i;

© 2012 Information Processing Society of Japan

End.

character of the pattern P, Ext-Shift generalizes this idea by com-
puting the shifts of the rightmost characters of all prefixes of the
pattern. Hence, we can conclude that the Ext-Shift algorithm is
a generalization of the BC-Shift algorithm. The matrix MsBc is a



Electronic Preprint for Journal of Information Processing Vol.20 No.2

Algorithm MSH( String P, String T)

Integer m = |P); //Pattern size
Integer n = |T); /Text size
Integer j,di,dm; //Counter and helpers

Integer MsBc[m][ASIZE]; //Max-Shift Matrix

Begin
//Preprocessing
ExtShift(P, ASIZE, MsBc);
//Searching
j=0
while j <= n-m do
begin
if P[m-1] = T[j+m-1] then
begin
i=m-2;
while i >= 0 and T[j+i] = P[i] do i = i-1;
ifi < 0then
begin
OUTPUT(j);
J = j*MsBe[O][T[j*m-1]I;
end
else
begin
di = MsBc[m-1-iJ[T[j+i]];
dm = MsBc[0][T[j+m-1]];
j = j#MAX(di,dm);
end
end
else  j=j+MsBc[0][T[j+m-1]];
end
End.

vector of m arrays of Bc.

The good-suffix algorithm is also given below in order to let ev-
erything ready for programmers. The following implementations
are taken from Ref. [11]. The procedure preBmGs() computes the
good-suffix rules which will be used in the MSBM algorithm.

5. MSH and MSBM Algorithms

5.1 MSH Algorithm

By combining the bad-character rule and the extended bad-
character rule in the Horspool algorithm, we create a new vari-
ant of it named Max-Shift-Horspool (MSH) algorithm. For every
mismatch i, we shift by the maximum of the bad-character rule
of the rightmost character of P and the bad-character rule of the
rightmost character of the prefix P; of P. The modified part of
Horspool algorithm consists in changing the shift instructions to
adapt this idea.

In case the rightmost character P[m — 1] of the pattern P is not
equal to its corresponding character ¢ = T[j+m— 1] in the text T,
we shift by the bad-character rule of the rightmost character of P
which is represented by MsBc[O][T[j + m — 1]]. The same thing
will be applied in case we find an occurrence of P in 7. In this
case, we also shift by the bad-character rule of the rightmost char-

© 2012 Information Processing Society of Japan

Algorithm MSBM( String P, String T )
Integerm = |P|, n = |T;

Integer j,di,dm;

Char c; //Auxiliary Character
Integer bmGs[m]; //Suffixes Array
Integer MsBc[m][ASIZE]; //Max-Shift Matrix
Begin

preBmGs(P,bmGs);  //Preprocessing
ExtShift(P, ASIZE, MsBc);
//Searching
j=0
while j <= n-m do
begin
¢ = T[j+m-1];
if P[m-1] = ¢ then
begin
i=m-2
while i >= 0 and T[j+i] = Pfildo i=i-1;
ifi < 0then
begin
OUTPUT(j);
j = j+max(bmGs[0],MsBc[0][c]);
end
else
begin
di = MsBc[m-1-iJ[T[j+i]];
dm = MsBc[0][c];
j = jrmax(bmGs[i],dm,di);
end
end
else j = jtmax(bmGs[m-1],MsBc[0][c]);
end
End.

acter of P (i.e., MsBc[O][T[j+m—1]]). Otherwise, if the compar-
ison stops at i > 0, we shift by the maximum of the bad-character
rule of the rightmost character of P (i.e., MsBc[O][T[j + m — 1]])
and the bad-character rule of the rightmost character of the prefix
P; = P[0...i] (G.e., MsBc[m — 1 —i][T[] + i]]).

Note: Each prefix P; of P(O < i < m) is characterized by the
array MsBc[m — 1 —i].

5.2 MSBM Algorithm

We apply the same adaptation to the Boyer-Moore algorithm to
get a new variant called Max-Shift-Boyer-Moore (MSBM) algo-
rithm. Since the Boyer-Moore algorithm uses two shift functions:
the bad-character rule and the good-suffix rule, we will combine
them with the extended bad-character rule, then we shift by the
maximum of all of them.

It is known that Horspool algorithm is a simplified version of
the original Boyer-Moore algorithm that consists in using the bad-
character rule alone. However, by experiments, we noticed that
combining all shifting rules gives significant results compared to
BM and Horspool algorithms. This combination has proven a
very reasonable speed increase over the overall algorithm.

In the case where the rightmost character P[m — 1] of the pat-



Electronic Preprint for Journal of Information Processing Vol.20 No.2

Table 2 Different data used for the test.

Alphabet size Type of data Size of Data (MB)
Small =7 DNA (FASTA file) [15] 4933
Medium = 27 Protein (Fasta file) [10] 234.6
Big = 65536 Text Web (Wikipedia XML file) [9] 148.6

w

=

2

a

B 7500

w

= e

E

e 5500

@

E

£ k
4 [i] 12 16 20 24 30 100 M

Pattern Length

BM == Horspool Gused TBM

QS == Smith ==5R ==7T =|SH ==MSBM

Fig.1 Searching times in milliseconds for DNA.

tern P is not equal to its corresponding character ¢ = T[j+m —1]
in the text 7, we shift by the maximum of the good-suffix rule
bmGs[m— 1] and the bad-character rule of the rightmost character
of P which is represented by MsBc[0][c]. The same thing could
be done when an occurrence of P is found in T'; we shift by the
maximum of the bad-character rule of the rightmost character of
P (i.e., MsBc[0][c]) and the good-suffix rule bmGs[0]. If the com-
parison stops at i > 0, in this case we shift by the maximum of
three values: 1) the bad-character rule of the rightmost character
of P (i.e., MsBc[0][c]), 2) the bad-character rule of the rightmost
character of the prefix P; = P[0...i] (i.e., MsBc[m — 1 —i][T[j+
i]]), and 3) the good-suffix rule bmGsli]. Note that each suffix S;
of P(0 < i < m) is characterized by the array bmGsl[i].

6. Experimental Result and Comparison

6.1 Data and Algorithms Chosen

Smith, Zhu-Takaoka[20], Berry-Ravindran[21], BM, Hor-
spool, Turbo-BM and Quick Search were the chosen algorithms
for making a clear comparison against MSH and MSBM algo-
rithms. In spite of the absence of the extended bad-character rule
implementation in Ref. [14] we attempted to adapt it in the Boyer-
Moor algorithm as it was mentioned by Gusfield (we will refer to
it as the “Gusfield Algorithm™). All the mentioned algorithms
were implemented in C language. The pattern P and the text T
are loaded into memory before computation and timing started.
Concerning the various data chosen for the test, we considered
three kinds of data depending on the size of the alphabet.

The different algorithms were executed using Intel(R)
Core(TM) i7 CPU speed 2.93GHz, 12GB RAM, and Kernel
Linux 2.6.32-64-generic operating system. All algorithms were
compiled by GCC compiler of the Qt Creator 1.3.1 (based on Qt
4.6.2 “64bit”). BM, Horspool (BMH), Turbo-BM (TBM) and
Quick Search (QS) algorithms were implemented as described
in Ref.[11] with some modifications we did for generalizing
algorithms’ input and output and also to speed-up some parts of
their implementations.

Pattern length ranges from 4 to 954 characters for protein data
and DNA data, and from 4 to 200 characters for text web data.

© 2012 Information Processing Society of Japan

5000

4500
w 4000
2
5 3500
E
2 3000
E 2500
E
o 2000
E
F 1500
—
1000
10 20 30

Patiern Length

Smith =05 ==BR ==Takaoka ==MH ==MBM

Fig. 2 Execution time when the pattern is not found in a DNA file.

In fact, we are dealing with a reasonable and big size of data that
requires time to be uploaded and scanned.

The speed of our machine, in which we underwent the algo-
rithms, is very fast. Time was measured in millisecond unit,
which is a significant measurement unit for such machine. As
query patterns, we selected randomly 100 substrings from each of
the target text data; the mean of execution times for every pattern
is shown for each experiment. The execution includes the pre-
processing phase and searching phase. The preprocessing time
was very negligible for all algorithms except ZT and BR algo-
rithms that required a lot of execution time when dealing with a
big alphabet size.

6.2 Experiments on Small Alphabet Size (DNA Data)

The result of the execution time for DNA data is shown in
Fig.1 and Fig.2 MSBM achieved the best time when the pat-
tern length < 8 and the second best time when it is long enough
(> 954). ZT was the best algorithm when the pattern length
> 12 BM and Horspool algorithms achieved almost the same ex-
ecution times. BM was slightly faster than Horspool algorithm.
TBM was the slowest algorithm when the pattern length < 12
while Smith algorithm was the slowest when the pattern length
> 12 nucleotides. Concerning the case when the pattern is not
found in the data file, our algorithms MSBM and MSH achieved
the best execution time as shown in Fig. 2.



Electronic Preprint for Journal of Information Processing

3500
3000
2500
2000
1500
1000
4 8 12 16

Time in millis econds

a00

Pattern Length
BM ==Horspool == Gusekl ==TBEM ==Q5

Snith ==BR =ZT  =MSH ==MSBM
Fig. 3 Searching times in milliseconds for the Protein file (Pattern length is
410 16).
1000

800
800
TOO
600
500
400
300
200
100

0
20 24 30 100 954
Pattern Length

Time in milliseconds

BM ==Horspool == Gusekl ==TBM == Q5
Smith == ER =-7T w= \SH == W SEM

Fig. 4 Searching times in milliseconds for the Protein file (Pattern length is
20 to 954).

1500

1400
1300
1200
1100
1000
900
700
600
500

10 20
Pattern Length
Sith =S ==7T ==pBR ==kH ==LBM

Time in millis econds

&

Fig.5 Execution time when the pattern is not found in a Protein file.

6.3 Experiments on Medium Alphabet Size (Protein Data)

Fig. 3, Fig. 4 and Fig. 5 show the results for the search in a pro-
tein data file. Our algorithm MSBM usually won against other
algorithms. When the pattern length is 4 characters, MSBM
and QS achieved almost the same time and ZT algorithm won
when the pattern length > 100. BM and Horspool algorithms
again achieved almost the same execution time, while TBM was
the slowest algorithm compared to other algorithms. Besides,
MSBM achieved the best execution time when the pattern is not
found in the protein data file, while MSH and QS algorithms
achieved the second execution time as shown in Fig. 5.

6.4 Experiments on Big Alphabet Size (Text Web Data)

We considered a big alphabet size (65,535 Unicode letters). All
the algorithms did not behave unexpectedly except Zhu-Takaoka

© 2012 Information Processing Society of Japan

Vol.20 No.2

2500
2300
2100
1800
1700
1500
1300
1100

900

700

500

Time in milliseconds

4

8 12 16
Patern Length
BM  ==Horspool ==Guseld ==TBM ==(QS = Smith == jISH ==MSEM

Fig. 6 Searching times in ms for the Text Web Data (Pattern length:

4to 16).
780
680
8 580
2
Q -'--‘_-“__
3
@ 480
E
£ 380
o
E
T oo
"
180
20 24 30 100 200

Pattern Length
BM  ==Horzpool Guszeld ==TBM as Smith == MSH == MSBM

Fig. 7 Searching times in ms for the Text Web Data (Pattern length:
20 to 200).

1200

1100
1000
900
800
700
500
400
300

20

Time in milliseconds
=]
=

=
]

Pattern Length

= Gusfiel Horspoal == TBM as
== Smith MH == MBM

Fig. 8 Execution time when the pattern is not found in the text file.

and Berry-Ravindran algorithms that could not fit in our memory
because of space limitation. This is due to their preprocessing
phase that runs in O(m + X?) time and space [11], [20], [21] such
that X is the alphabet size and m is the pattern length. Therefore,
we compared with other algorithms and the results for the text
web test are shown in Fig. 6, Fig.7 and Fig.8. Our algorithm
MSBM was the winner in most cases. However, it was slightly
slower for the long pattern length of 200 characters. There were
only a very few differences between BM, Gusfield, QS, Horspool
and MSH when the pattern length > 27. However, TBM was
again the slowest algorithm in most cases. On the other hand,
MSBM algorithm showed great performance and won against all
the other algorithms when the pattern is not found in the text file
as shown in Fig. 8.

7. Discussion

MSBM and MSH algorithms are variants of BM and Horspool
algorithms respectively. The searching time of MSBM and MSH
is also in O(m - n) time complexity, while the preprocessing phase



Electronic Preprint for Journal of Information Processing Vol.20 No.2

is executed in O(m - [X]) time and space complexity. We may
say that the space complexity of our algorithms represents their
weaknesses although it is better than many other variants of BM
such as Zhu-Takaoka and Berry-Ravindran algorithms, The best
performance is O(n/m) of both algorithms.

8. Conclusion

Replacing the bad-character rule strategy by its generalized
version and applying the maximum of shift values (the Max-Shift
rule) gives a significant improvement over Boyer-Moore algo-
rithm and its different variants. According to our experiments,
MSBM algorithm surprisingly worked well in most cases and the
preprocessing phase did not affect the speed of the overall algo-
rithm.

Acknowledgments This work was partially supported by the
Grant-in-Aid from the Ministry of Education, Culture, Sports,
Science and Technology of Japan. We are grateful to Pr. Satoru
Miyano (the head of Laboratory of DNA Sequence Analysis and
Laboratory of Sequence Analysis, Human Genome Center, The
University of Tokyo) for his additional support in publishing this
work.

Reference

[1] Kalsi, P., Peltola, H. and Tarhio, J.: Comparison of Exact String
Matching Algorithms for Biological Sequences, Bioinformatics Re-
search and Development (BIRD), pp.417-426 (2008).

[2]  Lecroq, T.: Experimental Results on String Matching Algorithms,
Software Practice and Experience, Vol.25, No.7, pp.727-765 (1995).

[3] Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Lecroq,
T., Plandowski, W. and Rytter, W.: Deux méthodes pour accélérer
I’algorithme de Boyer-Moore, Théorie des Automates et Applications,
Actes des 2e Journes Franco-Belges, Krob, D. (Ed.), Rouen, France,
pp-45-63 (1991).

[4]  Smith, P.D.: Experiments with a Very Fast Substring Search Al-
gorithm, Software—Practice and Experience (SPE), Vol.21, No.10,
pp-1065-1074 (1991).

[5]  Hume, A. and Sunday, D.: Fast string searching, Software: Practice
and Experience, Vol.21, No.11, pp.1221-1248 (1991).

[6]  Sunday, D.M.: A very fast substring search algorithm, Comm. ACM,
Vol.33, No.8, pp.132-142 (1990).

[71  Horspool, R.N.: Practical fast searching in strings, Software: Practice
and Experience, Vol.10, pp.501-506 (1980).

[8]  Boyer, R.S. and Moore, J.S.: A fast string searching algorithm, Comm.
ACM, Vol.20, No.10, pp.762-772 (1977).

[9] Wikipedia; Benchmark (Text Web), file name: enwiki-latest-
abstract8.xml, available from ¢http://download.wikimedia.org/enwiki/
latest/).

[10] Universal Protein Resource; Benchmark (Protein Fasta file), file:
uniprot_sprot.fasta.gz, available from (ftp://ftp.uniprot.org/pub/
databases/uniprot/current_release/knowledgebase/complete/).

[11] Charras, C. and Lecroq, T.: Handbook of Exact String-Matching Al-
gorithms (2004).

[12] Knuth, D.E., Morris, J.H. and Pratt, V.R.: Fast pattern matching in
strings, SIAM J. Comput., Vol.6, pp.323-350 (1977).

[13] Raita, T.: Tuning the Boyer-Moore-Horspool String Searching Algo-
rithm, Software: Practice and Experience, Vol.22, No.10, pp.879-884
(1992).

[14]  Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology (1997).

[15] National Center for Biotechnology Information; Benchmark: (DNA
Fasta File), file 4, available from (ftp://ftp.ncbi.nih.gov/pub/TraceDB/
anopheles_gambiae_s/).

[16] Apostolico, A. and Crochemore, M.: Optimal canonization of all sub-
strings of a string, Information and Computation, Vol.95, No.1, pp.76—
95 (1991).

[17]  Crochemore, M. and Rytter, W.: Text Algorithms, Oxford University
Press (1994).

[18] Colussi, I.: Correctness and efficiency of the pattern matching al-
gorithms, SIAM Journal on Computing, Vol.21, No.3, pp.407-437
(1992).

© 2012 Information Processing Society of Japan

[19] Galil, Z. and Giancarlo, R.: On the exact complexity of string match-
ing: Upper bounds, Information and Computation, Vol.95, No.2,
pp.225-251 (1991).

[20] Zhu, R.F. and Takaoka, T.: On improving the average case of the
Boyer-Moore string matching algorithm, Journal of Information Pro-
cessing, Vol.10, No.3, pp.173-177 (1987).

[21] Berry, T., Ravindran, S.: A fast string matching algorithm and experi-
mental results, Proc. Prague Stringology Club Workshop ’99, Collab-
orative Report DC-99-05, Holub, J. and Simanek, M. (Eds.), pp.16—
26, Czech Technical University, Prague, Czech Republic (1999).

Mohammed Sahli a doctoral student of
The University of Tokyo received his
Bachelor of Mathematics and Computer
Science from The University Hassan II-
Mohammedia in Casablanca 2006, and
Master of Research in Computer Science
from University Mohamed V-Soussi in
Rabat 2008. His research interest is on al-
gorithms in Artificial Intelligence and Operations Research. The
subject of his Ph.D. thesis is Genome Assembly Problem. He
likes programming and is interested in Robotics as well.

Tetsuo Shibuya received his Bachelor of
Science, Master of Science, and Ph.D. of
Science from The University of Tokyo, in
1995, 1997, and 2002 respectively. His
research interest ison algorithms in com-
putational biology. He was a researcher

at IBM Tokyo Research Laboratory from
1997 to 2004. He was an assistant profes-
sor at The University of Tokyo from 2004 to 2009, and he is an
associate professor at The University of Tokyo from 2009. He is
the chair of SIGBIO, IPSJ. He is editor-in-chief of the TBIO. He
is a member of JSBi (Japanese Society for Bioinformatics), IPSJ
(Information Processing Society of Japan), and IEICE (Institute
of Electronics, Information and Communication Engineers).



