IPSJ Transactions on System LSI Design Methodology Vol.5 44-54 (Feb. 2012)

[DOI: 10.2197/ipsjtsldm.5.44]

Regular Paper

A Fast Performance Estimation Framework for
System-Level Design Space Exploration

1,2,a) 1

SHiNYA Honpa!
1

Yuki ANDO
3 Hiroakr TAKADA

SErYA SHIBATA
Hirovukr Tomryama

Received: May 27, 2011, Revised: September 2, 2011,
Accepted: October 19, 2011, Released: February 21, 2012

Abstract: This paper presents a fast performance estimation framework and an performance estimation method for
design space exploration at system level. As the complexity of embedded systems grows, design space exploration
at a system level plays a more important role than before. In the system-level design, system designers start from
describing functionalities of the system as processes and channels, and then decide mapping of them to various Pro-
cessing Elements (PEs) including processors and dedicated hardware modules. A mapping decision is evaluated by
simulation or FPGA-based prototyping. Designers iterate mapping and evaluation until all design requirements are
met. In order to shorten the evaluation time, we have developed a fast design space exploration framework which com-
bines our system-level design tool, named SystemBuilder, and a newly developed fast performance estimation tool,
named SystemPerfEst. SystemPerfEst is based on trace-based simulation method. The trace is obtained as the result
of SystemBuilder, and the trace is fed to SystemPerfEst smoothly. Since the estimation of a design candidate finishes
in about one second, design space exploration of a number of design candidates can be performed with SystemPerfEst
in a practical time. A case study on design space exploration of a JPEG decoder system demonstrates the effectiveness

of our framework.

Keywords: system-level design, performance estimation, design space exploration

1. Introduction

In order to design embedded systems of high quality in a short
time, fast and accurate evaluation is musts for design space explo-
ration. As the complexity of embedded systems grows to the ex-
tent of MPSoCs (multiprocessor system on a chip), design space
exploration at a system level plays a more important role than be-
fore. In the system-level design, system designers start from de-
scribing functionalities of the system as processes and channels
which indicate computations and communications among pro-
cesses, respectively. Then the designers decide mapping of them
to various Processing Elements (PEs) including processors and
dedicated hardware modules [10]. A mapping decision is eval-
uated regarding performance and costs by simulation or FPGA-
based prototyping. The designers iterate mapping and evaluation
until all design requirements are met.

In the multiprocessor system design, designers should explore
and find a good design candidate which meets their requirements
from a vast design space. In order not to miss the best mapping
of a system, exhaustive exploration is ideal solution for design
space exploration. However, performance evaluation, which is

Graduate School of Information Science, Nagoya University, Nagoya,
Aichi 464-8603, Japan

Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472,
Japan

College of Science and Engineering, Ritsumeikan University, Kusatsu,
Shiga 525-8577, Japan

¥ shibata@ertl.jp

© 2012 Information Processing Society of Japan

one of the most important evaluation for design space exploration,
makes exhaustive exploration hard since it requires measurable
amount of time for some kind of simulation or evaluation with
FPGA-based prototypes. Therefore, fast performance evaluation
technique is necessary.

Traditionally, various simulation methods and simulation tools
are proposed. Although cycle-level simulation is promising tech-
nique which achieves high accuracy, it needs huge time to sim-
ulate a system and not applicable for exploration by iteration of
simulation. There are fast simulation and performance estimation
methods at a high level of abstraction for fast design space ex-
ploration. Trace-based simulations proposed in Refs. [11], [16],
and so on use traces for estimating execution time of a system
and abstract out details of execution in order to reduce estima-
tion time. Although these abstract simulation methods can sim-
ulate/estimate performance of systems in short time, they need
accurate traces. Moreover, these works do not mention how to
obtain such traces.

In contrast, system-level design tools proposed recently uses
FPGA-based performance evaluation. Such tools surveyed in
Ref. [6] automatically synthesize implementation of FPGA-based
prototypes from high-level description of systems. These FPGA-
based methods are fast and accurate, and need not any traces for
performance evaluation. However, exhaustive exploration of de-
sign candidates cannot be performed in a practical time since syn-
thesis time of an FPGA-based prototype reaches one or several
hours.

44

IPSJ Transactions on System LSI Design Methodology Vol.5 44-54 (Feb. 2012)

In order to incorporate accuracy of FPGA-based prototypes
and speed of performance estimation, some of works provide in-
tegrated frameworks which combine automatic synthesis func-
tionalities and fast performance estimation methods [3], [12].
These works provide overall design flow from high-level descrip-
tion of system to fast performance evaluation, including methods
for obtaining performance models. Although their performance
evaluation techniques are fast for design space exploration, they
lack consideration of communication time among functions and
therefore they are applicable to systems with limited architec-
tures.

We propose a fast and easy-to-use integrated framework for de-
sign space exploration of multiprocessor systems developed on an
FPGA, combining our system-level design tool, named System-
Builder, and a newly developed trace-based performance estima-
tion tool, named SystemPerfEst. SystemPerfEst uses traces ob-
tained from FPGA-based prototypes which automatically synthe-
sized by SystemBuilder. In our framework, a system designer
describes functionalities of a system first. Next, the designer syn-
thesize FPGA-based prototypes of two extreme mapping (all soft-
ware implementation and all hardware one) and obtains traces of
these two prototypes on a target FPGA. Also, using a simple
system description provided by our framework, designers char-
acterize the target FPGA. Then performance estimation of the
system with other mappings can be done using the traces.

Characteristics of the target FPGA is used for estimating com-
munication time among functionalities. Since communication
time depends on FPGAs and RTOSs (or middlewares) running
on it, they should be considered for accurate performance esti-
mation. In other works which assume that there are databases
which contain architecture characteristics such as Ref.[3], de-
signers should develop such databases by hand and with detailed
knowledge about the target FPGA and RTOSs. In contrast, de-
signers can collect the characteristics of the FPGA with just a
single synthesis and execution of the simple system description
on the target FPGA in our framework. Therefore designers are
not required detailed knowledge about the FPGA to develop such
databases.

The estimation method of SystemPerfEst is fast, and the esti-
mation results are accurate to the extent that they are compara-
ble with evaluation results on FPGA-based prototypes. Note that
the basic estimation mechanism used in SystemPerfEst is a tra-
ditional trace-based one like Refs. [12], [15], [16]. However, our
method can consider communication times spent by RTOSs and
interruption handlers, and therefore our method is more accurate
and applicable to wider architecture including RTOSs.

Moreover, since the input for SystemBuilder and SystemPerf-
Est is common, designers can verify the exploration results on an
FPGA, make feedback to the description of systems, and explore
more mappings using SystemPerfEst again smoothly.

The contributions of this work are (1) integrated framework
which combines a system-level design tool and a performance
estimation tool, and (2) performance estimation method for mul-
tiprocessor systems whose results are comparable with evaluation
results of FPGA-based prototypes, considering communication
times spent by such as RTOSs and interruptions.

© 2012 Information Processing Society of Japan

Since our performance estimation method uses profiles of
FPGA-based prototypes, target platforms of systems are limited
to FPGAs and cannot be applied to design of ASICs. However,
recent growth of FPGAs on their speed and capacity is raising
them to the level of industrial products. Therefore our method
can be used for such cases. Moreover, our method at least can
be applied for design of ASICs for the purpose to prune out the
obviously insufficient design candidates at early phase of design.

The rest of this paper is organized as follows. First, Sec-
tion 2 presents a brief overview of related works about perfor-
mance evaluation techniques for system-level design space ex-
ploration. Next, Section 3 explains an overview of our framework
and SystemBuilder. Section 4 describes performance estimation
method used in SystemPerfEst, and Section 5 shows the effec-
tiveness of our framework through a case study. Finally Section 6
concludes this paper with a summary.

2. Related Works

There are many approaches which provide efficient evaluation
environments for design space exploration.

ARTS [11] and TAPES [16] are system-level performance esti-
mation frameworks. ARTS is a framework for modeling and sim-
ulating MPSoCs. Given profiles of tasks to be executed on pro-
cessing elements, ARTS simulates communications among tasks
and calculates performance numbers. TAPES provides a retar-
getable simulation framework with a given profile of the system
functionality. These frameworks assume that profiles of the sys-
tem at a system level are given prior to their simulation, therefore
the accuracy of their simulation depends on the accuracy of pro-
files. Moreover, the focuses of these works are on qualitative
analysis such as scalability for multiprocessor systems, and accu-
racy of them were not mentioned.

As for FPGA-based approaches to system-level design, auto-
matic synthesis tools [4], [7], [14] enabled designers to reduce
time for obtaining FPGA-based prototypes. Our system-level de-
sign tool, named SystemBuilder, was developed for a similar ob-
jective to them [8]. These works are all supports system-level
design space exploration by synthesizing FPGA-based prototype
implementations from abstract models of systems. Although a
lot of efforts of designers for evaluating various mappings are re-
duced by them, still system designers should wait completion of
synthesis, and execute FPGA-based prototypes and record results
of systems by hand, iteratively. It is time consuming and prevents
designers from exhaustive exploration.

Some system-level design exploration frameworks which com-
bine system-level automatic synthesis tools and fast performance
estimation methods are proposed in Refs. [3], [12]. The approach
proposed in Ref. [3] extracts functional characteristics from high-
level models of systems, and explores a large number of design
candidates at an implementation level considering the functional
characteristics and hardware characteristics. Although their ap-
proach achieved design space exploration with high accuracy in
a short time, it requires a database containing detailed hardware
characteristics of target architecture to be developed. Moreover,
their estimation method only considers logic level architecture in-
side a processor and a hardware module such as adders, and do

45

IPSJ Transactions on System LSI Design Methodology Vol.5 44-54 (Feb. 2012)

not consider multiprocessor architecture and their parallelism.

The approach proposed in Ref. [12] provides performance esti-
mation method where performance parameters are obtained from
execution results of Instruction set simulators (ISSs). Their ap-
proach considers multiprocessor systems and calculates accurate
execution time of systems. However, the use of ISSs causes rela-
tively slow estimation speed, and they do not consider communi-
cation time among processors.

The basic concept of our performance estimation method is
similar to the work by Ueda et al.[15]. However, the focus of
their approach is comparison of performance on different bus
topologies with given IP components. Execution times of IP
components are assumed to be given by IP database and to be
constant. Therefore, their approach cannot accurately estimate
performance of systems where some of IPs are activated several
times and their execution times vary on each of their activation.
Also, they do not mention about how to develop the IP database.

Moreover, most of these performance estimation methods do
not consider RTOSs (scheduling times) and interrupts (interrup-
tion handling times) which are often used for developing embed-
ded software.

Regarding the framework construction, our framework is sim-
ilar to the works in Refs.[3], [12], developed by combining
an automatic synthesis tool and a fast performance estimation
method. Unlike above tools, SystemPerfEst can estimate perfor-
mance of multiprocessor systems including dedicated hardware
modules with short estimation time and high accuracy, consider-
ing scheduling time of RTOSs and interruption handling times.

3. Overview of Our Framework

3.1 Design Flow

Figure 1 shows the overall design flow. First, designers de-
scribe the functionalities of systems (“Functional description” in
Fig. 1), and synthesize FPGA-based prototypes using our system-
level design tool, named “SystemBuilder.”

Next, designers obtain a few “Profiles on FPGA” from FPGA-
based prototypes. Typically, profiles of all software implementa-
tion and all hardware one are obtained. All software implemen-
tation indicates mapping which all processes and channels are
mapped onto a single processor. All hardware implementation
indicates mapping which all processes excluding ones which can
be mapped only on software are mapped onto hardware. Design-

Proposed framework

a2
S hﬁ?&%:{%on Architecture Functional
Ffor trace) template description

— ¥

SystemBuilder SystemPerfEst] — Spt/[c%ggia?igo s
> | d (for estimation)

FPGA-based
prototypes

L3 —
Profiles
on FPGA

Fig. 1 Overall design flow of our framework.

! 1

Profile-like
process behaviors

FPGA-based evaluation method

Estimated
Execution times

© 2012 Information Processing Society of Japan

ers can obtain these profiles by specifying the two mappings in
“Mapping Specification (for traces),” synthesize implementation
of them using SystemBuilder and execute them on an FPGA.

After that, designers explore large number of mappings, which
are specified using “Mapping Specification (for estimation),”
with our performance estimation tool, named “SystemPerfEst.”
Since estimation of a mapping with SystemPerfEst finishes in
seconds, designers can explore large number of mappings in
hours. If the number of mappings is less than several thousands,
designers can explore all of them using SystemPerfEst. Other-
wise, designers can interactively explore mappings. The interac-
tive exploration starts from estimating a subset of all mappings
using SystemPerfEst. As a result of estimation, SystemPerfEst
outputs not only execution time of mappings but also profiles like
ones obtained from FPGA-based prototypes (described in Sec-
tion 3.3) so that designers can analyze behavior of the system
with them. Then designers estimate performance of next subset
of mappings to be estimated, until a mapping which meets de-
signer’s requirements is found.

The strategy for efficient exploration is our future work and we
leave it out of scope in this paper.

3.2 SystemBuilder

Here, we briefly explain about SystemBuilder [8] in order to
make this paper self-contained.

Figure 2 shows the design flow achieved by SystemBuilder.
SystemBuilder supports design space exploration of embedded
systems by automatically synthesizing FPGA-based prototypes
from functional description and mapping specifications.

Functional description for SystemBuilder consists of processes
and channels. Processes represent computations, which can be
mapped and implemented onto processors and hardware mod-
ules. Processes are described in the C language, and the channels
are accessed from processes through APIs which is provided by
SystemBuilder. Channels represent communications among pro-
cesses and implemented on software and hardware depending on
mapping of processes. Currently, SystemBuilder provides mainly
two types of channels, FIFO channels and memory channels.

FIFO channels can be used for describing data/control depen-
dencies between two processes. For instance, a receiver process
of a FIFO channel is forced to wait until a corresponding sender
process writes data to the channel. Memory channels represent
storage of data transferred among processes. Typically, FIFO
channels and memory channels are combined to represent FIFOs
which transfer large data among processes. In the combination,
FIFO channels are used for controlling accesses, and memory
channels are used for buffers for data.

From inputs above, SystemBuilder automatically synthesizes
descriptions of interconnections among processes. The synthe-
sized communication descriptions are in the C language and
VHDL, depending on mapping of the processes and channels.
Also, SystemBuilder makes use of a cross-compiler of the pro-
cessors for software and a behavioral synthesis tool for hardware
module in order to obtain an executable binary and synthesiz-
able RTL circuits, respectively. Processes mapped on software
are compiled and linked with a Real-Time OS (RTOS). A FIFO

46

IPSJ Transactions on System LSI Design Methodology Vol.5 44-54 (Feb. 2012)

e | !

CPUI: P1,P4 CPUI1 | | SRAM1 HW SRERI2
CPU2: P5
CPU3: P7

I S e ;

: $) $
Mapping

specification || CPU2 SDRAM CPU3
A /

I_» [SystemBuilder] ¢ I Architecture

Automatic Synthesis template

v

HW : P2, P3,P6

Functional
description

CPUl SRAMI
SRAM2 - - - . " o
Tlme 1M T 1§ s 1M
@ e e : H
RTOS header—0 I I
Driver, et mo—o I I
‘ jvrn=t T TN
10-c —mn T
t ocr-1 [T [TTT1 —
= \
Driver agder-1 | o 1
RTOS vuvzree=0
s aispray-r [
CPU2

FPGA-based prototype
Fig.2 Design flow of SystemBuilder.

SW compile

System Synthesis
(compiler)

(SystemBuilder)

Synthesis & evaluation flow of SystemBuilder

‘ Iterate & find
required one

Target FPGA Record

configuration execution trace

Behavioral Synthesis HLogic

Evaluation flow of SystemPerfEst

Performance
estimation

Estimate in parallel
and select required one

Fig.3 Comparison of evaluation time of SystemPerfEst with FPGA-based evaluation method.

channel is transformed to a FIFO hardware buffer with circuitry
to interrupt processors or a queue API of an RTOS by System-
Builder depending on mapping of the processes. Memory chan-
nels are transformed to either of memory modules on an FPGA
or arrays of the C language.

Finally, a configuration bitstream of the designed hardware ar-
chitecture for an FPGA is synthesized by a logic synthesis tool
from the RTL circuits and IPs such as processors and essential
peripherals.

3.3 Process Profiler

SystemBuilder provides a process profiler, which is auto-
matically configured and instrumented into FPGA-based proto-
types [13]. We explain brief overview of the process profiler since
our framework uses results of the process profiler.

The original purpose of the process profiler is to help design-
ers see the behavior of processes on an FPGA and help them fig-
ure out mappings to improve the system. Generally speaking,
on development of systems with complex and parallel process
structure, it is hard to imagine execution orders and timings of
processes considering their mapping, parallelism and data depen-
dencies. In order to help designers understand the execution or-
ders and timings of processes, the process profiler obtains them
on FPGA-based prototypes and visualizes them.

In detail, the process profiler records a trace of activation/wait
timings of processes through the execution period specified by a
designer. Activation of processes means that the processes are
computing between their FIFO channel API calls, and wait of

© 2012 Information Processing Society of Japan

processes means that processes are accessing channels.

Since processes are mapped onto either software or hardware,
the process profiler records traces of all processes in a common
timeline. The profiles can be shown as waveforms (shown in
Fig.2).

SystemPerfEst takes the results of the process profiler (pro-
cess profile) as input traces to obtain execution time of processes.
Also, SystemPerfEst outputs profiles like process profiles for in-
teractive exploration using them.

3.4 Advantage of Our Methodology

Figure 3 briefly shows an advantage on design space explo-
ration of our framework over a traditional exploration methodol-
ogy with SystemBuilder (FPGA-based evaluation method).

In FPGA-based evaluation method, designers iterate evalua-
tion by synthesizing and executing FPGA-based prototypes for
a number of mappings. In detail, an evaluation consists of six
steps; system synthesis by SystemBuilder, software compile, be-
havioral synthesis, logic synthesis and P&R, FPGA configura-
tion, and recording execution traces. Although part of these steps
are independent, each step needs high computation power and
they cannot be done in parallel practically on a host PC. Hence
even a single evaluation of a mapping spends long time. It is
therefore hard to perform design space exploration by iterating
evaluation of a number of mappings in practical time.

In contrast, our framework only uses SystemBuilder at first.
Once the profile of all software implementation and all hardware
one is obtained, designers can explore a number of mappings by

47

IPSJ Transactions on System LSI Design Methodology Vol.5 44-54 (Feb. 2012)

parallel execution of SystemPerfEst. Since SystemPerfEst is fast
and can be executed in parallel on a host PC, design space explo-
ration can be performed much faster than the FPGA-based evalu-
ation method.

4. Fast Performance Estimation Method

This section describes detail of our performance estimation
method used in SystemPerfEst.

4.1 Approach and Assumptions

In order to estimate the performance (total execution time) of
systems fast and accurately, execution time of processes is the
most important factor. Although the use of detailed simulation
enables us to obtain them accurately, it will make estimation slow.
Therefore, we abstract out computation part of process from pro-
cess models and use execution time obtained from traces instead.
Assuming that execution time of a process for an input on a PE
does not change depending on mapping of other processes, exe-
cution time of the process will be the same as that in the trace of
other mappings where the process is mapped on the same PE. Al-
though this approach can be applied for estimating performance
of a system on various mappings, it should be noted that this
approach can be applied only for the same inputs and the same
amount of computation as the input traces are obtained. Also, we
assume that all PEs are in a single clock domain and are driven in
a same clock frequency.

Under the assumption above, if there are n kind of PEs, n traces
are necessary and sufficient for performance estimation. For in-
stance, in the design space exploration is done on the architecture
where processes can be mapped onto one type of processors and
dedicated hardware (n = 2), performance estimation needs only
two profiles. One is a profile of mapping where all processes are
mapped onto the processor, and another is a profile of mapping
where all processes are mapped onto dedicated hardware. The us-
age of them are described in Sections 4.2, 4.5 and 4.6. Obviously,
our performance estimation method needs traces of processes ob-
tained from FPGA-based prototypes generated by SystemBuilder
or such system-level design tools. On the other hand, our method
can be applied to systems targeting any FPGA with any processor
if traces of processes can be obtained on them.

To make this assumption practically true, we assume that target
processors have a sufficiently fast memory for their instructions
and do not use any cache since the use of cache will make execu-
tion time of processors vary (described in Section 4.4).

time spent for blocking communications using FIFO channels,
cannot be estimated simply using traces because of two factors.
One is the implementation of channel APIs which depends on
mapping of processes. Another is blocking time which changes
depending on execution condition of a system.

Channel APIs, which are interfaces to channels, are imple-
mented as RTOS API calls for software or as communication
circuitry for hardware by SystemBuilder. Typically, a channel
API call spends a constant amount of time depending on its im-
plementation. Therefore, time for channel API calls can be es-
timated using a database which stores time spent for channels.
Such database can be developed before exploration (described in
Section 4.8).

On the other hand, blocking time cannot be estimated from
traces since it depends on execution condition of other processes
and channels. Therefore, performance models in our estimation
method manages the occupation of FIFO buffers and blocking
time (described in Section 4.5).

4.2 Concept of Our Estimation Method

Before going details, we show a concept of our performance
estimation method.

Figure 4 illustrates the concept. Our method is a kind of trace-
based simulation. We use two profiles obtained from FPGA-
based prototypes as traces, one is a profile of all software im-
plementation, and the other is that of all hardware implemen-
tation. From the two profiles, execution time (clock cycles) of
processes on each computation step as software and hardware is
obtained. According to mapping specification to be estimated,
our estimation method selects profiles from all software imple-
mentation or all hardware implementation. After the selection of
profiles, it calculates overall execution time (clock cycles) of the
system considering parallelism of processes.

If the clock frequency of the system is determined, designers
can calculate execution time (seconds) of the mapping by divid-
ing the number of estimated clock cycles by the clock frequency.
Although maximum clock frequency of a system generally may
change depending on mappings, we leave the estimation method
of them out of scope in this paper.

4.3 Opverall Estimation Flow

Next, we illustrate estimation flow focusing on inputs and out-
puts in Fig.5. SystemPerfEst takes six inputs: (a) functional
structure of a system, (b) channel record, (c)(d) profiles of two

In contrast, communication time among processes, especially mappings (all software implementation and all hardware one)
/ Performance estimation of mapping \
Trace 1: Profile of all software implementation where P2 on hardware :cmdiolhers on software
CPUI (P1,P2,P3) o~Memory access ",
ke latency "y
CPUI (P1,P3) i
[P1 Pl Bl
Trace 2: Profile of all hardware implementation
HW1 (P1)
W2 (P;lMPl \/’l:lm&. fo;' -
{"RTOS-API_ " ’ "y
P2 P2 \L calls o Interruption 4
' i r-handling time, _/
HW3 (P3) E]ﬁ] HWI1 (P2) ‘\\-»"-\, e

Fig. 4 Concept of our performance estimation method.

© 2012 Information Processing Society of Japan

48

IPSJ Transactions on System LSI Design Methodology Vol.5 44-54 (Feb. 2012)

All software impl.

Functional description
CPU(1) =P1,P2,P3,...

of target system
ED) 19 processO(@
1 = @ ©
Shared C code
Vemory =
(a) Functional

structure

Architecture characterizer description

1 1 CPUI @
q- 1 1

Ko >) r‘
CPU2 | [SDRAM| | Onchip
All hardware impl. L‘_] - @

SRt e SystemBuilder SystemBuilder

L
FPGA-based prototype
(all software impl.)

1

Impl. for ISS simulation
(all software impl.)
I

FPGA-based prototype
(all hardware impl.)
1

FPGA-based prototype
(architecture characterize)

Ch @ © |
. o T « Channel access time
+ scheduling time
Channel record : ::Srrupl handling time
‘ Trace 1: all software impl. ‘ Trace 2: all hardware impl.
« FIFO channel accesses Xecution time Tists of Execution time Tists of g}rla;?‘;g}l‘?:;stﬁi
« # of memory accesses each process activations each process activations in c% dine RTOS
when SW when HW Incfuding

CPU(1) =PI
CPU(2) = P2,P3, ...

Y
I SystemPerfEst
\ (Fast performance estimation)

- Execution time of
i) systems
(f) Mapping specifications

to be estimated . ;
Estimation results

Process profile

Fig. 5 Inputs and outputs of SystemPerfEst.

obtained by executing FPGA-based prototypes, (e) architecture
characteristics, and (f) mapping specifications to be estimated.

Functional structure, profiles of a system and mapping specifi-
cations ((a), (c), (d) and (f)) are inputs and results of design flow
of SystemBuilder. Therefore they are just fed to SystemPerfEst
without any modifications.

Channel record (b) is a kind of event list which records invoca-
tion of channels by processes. Since process profiles do not con-
tain records of channel invocations, SystemPerfEst needs them
in order to know dependencies among processes and the number
of memory accesses, which are determined in execution time of
systems depending on its inputs. Channel record can be obtained
from ISSs executing all software implementation of the system.

Architecture characteristics (e) are obtained from a profile of
an FPGA-based prototype of a simple system description. The
detail of architecture characteristics is described in Section 4.8.

As to the five inputs ((a), (b), (c), (d) and (e)), designers need
to prepare only once at the first time of design space exploration
of a system on a target FPGA.

With the six inputs, SystemPerfEst estimates performance of a
design candidate described in mapping specifications (mappings).
As the result of performance estimation, designers obtain execu-
tion time of systems and profiles which are in the same format
as those of the process profile obtained from FPGA-based proto-
types designed by SystemBuilder. After estimation of a number
of mappings, designers can choose mappings which meet their
requirements and/or analyze bottlenecks with the estimated pro-
files.

4.4 Target Architecture

Figure 6 shows a target architecture which SystemPerfEst can
deal with. A single kind of processors is assumed. Under this

© 2012 Information Processing Society of Japan

TCM TCM TCM
1 2

I
CPU1

RTOS

:L‘
HW Off-chip on-chip
SDRAM SRAM
Fig. 6 Target architecture which our performance estimation method can be
applied.

assumption, system designers only need two traces (all software
implementation and all hardware one).

The number of processors and dedicated hardware modules
where processes are mapped can be changed and explored. Pro-
cessors are assumed to have their own TCMs (tightly coupled
memories) for instruction/data of software and have no cache.
This is because of our assumption described in Section 4.1. Con-
sideration of caches is one of our future works.

A single clock frequency among processors and hardware
modules is assumed.

Designers can also explore memory modules used in their sys-
tem such as on-chip SRAMs and off-chip SDRAMs which vary
latencies of them.

Currently, consideration of buses such as bus protocols and bus
topologies is not included. In our estimation method, we assume
architectures which use a single virtual bus where neither burst
transaction nor memory/bus conflict occurs. However, effects of
bus latencies on performance are included in memory latencies
obtained from architecture characterization results (described in
Section 4.8).

49

IPSJ Transactions on System LSI Design Methodology Vol.5 44-54 (Feb. 2012)

4.5 Performance Models

Figure 7 (a) shows performance models which SystemPerf-
Est defines. There are two groups of models, functional mod-
els and architectural models. Functional models represent pro-
cesses, channels and RTOSs which are executed on PEs. Archi-
tectural models represent PEs which are used by functional mod-
els as shared resources. This separation of models is similar to
Refs. [12], [15].

All functional models have their execution time list and two
states, active state and wait state. In active state, they consume
their execution time (that is, top of execution time list) when they
obtain the right to use PEs they mapped onto. When their execu-
tion time becomes zero, they delete the top of execution time list
and change into wait state. In wait state, they do nothing but wait
for events to change into active state.

A process model is a functional model which represent a pro-
cess in functional description of a system. Execution time list of
processes is an input trace of the process selected from profiles
according to their mapping. A completion of an active state ac-
tivate corresponding FIFO channel model. Since FIFO channels
which should be activated vary depending on inputs for a system,
process models also need FIFO channel call list which are ob-
tained from channel record. In a wait state, process models wait
completion of FIFO channel access.

A functional model of a FIFO channel (a FIFO channel model)
manages API call time and buffer occupation. FIFO channel
models consume their API call time when they are on an ac-
tive state. The completion of an active state means completion
of channel access and activates corresponding processes. Execu-
tion time of active state of FIFO channel models is determined
using architecture characteristics. In a wait state, FIFO channel
models wait invocation of them by process models. The number
of buffers can be set and explored by designers. In multiprocessor
systems, API call time for send and receive may occur on differ-
ent processors on inter-processor communications. We therefore
made FIFO channel apart to two parts, send part and receive part
(shown as “FIFO channel WRITE” and “FIFO channel READ”
in Fig. 7 (a)).

Functional models

FIFO channel
WRITE

FIFO channel
READ

process2

process1

RTOS RTOS
Scheduling overhead Interruption handling

@ mapping

Architectural models

(a) Performance models defined in our performance estimation method.

System time = 0 cycle
E =100cycles E =200cycles | Advance

System time = 100 cycles
E =10cycles E = 100cycles

100 cycles e 3
[process1] process2 [Wl%{fgne] [process2]
PE1 PE2 PE1 PE2

(b) Simple example of performance estimation with performance models.

Fig. 7 Performance models and estimation method using them.

© 2012 Information Processing Society of Japan

There are two types of RTOS models, “Scheduling over-
head” model and “Interruption handling” model. They manages
scheduling overhead of RTOSs and interruption handling time
used for FIFO channel between software and hardware, respec-
tively. Execution times of them are determined by architecture
characteristics. Both of them only time consumption on their PEs.
Scheduling overhead model is activated when a process model on
a PE changes. Interruption handling model is activated when a
process on a processor is activated by a process on hardware after
blocking.

PE models are architectural models which manage processes
which can consume their time. In other words, PEs schedules
functional models. PE models acts like OSs and have their
scheduling policies. Preemption is also supported.

For instance, a PE which represents a processor have a priority
queue which stores executable processes and channels, and se-
lects one along with scheduling policy. Currently, SystemPerfEst
supports fixed priority-based scheduling which have been mostly
used in RTOSs for embedded system. Exploration of scheduling
policies is one of our future works.

In this sense, functional models are similar to tasks on RTOSs
and therefore they have priorities. Priorities of process models
can be set and explored by designers. By default, all process mod-
els have same priorities. As for FIFO channel models and RTOS
models, they have highest priority in order to simulate scheduling
of RTOSs.

4.6 Performance Estimation Method

On performance estimation, SystemPerfEst manages system
execution time which starts from zero, and increments along with
process execution time obtained from profiles. Functional mod-
els consume their execution time only when they could obtain the
right to use their PEs. When an execution time of a functional
model become zero, its state changes to wait state and activates
related functional models. After the iteration of this, the estima-
tion ends with the system time at the moment as the resulting esti-
mated execution time, when all execution time lists of functional
models are consumed.

Figure 7 (b) illustrates an example. In the figure, there are two
PE models (“PE1” and “PE2”). First, the system time is zero.
At that time, process models “process1” and “process2” have the
right to use the PEs (shown in left side of the figure). Their ex-
ecution time are 100 cycles and 200 cycles, respectively. Then
SystemPerfEst increments system time 100 cycles (minimum of
execution times of functional models), and processes consume
100 cycles of their execution time. Then processl lose the right
to use PE1 and become wait state. At the same time, next func-
tional model “FIFO channel WRITE” obtains the right to use PE1
as a result of scheduling of PE1.

4.7 Reflection of Memory Access Latencies

In order to explore memory mapping, SystemPerfEst can re-
flect changes of memory access latency. In input profiles, traces
of processes include memory access time on a certain memory
mapping. Therefore SystemPerfEst changes execution time of
process obtained from traces when designers try to estimate per-

50

IPSJ Transactions on System LSI Design Methodology Vol.5 44-54 (Feb. 2012)

formance with different memory mapping.

Assuming that memory access latency to a memory module
is constant, we can obtain execution time of process with a new
memory mapping E,,,, from that with memory mapping in input
profile Ejypus bY Enew = Einpur + (Lnew = Linput) X N Lyeyy and Ly
represent latency of a new memory module and memory mod-
ule used on input profile, respectively. N indicates the number of
accesses to the memory region mapped on the memory module.

4.8 Architecture Characterization

SystemPerfEst considers communication time among proces-
sors and memory latencies. Such communication time depends
on characteristics of a target FPGA and an RTOS executed on it.
In order to take such characteristics into account, our framework
provides a description of a simple system for architecture charac-
terization (hereafter, architecture characterizer description). The
description consists of some processes and channels and their
mapping. By only synthesizing and profiling the description on
a target FPGA using SystemBuilder, designers can obtain the
database of characteristics of the target FPGA easily (shown as
(e) in Fig.5).

A structure of functional description and their mapping is
shown in Fig.8. Mapping of processes and channels are fixed.
Channels in the system are implemented differently by System-
Builder with the mapping. For instance, a channel between pro-
cesses “cpul _writer” and “cpul _reader” is implemented as an
RTOS API for inner-processor communication, while a chan-
nel between processes “cpul_writer” and “hw_reader” is imple-
mented as communication between software and hardware.

These processes also access memories in a target FPGA, and
collect latencies of them. The collected memory latencies include
latencies of buses among PEs and memories.

With the architecture characterizer system, designers can make
database which contains following time; inter-process commu-
nication time (inner-processor, inter-processor and processor to
HW), memory access latencies (an off-chip SDRAM, an on-chip
SRAM) and RTOS time (scheduling overhead, interruption han-
dling).

One of good example of advantage of architecture char-
acterization is estimation of systems with different RTOSs
from systems as input. For example, SystemBuilder generates
TOPPERS/JSP kernel [2], which is one of the most popular RTOS
in Japan, for single processor systems. On the other hand, as
for multiprocessor architecture, SystemBuilder generates TOP-
PERS/FDMP kernel [2], which is a derivative of TOPPERS/JSP
kernel for multiprocessor systems.

Since implementation details of communication APIs pro-

Processor 1 Hardware

cpul_reader [«
é %
v Processor 2

hw_reader

gl

Fig. 8 Functional structure and mapping of the architecture characterizer
description.

cpu2_reader

© 2012 Information Processing Society of Japan

vided by the two RTOSs are different, communication time con-
sumed by the APIs also differ. With architecture characterization,
SystemPerfEst accurately estimate communication time for both
systems on single processor architecture and multiprocessor ar-
chitecture.

4.9 Discussions
4.9.1 Inputs for Systems in Design Space Exploration

SystemPerfEst can only estimate performance of system whose
input is same as the trace is recorded. This limitation can be taken
as one of disadvantage of the method. For example, worst-case
performance cannot be estimated without worst-case input. How-
ever, we believe that this limitation is not crucial problem since
worst-case input may be assumed and prepared in design require-
ments in the embedded system design.
4.9.2 Factors Not Considered

Currently, SystemPerfEst does not consider caches and arbi-
tration delays on memory/bus accesses (memory/bus conflicts).
The lack of consideration of them may cause huge estimation er-
rors for systems with small caches and/or simultaneous access to
memory modules. Consideration of these factors is of the most
important work currently.

One solution for considering memory/bus conflicts for shared
memory access may be the use of the method proposed by
Kawahara et al. [9].

5. A Case Study on JPEG Decoder System De-
sign

In order to demonstrate the effectiveness of our performance
estimation framework, we show a case study of JPEG decoder
system design.

The case study was performed on the following environment.
The systems were designed using SystemBuilder on a PC whose
OS is Windows XP Professional with an Intel Core 2 Quad
2.66 GHz processor and 2 GB RAM. The target board has an
Altera Stratix II FPGA with Nios II soft-core processors at
50 MHz of clock frequency. eXCite 3.2¢ [5] was used for behav-
ioral synthesis. Logic synthesis and P&R were done by Quartus
8.1. Performance estimation was performed on a PC whose OS
is Linux with an Intel Xeon 2.93 GHz processor with 8 logical
processor cores. SystemPerfEst is implemented in Python pro-
gramming language and executed using psyco [1] which is a JIT
compiler for Python.

5.1 JPEG Decoder Design Space Exploration

First, we designed a JPEG decoder system (Fig.9). In Fig. 9,
rectangles represent processes and processes with thick border
can be mapped onto both processors and dedicated hardware. Ar-
rows among processes represent FIFOs, which consist of FIFO
channels and memory channels (as described in Section 3.2). For
example, an arrow between “IQ” and “IDCT_pre” represent a
FIFO which transfers 8 x 8 pixels of data with a buffer, Each FIFO
shown in the JPEG decoder has three buffers. Process “top” and
“main” can be implemented onto software only. Processes in the
JPEG decoder can run in parallel in a pipelined manner. We eval-
uated performance of the JPEG decoder with an input image data

51

IPSJ Transactions on System LSI Design Methodology Vol.5

IDCT IDCT .
_pre _po St}[yuergb}[dlsplay]

Fig. 9 Functional structure of the JPEG decoder system.

=l = =[] =] = =[] o] o =] —| —[=[] S

mapping Huffman
2core-pipe-1 1
2core-pipe-2 1
2core-pipe-3 1
2core-pipe-4 1
2core-pipe-5 1
2core-zigzag 1
1

1

1

1

1

1

IDCT_pre IDCT_post yuv2rgb display
2 2 2

3core-pipe-1
3core-pipe-2
3core-pipe-3
3core-pipe-4
3core-pipe-5
3core-pipe-6
3core-zigzag 1
Icore-hw-1
Icore-hw-2
Icore-hw-3
Icore-hw-4
2core-hw-1
2core-hw-2
2core-hw-3
2core-hw-4
2core-hw-5

[35Y KOV [EIVY[EIVY OV EIRYIRIY Y CY [NCY Y Y

=] | o] 1o o] o] 1of 19| —| = —| —| o

o=
=
l_unuunuu_._unn

j==}
=
==
=
==
=

[SIEAENSITNIINY —
[SIEINIENIENIENY —

[N ENY NN

Fig. 10 Explored mapping of the JPEG decoder system.

in QVGA size (320 x 240 pixels).

Then we synthesized two FPGA-based prototypes of JPEG de-
coder (all software implementation and all hardware one) with
non-preemptive scheduling policy, and obtained profiles of them
using SystemBuilder. Note that all memory channels used for
FIFO buffers are mapped onto an on-chip SRAM and fixed in this
exploration. Since the on-chip SRAM is fast, effects of memory
conflicts are supposed to be negligibly small. Also, we synthe-
sized an architecture characterizer description twice in order to
obtain communication time on the FPGA with RTOSs for single
processor systems (TOPPERS/JSP kernel) and for multiprocessor
systems (TOPPERS/FDMP kernel).

After that, we explored 22 mappings of the JPEG decoder
(shown in Fig.10) on target architecture shown in Fig. 6 using
both our framework and FPGA-based evaluation method with
SystemBuilder, and compared them. In the figure, “1”, “27,
“3” indicate processor number, and “HW” means hardware. For
example, mapping “2core-hw-1"" is a mapping where processes
“Huffman” and “display” are mapped onto processor 1, processes
“1Q”, “IDCT _pre”, “IDCT_post” are mapped onto processor 2
and process “yuv2rgb” is mapped onto hardware.

These mappings are selected in order to show that SystemPerf-
Est can estimate performance of mappings with various charac-
teristics accurately. Since processes of the JPEG decoder system
are executed in a parallel and a pipelined manner, typical cases of
their mapping are separating them into former part (“Huffman”
side part) and latter part (“display” side part), for utilizing their
parallelism. Mappings of “2core-pipe-*” and “3core-pipe-* are
such typical cases. However, these mappings have only a sin-
gle or two communications between processors (inter-processor
communications) at separation point. In order to show the ac-
curacy of estimation for mappings where many inter-processor
communications occur, we also show the estimation results of
mappings “2core-zigzag” and ‘“3core-zigzag.” Communications

© 2012 Information Processing Society of Japan

44-54 (Feb. 2012)

1.40

mm FPGA (sec.)
mm Est. (sec.)
error (%)

O R

pe- [
pe-2 N

3core-pipe-3

pe-1

gzag

Execution time (sec.)
=
=
=
-pipe-2 I G

p
e-pl
epl
e-pl
epl

pipe-+ | ——

pipe-5

pe-: ———
pipe- ——
chv-2 ——

e —

core-pi

Z 3cor

5 .
5 3core-pipe-
=

)

7]

3

c-hv-+ [—
core-hv-1|
chv- —
-5 —
S
Error (%)

e-zi

core-h-+ | E—

2col
2con
2con
2con
2cor
3core-pi
3core-pi
1
1
1
1
2col
2cor
2cor
2co1
2cor

Fig. 11 Performance estimation results of the JPEG decoder system using
on-chip SRAM for FIFO buffers.

between any two processes in these mappings are inter-processor
communications. These two mappings are also typical cases
which cannot utilize the parallelism of pipeline.

On mappings where some processes are mapped onto hard-
ware, interrupt handling time has a large effect on their perfor-
mance. Therefore, our performance estimation method should
also consider the time correctly. In the mapping of “lcore-hw-
1,” processes are mapped onto a processor and hardware alter-
nately and therefore most of their communications are software-
hardware communications which use interruption. In contrast,
the mapping of “lcore-hw-2" have less software-hardware com-
munications than “Icore-hw-1.” Moreover, the mapping “lcore-
hw-3" have no hardware-hardware communication but the map-
ping “lcore-hw-4" have two hardware communications. The
mapping “2core-hw-* shows the accuracy with two processors
and hardware modules.

In summary, the 22 mappings represent typical cases sufficient
for demonstrating the accuracy of SystemPerfEst.

5.2 Accuracy

Figure 11 shows a comparison between measured execution
times of FPGA-based prototypes synthesized by SystemBuilder
and estimated execution times. In the figure, blue bars in left
side of two bars show execution time of mappings obtained from
FPGA-based prototypes, while orange bars in right side show es-
timated execution time by SystemPerfEst.

Mean absolute error (MAE) of estimation results was 1.92%,
distributing from —4.77% to 1.74%, which is thought to be suffi-
cient for comparative evaluation of mappings.

One of the reason of these good estimation results is architec-
ture characteristics which is obtained for both RTOSs for single
processor systems (single processor RTOS characteristics) and
multiprocessor systems (multiprocessor RTOS characteristics),
as discussed in Section 4.8. As an example, we show a compari-
son of the performance estimation results of 2 processor systems
(“2core-pipe-*”) with single processor RTOS characteristics and
multiprocessor RTOS characteristics. With multiprocessor char-
acteristics, MAE was 0.87%. In contrast, MAE was 3.86% with
single processor RTOS characteristics.

There are some amount of errors in estimation results of
SystemPerfEst as described above. Nevertheless, it is most im-
portant for designers to perform comparative evaluation of map-
pings in design space exploration. The results in Fig. 11 indicate

52

IPSJ Transactions on System LSI Design Methodology Vol.5 44-54 (Feb. 2012)

that two mappings where one is superior to another over about
10% on FPGA-based prototypes keep their inferior-to-superior
relationships on estimation results. In other words, SystemPerf-
Est cannot differentiate mappings whose difference of perfor-
mances is in about 10%. However, it may not be crucial problem
in a system-level design space exploration since the difference of
such mappings with small differences in performance should be
discussed with not only performance of them but also their costs
such as area and power consumptions.

5.3 Exploration Time

With our integrated framework, we did not changed any of
functional description, two profiles of FPGA-based prototypes
and could use SystemPerfEst seamlessly.

SystemPerfEst took 0.9 hours for obtaining two input profiles
and architecture characteristics using SystemBuilder, and took
about 20 seconds for the 22 mappings, 0.9 seconds per a map-
ping in average. In contrast, FPGA-based evaluation method took
about 6.5 hours in total for the 22 mappings, 0.3 hours per a map-
ping in average. In detail, synthesis by SystemBuilder and a be-
havioral synthesis tool took about 2.5 hours, logic synthesis and
P&R took about 3 hours for nine mappings with dedicated hard-
ware. Software compilation, execution of systems and recording
results for 22 mappings took about 1 hour.

With measurement above, estimation time of SystemPerfEst
can be formalized as 0.9 + 0.00025 X N hours for N mappings.
Evaluation with FPGA-based evaluation method can be formal-
ized as 0.7 X N hours for mappings with some dedicated hardware
and 0.05x N hours for mappings with no dedicated hardware. For
the large N, therefore, SystemPerfEst can perform exploration
2,800 times faster than FPGA-based evaluation method for map-
pings with some dedicated hardware, and 200 times faster even
for mappings with no dedicated hardware.

5.4 Effects of Memory Conflicts

In order to examine effects of memory conflicts, we changed
mapping of FIFO buffers from on-chip SRAM to oft-chip
SDRAM, and compared estimation results and evaluation re-
sults on FPGA-based prototypes of mappings “2core-pipe-*" and
“3core-pipe-*" (shown in Fig. 12). In the results, we also showed

180 0 mm FPGA (sec.)

1.60 |5 . Est. (sec.)
error (%)
1.40 10

120
5

1.00

0.80
0.60 h

0.40

Execution time (sec.)
I
Error (%)

0.20

0.00

Icore

3core-pipe-1 r

3core-pipe-2 -

3core-pipe-3

3core-pipe-4 -

3core-pipe-5 -
g s

2core-pipe-2
2core-pipe-3
2core-pipe-4
2core-pipe-5
3core-pipe-6

2core-pipe-1

Mappings

Fig. 12 Performance estimation results of the JPEG decoder system using
off-chip SDRAM for FIFO buffers.

© 2012 Information Processing Society of Japan

the comparison of a mapping which all processes are mapped
onto a single processor (denoted as “lcore” in Fig.12). The
“lcore” mapping have no memory conflict in the execution.

First, from results of the “lcore” mapping (—0.42% error), we
could show that SystemPerfEst can estimate performance of map-
pings which differ not only processes but also memories accu-
rately.

Then we focused on the results of mappings with two and
three processors, errors got worse than those in Fig.11. MAE
increased to 8.47%. Moreover, distribution of errors got wide,
from —0.42% to —15.52%. Since processors on target architec-
ture use no cache, the cause of these negative errors is supposed to
be memory conflicts on an off-chip SDRAM. If more processors
or dedicated hardware are used for more parallelism, estimation
errors may get worse than the results in Fig. 12. Therefore tech-
niques which can estimate effects of memory conflicts in short
time are necessary, and we are currently working on this topic.

6. Conclusions

In system-level design, system designers describe functional-
ities as processes and channels, and iterates mapping of pro-
cesses onto processing elements and evaluation. We proposed
a fast performance estimation framework for system-level de-
sign exploration, combining our system-level design tool, named
SystemBuilder, and a newly developed trace-based simulation
tool, named SystemPerfEst.

Since SystemPerfEst works in close cooperation with System-
Builder, designers easily estimate performance of design candi-
dates exhaustively after describing functionalities of a system.
Moreover, with the architecture characterizer description pro-
vided by our estimation framework, designers easily reflect char-
acteristics of target FPGAs, memory modules and RTOSs.

We demonstrated the effectiveness of our framework through
a case study on design space exploration of a JPEG decoder sys-
tem. In design space exploration of the JPEG decoder system,
performance estimation results of SystemPerfEst achieved 1.92%
in mean average error.

Currently we are working for considering the memory con-
flicts. Also, consideration of caches on processors should be
added. Moreover, we are developing an efficient design space ex-
ploration strategy and an exploration automation tool which uses
SystemPerfEst according to the strategy.

Acknowledgments This work is in part supported by
STARC (Semiconductor Technology Academic Research Cen-
ter).

Reference

[1] Psyco, available from (http://psyco.sourceforge.net/).

[2] TOPPERS Project, available from ¢http://www.toppers.jp/).

[3] Cai, L., Gerstlauer, A. and Gajski, D.: Retargetable profiling for rapid,
early system-level design space exploration, DAC (2004).

[4] Domer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi, S.
and Gajski, D.: System-on-chip environment: A SpecC-based frame-
work for heterogeneous MPSoC design, EURASIP Journal on Embed-
ded Systems, Vol.2008, pp.1-13 (2008).

[S] Y Explorations, Inc.: eXCite, available from (¢http://www.yxi.com/
index.html).

[6] Gerstlauer, A., Haubelt, C., Pimentel, A., Stefanov, T., Gajski, D. and
Teich, J.: Electronic System-Level Synthesis Methodologies, /EEE

53

IPSJ Transactions on System LSI Design Methodology Vol.5 44-54 (Feb. 2012)

Trans. Computer-Aided Design of Integrated Circuits and Systems,
Vol.28, No.10, pp.1517-1530 (2009).

[7] Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S. and Joo, Y.-P.: PeaCE:
A hardware-software codesign environment for multimedia embed-
ded systems, ACM Trans. Design Automation of Electronic Systems,
Vol.12, No.3, pp.1-25 (2007).

[8] Honda, S., Tomiyama, H. and Takada, H.: RTOS and Codesign Toolkit
for Multiprocessor Systems-on-Chip, ASP-DAC (2007).

9] Kawahara, R., Nakamura, K., Ono, K., Nakada, T. and Sakamoto,
Y.: Coarse-grained simulation method for performance evaluation of
a shared memory system, ASP-DAC (2011).

[10] Keutzer, K., Malik, S., Newton, A.R., Rabaey, JM. and
Sangiovanni-Vincentelli, A.: System Level Design: Orthogonaliza-
tion of Concerns and Platform-Based Design, IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, Vol.19, No.12,
pp.1523-1543 (2000).

[11] Mahadevan, S., Virk, K. and Madsen, J.: ARTS: A SystemC-based
framework for multiprocessor Systems-on-Chip modelling, Design
Automation for Embedded Systems, Vol.11, No.4, pp.285-311 (2007).

[12] Pimentel, A.D., Thompson, M., Polstra, S. and Erbas, C.: Calibration
of abstract performance models for system-level design space explo-
ration, Journal of Signal Processing Systems, Vol.50, No.2, pp.99-114
(2008).

[13] Shibata, S., Ando, Y., Honda, S., Tomiyama, H. and Takada, H.: Effi-
cient Design Space Exploration at System Level with Automatic Pro-
filer Instrumentation, IPSJ Trans. System LSI Design Methodology,
Vol.3, pp.179-193 (2010).

[14] Thompson, M., Nikolov, H., Stefanov, T., Pimentel, A.D., Erbas, C.,
Polstra, S. and Deprettere, E.F.: A framework for rapid system-level
exploration, synthesis, and programming of multimedia MP-SoCs,
CODES+ISSS (2007).

[15] Ueda, K., Sakanushi, K., Takeuchi, Y. and Imai, M.: Architecture-
level performance estimation method based on system-level profiling,
IEE Proceedings — Computers & Digital Techniques, Vol.152, No.1,
pp-12-19 (2005).

[16] Wild, T., Herkersdorf, A. and Lee, G.-Y.: TAPES — Trace-based archi-
tecture performance evaluation with SystemC, Design Automation for
Embedded Systems, Vol.10, No.2-3, pp.157-179 (2005).

Seiya Shibata received his B.E. degree in
Information Engineering and M.S. degree
in Information Science from Nagoya Uni-
versity in 2007, and 2009, respectively.
Currently he is a Ph.D. candidate at the
Graduate School of Information Science,
Nagoya University. His research inter-

ests include system-level design automa-
tion and embedded systems.

Yuki Ando received his B.E. degree in
Information Engineering and M.S. degree
in Information Science from Nagoya Uni-
versity in 2009, and 2011, respectively.
~ Currently he is a Ph.D. candidate at the
_\,,,..z' Graduate School of Information Science,
Nagoya University. His research inter-

M\

ests include system-level design automa-
tion and embedded systems.

© 2012 Information Processing Society of Japan

Shinya Honda received his Ph.D. degree
in the Department of Electronic and Infor-
mation Engineering, Toyohashi Univer-
sity of Technology in 2005. From 2004 to
2006, he was a researcher at the Nagoya
University Extension Course for Embed-
ded Software Specialists. In 2006, he
joined the Center for Embedded Comput-
ing Systems, Nagoya University, as an assistant professor, where

he is now an associate professor. His research interests include
system-level design automation and real-time operating systems.
He received the best paper award from IPSJ in 2003. He is a
member of IEICE, and JSSST.

Hiroyuki Tomiyama received his Ph.D.
degree in Computer Science from Kyushu
University in 1999. From 1999 to 2001,
he was a visiting postdoctoral researcher
with the Center of Embedded Computer
Systems, University of California, Irvine.
From 2001 to 2003, he was a researcher

at the Institute of Systems & Information
Technologies/KYUSHU. In 2003, he joined the Graduate School
of Information Science, Nagoya University, as an assistant pro-
fessor, and became an associate professor in 2004. In 2010, he
joined the College of Science and Engineering, Ritsumeikan Uni-
versity as a full professor. His research interests include design
automation, architectures and compilers for embedded systems
and systems-on-chip. He currently serves as an editor-in-chief
for IPSJ Transactions on SLDM. He has also served on the or-
ganizing and program committees of several premier conferences
including ICCAD, ASP-DAC, DATE, CODES+ISSS, and so on.
He is a member of ACM, IEEE and IEICE.

Hiroaki Takada is a professor at the De-
partment of Information Engineering, the
Graduate School of Information Science,
Nagoya University. He is also the exec-
utive director of the Center for Embedded
Computing Systems (NCES). He received

his Ph.D. degree in Information Science
from the University of Tokyo in 1996. He
was a research associate at the University of Tokyo from 1989
to 1997, and was a lecturer and then an associate professor at
Toyohashi University of Technology from 1997 to 2003. His
research interests include real-time operating systems, real-time
scheduling theory, and embedded system design. He is a member
of ACM, IEEE, IEICE, and JSSST.

(Recommended by Associate Editor: Akihisa Yamada)

54

