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A precise measurement tool for power dissipation

of CUDA kernels

Luo Cheng,∗1,∗2 Kamil Rocki∗1,∗2 and Reiji Suda∗1,∗2

Power dissipation has become an important factor for evaluating application
performance. To help programmers have a further understand on the power
dissipation of their applications, we are investigating tools to achieve precise and
easily using measurement tools. In this paper we discuss power measurements of
GPU, propose an API tool which include two parts: host part and monitor part.
The host part is used for measurement initial, communication with monitor
machine and data process. The monitor part is used for real-time voltages
and current data collection. By using this tool, programmers can get accurate
power dissipation of their applications.

1. Introduction

Power dissipation has become one of the most important factors in the develop-

ment of high performance computers. Along with the growing demand for high

performance computers from scientific computing, power dissipation of high per-

formance computers should be reduced effectually while ensuring performance.

This problem demands many efforts of power reduction in many possible fators

such as cooling hardware, disk, processor and software.

Graphics Processing Unit(GPU) now is considered as high performance com-

puting accelerators and is wildly used in high performance computers. With

the advantage for massively parallel processing and vector computation, GPU

can achieve high performance comparing to CPU. Although GPUs can consujme

more power than CPUs, however the performance ratio is much higher than the

power ratio when comparing GPU to CPU. Therefore, GPU can be more en-

ergy efficient than CPU from the performance/power aspect1). Despite of GPUs’
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energy efficient, GPUs still consume significant power which have reached 300W

and will still increase in the future. Toward green computing on high performance

computers, more power-efficient software methodologies should be applied.

Our research aims to develop a precise measurement tool for power disspation

of CUDA kernels running on GPUs. Our measurement tool is basing on a precise

meaurement method for power disspation of CUDA kernels provided by Suda2)

which not only measure the power supply from PSU(Power Supply Unit) but

also the power supply from PCI-Express bus. Our approach use NI probers3) to

measure the currents and voltages of GPU power supplies during CUDA kernels

execution. In our tool, a labview project is set in monitor machine to control

the measurement process and collect the measurement data. After the execution

of CUDA kernels, measurement data will be processed and transfered to host

machine where the GPU is equipped. The host machine receive the data and

store them into the local database. Finally, a set of API is applied for the

power measurement control and database access. With this measurement tool,

CUDA programmers can easily know the precise power dissipation of their CUDA

kernels.

2. Background

In this section, we will briefly introduce some technical details of CUDA and

GPU hardware which related to our work. More details can be found in the

CUDA programming guide4).

2.1 GPU architecture and CUDA programming model

The GPU architecture contains a scalable number of streaming multiple pro-

cessors(SM). Each SM contains multiple streaming processors(SPs). There 8 SPs

in each SM in GTX 2605) and 32 SPs in each SM in Fermi chips6).

CUDA(Compute Unified Device Architectrue) is a C language liked parallel

computing architecture for programming on NVIDIA GPU. One kernel functions

are considered as the computations on one GPU which will be executed by a

number of threads. The numbers of blocks and threads will be specified when

the kernel is launched by the host. A block means a set of a certain number of

threads, and all blocks in the kernel launch have the same numbers of threads. A

warp is formed by 32 consecutive threads in a block. Threads within one warp are
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Fig. 1 GPU power measurement

executed in SIMD(Single Instruction Multiple Data) manner, and warps within

one block are executed concurrently in SPMD(Single Process Multiple Data)

manner.

2.2 Power Measurements of GPU

In this paper, we assume GPU to be provided on a video card which includes

video memory, fan and other circuit components. Therefore, the power measure-

ment of a GPU should include the power dissipation of all circut components on

the GPU.

A GPU card is connected to the main board of the host processor via PCI-

Express. Parts of power for a GPU card is supplied through the PCI-Express

bus, and other power is supplied directly from the PSU as shown in Fig. 1. Let

us assume the power from PCI-Express bus as PCI-E power and the power from

PSU as PSU power. The PCI-E power has two voltages: 12 V and 3.3V while

the voltage of PSU power is 12V.

To measure the current of the line between PSU and GPU card, a clamp probe

is used to measure the line. To measure the voltage of the line, parts of the coating

of two of the PSU lines is removed(one is 12V and one is GND), a voltage probe

is connect to the two lines.

To measure the power supply from the PCI-Express connector, the currents

and voltages should be measured. However, it is impossible to remove parts of
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Fig. 2 Architecture of measurement tool

the coating of the PCI-Express lines. Therefore, a riser card is used to connect

the GPU card and the PCI-Express bus. The 12V and 3.3V power supply lines

of the riser card are separated from others. And parts of the coating of the two

line and one GND line of the riser card are removed. Then, two clamp probes are

used to measure the currents of the two lines and two voltage probes are connect

to the three lines to measure the voltages of the 12V power line and 3.3V power

line.

3. Architecture

In our precise measurement tool for power dissipation, two machines are used.

One machine is called host machine and another is called monitor machine. The

host machine is installed with Linux OS and equipped with one GPU to run

CUDA kernels. The monitor machine is installed with windows OS as labview7)

is needed for data collection. The host machine is responsible for CUDA kernel

launching, finial power dissipation data storage and monitor machine control.

The monitor machine is responsible for the GPU currents and voltages measure-

ment, power dissipation data collection, data process and data transmission with
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Fig. 3 labview project for data acquisition

host machine. The architecture of our measurement tool is shown in Fig. 2.

In monitor machine, there are three components: labview connector, data pro-

cessor and communication manager. The labview connector is used to control

the acquisition and collection of currents and voltages of GPU card. The data

processor is used to remove the useless data(As the data acquisition starts be-

fore the CUDA kernel lanuch, there exists some useless data which should be

removed). The communication manager is used to receive control signals from

host machine and transfer power dissipation data to host machine.

In host machine, there are also three components: communication manager,

database manager and user APIs. The communication manager is used to send

control signal to monitor machine and receive power dissipation data from mon-

itor machine. As one database is set to store all the power dissipation data, the

database manager is used to manage the data storage and apply database access

inferface for users. The user APIs is used to apply interface for users to control

measurement task.

4. Design and Implementation

4.1 Data acquisition and process

To measure the currents and voltages of GPU, we use three FLUKE i30s current

probes9) and three YOKOGAWA 700925 voltage probes10) to connect to the

host machine monitor machine
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Fig. 4 The communication process between host machine and monitor machine

power lines. All the probes are connected to a NI USB-6259 BNC device11)

which is a USB high-performance data acquisiton module optimized for superior

accuracy at fast sampling rates. The device connects with the monitor machine by

USB and will send all the acquisited data to the monitor machine. To recieve and

process the data from NI device, a labview project is set up as illustrated in Fig. 3.

The labview project includes a DAQ Assistant and a write to measurement file

module. The former module receives the data from NI device and the latter

module write the data into local files. This process is continuous and controlled

by a switch. We encapsulate the labview project into a DLL(Dynamic Link

Library) which can be called from C or C++ program. By this way, we can

control the start and stop of the data acquisition from program.

Here we face one problem is that not all the received data is useful. Because

the data acquisition time must be longer than the CUDA kernel execution, so

there must be some unwanted data written into the local files. These unused data
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//open database connection

int dbOpen(char* dbName);

//read records by task ID

int dbReadByID(int ID);

//read records by task name

int dbReadByTaskName(char* name);

//qury all the user name in database

int dbGetUser();

//qury all tasks information of user

int dbGetTaskByUser(char* user);

//delete records by task ID

int dbDeleteByID(int ID);

//delete records by task name

int dbDeleteByTaskName(char* taskName);

//delete records by user name

int dbDeleteByUser(char* user);

//close database connection

int dbClose();

Fig. 5 The database access interface

should be removed. To identify the CUDA kenrel, we design a marker with two

kernels with different intensities of memory accesses. As a kernel consumes higher

power when accesses memory intensively12), the marker will present a regular up-

down power dissipation line. Therefore, we can add this marker before and after

the execution of measurement kenerls. After acquisiting all the data, we just

need to keep the data between the two markers.

4.2 Communciation between host machine and monitor machine

The communication between host machine and monitor machine can be clas-

sified into two types: control command and data transmission. The control

command is used to control monitor start and stop while the data transmis-

sion communication is used for the data transmission between two machine as

illustrated in Fig. 4.

When users want to measure the power disspiation of their applications, first

of all, a start monitor request message will be sent to monitor machine from host

machine. Then, the monitor machine will start the monitor process and return

a confirm start request message to host machine. With the received confirm

start request message, the host machine will launch the CUDA kernel. When
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Fig. 6 Measurement of Tiny Kernel

the CUDA kernel execution is over, the host machine will send a stop mointor

request message to monintor to stop the data acquisition and return one confirm

stop request message. As the monitor process begins before the CUDA kernel

execution process and is over after the CUDA kernel execution process, therefore,

parts of the collected data is unuseful and should be removed. Thus, the monitor

machine will take for a while to analyse and process with the data. After this, the

monitor machine will send a send data request to host machine to set up a data

transmission connection. When the host machine receives the message, it will

receive the data transmission connection and return a confirm send request to

monitor machine. Then, the mointor machine begins to transfer the data to the

host machine. After sending all the data, the monitor machine will send a finish

notification message to the host machine. With the message, the host machine

will close the data transmission connection and send back a confirm notification

message to monitor machine. After receiving the message, the monitor will close

the connection and the measurement task is over.
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4.3 Database manager

We use database in host machine to store all the power dissipation data from

monitor machine. As in our case, the total data size is not very big and we

hope the data can be easily shared by users on different machines. Therefore we

choose a light-weight open source database SQLite8) to store the data. SQLite is

a software library that implememts a self-contained, serverless, zero-configuration

SQL database engine. It create one file for each database and this database file

can be moved and used by any machine with SQLite installed. In our case, we set

up one database called power.db with one table named data. The table includes

twelve attributes as shown in Table 1. The primary key is formed by taskID

and seqNum.

To apply an easy access to the database, we set up a set of APIs as shown

in Fig. 5. We provide interfaces to open and close database connection. For

read operation, we also provide interfaces to read records by specified attribute

such as taskID, taskName. As each user can have many tasks, we provide inter-

faces to get the relationship information between users and tasks. The function

dbGetuser() will print out all the user names in the database and the function

dbGetTaskByUser will print out all the task ID of the specified user name.

4.4 Tiny CUDA kernel solution

In our measurement system, there are a lot of deviation factors such as com-

municaton delay, marker identification to affect the accuracy. Especially for the

CUDA kernels with very short execution time, it is very difficult to precisely mea-

Table 1 The data table of power dissipation

attribute description data type
taskID task’ID integer
taskName the name of task text
user the user name of task text
power the power dissipation real
current1 the current of PSU power line real
current2 the current of 3.3V power line in PCI-Express bus real
current3 the current of 12V power line in PCI-Express bus real
voltage1 the voltage of PSU power line real
voltage2 the voltage of 3.3V power line in PCI-Express bus real
voltage3 the voltage of 12V power line in PCI-Express bus real
taskTime the task lanuching time text
seqNum the ID of record within one task integer

sure its power dissipation without any auxiliary method. There are two methods

to measure the power dissipation of such tiny CUDA kenrel as shown in Fig. 6.

The first method is repeat execution as shown in Fig. 6.(a). In this method,

the tiny kernel will be executed repeatedly by n times and we can get the total

power dissipation P . Then we can calculate the power dissipation of one single

tiny kernel by the following equation:

Ptiny = P/n. (1)

Ptiny: the power dissipation of the tiny kernel;

n: the number of repeated execution of the tiny kernel;

P : the power dissipation of n tiny kernels.

Although this method is simple, the accuracy of result can be very low. Be-

cause the first execution situation of the tiny kernel can be different of the latter

execution situation which will cause greate different in the result. For example,

when running the tiny kernel in the first time, there is no cache for the data.

However, as the tiny kernel is very small, all the required data may be cached

in the following repeated executions. With data cached, the execution time will

reduced a lot and the power consumption of cache access is less than global mem-

ory access. In this case, the measured result will be much smaller than the actual

result with this method. Therefore, we give up this method.

The second method is contrast execution as shown in Fig. 6.(b) which is opti-

mized basing on the first method. To test the tiny kernel more accurately, we

combine the tiny kernel with the benchmark that we designed to execute. First

of all, we run the benchmark and measure the power dissipation P1. Then, we

insert the tiny kenrel into the benchmark for m times and keep enough distance

between tiny kernels to avoid cache as much as possible. Running the modified

benchmark, we can have the power dissipation P2. Then, we can use the following

equation to calcuate the power dissipation of the tiny kernel:

Ptiny = (P2 − P1)/m. (2)

P1: the power dissipation of the benchmark without tiny kernel embedded;

P2: the power dissipation of the benchmark with tiny kernels embedded;

m: the number of tiny kenrels embedded in the benchmark.

Comparing to the first method, the contrast execution can reduce cache rate

a lot. Ideally, we hope there is no cache before the start of each tiny kernel,
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//marker kernel;

int P_marker();

//send start monitor request;

int P_startMonitor();

//send stop monitor request;

int P_stopMonitor();

//wait for data

int P_waitData();

//receive data 

int P_receveData(int sock_fd, struct record* rec);

//store data into database

int P_storeData(struct record* rec);

// half-half benchmark

//int P_half_test(int time);

//computing intensive benchmark

int P_compute_test(int time);

//memory access intensive benchmark

int P_memory_test(int time);

//return error imformation

int P_getError();

Fig. 7 User API

the first execution of the tiny kernel can be repeated. Therefore, the design of

the benchmark becomes a key part. Here, we design one benchmark with half

computing and half memory access to make the power dissipation average. And

the memory access within the benchmark are decentralized which can greately

reduce cache hit rate. Besides, we also provide one computing intensive bench-

mark and one memory access intensive benchmark to let user desgin their own

benchmark.

4.5 User APIs

Besides the database access interface, we also provide a set of APIs for users as

shown in Fig. 7. We provide P startMonitor() and P stopMonitor() functions to

control the monitor process in monitor machine. Function P waitDate() is called

to wait for the data send request from the monitor machine. Once receiving the

request, this function will set up a socket connection between the host machine

and monitor machine for data transmission and return the socket handle. With

Fig. 8 Power dissipation of Matrix benchmark with 16 warps

the socket handle, function P receiveData() will receive the data. All the data

will be store into a struct array. If users want to keep these data, they can

call the function P storeData() to store them into database for future usage. To

idenfiy the result of measured kernel, users need to call function P maker() before

and after launch kernel. For tiny kernel solution, we provide three benchmarks:

P half test(), P compute test() and P memory test(). For all functions, we write

error messages into a shared buffer. Users can call P getError() to print out the

error information.

5. Experiments

To test the performance of our tool, we use matrix multiplication benchmark.

We set the size to be 256×256 and run the benchmark with 16 warps. The power

Table 2 The time overhead of each part

warp number 1 warp 4 warp 16 warp
data process(ms) 172 115 83
data transmission(ms) 102 67 41
data size(KB) 213 142 93
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Fig. 9 time overhead of each part

dissipation is shown in Fig. 8. As we have inserted one marker benchmark before

and after the measured kernel, we can easily find two markers in Fig. 8. Therefore,

the data between the two marker is the actual power dissipation of the measured

kenerl.

To test the overhead of our tool, we repeatedly run the matrix benchmark

with different warps. First of all, we measure the execution time of the CUDA

kernel in the host machine. To measure the execution time of the CUDA kernel,

we create two events. We start one event(start) before launch the kenerl and

start another event(stop) after the function cudaThreadSynchronization() which

is used to wait for result from GPU device. By calling the function cudaEventE-

lapasedTime(stop, start), we can get the execution time of the CUDA kernel.

Besides the execution time of CUDA kernel, there are mainly two time overhead

in the whole measurement process: the time overhead of data process and the

time overhead of data transmission. The data process is responsible to identify

the marker from the power dissipation result. We call the function clock() to

record the start time before the process. Then we call the function clock() after

the process to record the stop time. Then we can get the ime overhead of data

process by calculating the difference of the two time records. To test the time

overhead of data transmission, we call the function clock() to record the start

time before the monitor machine sends data to the host machine. Then the

monitor machine sends data to the host machine and waits for an confirmation

message from the host machine. After receive the comfirmation message, we call

the time function again to record the stop time. With these two time slot, we

can get the time overhead of data transmission.

As illustrated in Fig. 9, the time overhead of our tool is very small. The details

of the time overhead are shown in Table 2. We can find that the time overhead

of the data process and data transmission decrease along with the increasement

of warp number. This is because the size of result data decreases when running

with more warps. However, the time overhead of the data process will not always

decrease with the increasement of warps. As there is a minimum monitor time

for the NI device, so the size of result data from the hardware will can not be

smaller than a fixed size.

6. Summary and Future Works

In this paper we have proposed a precise measurement tool for power dissipa-

tion of CUDA kernel. Our tool provide an easily API layer to achieve precisely

measurement on the power dissipation of their GPU application and good man-

agement on the obtained data. With these, users can have a better undertstand

in the power dissipation of their application which can help them improve the

applicaton.

Power measurement and optimization of CUDA kernels is parts of our research.

We are considering further level of power reduction by efficient global memory

mangement in GPU and efficient schedule mechanism in multiple GPUs. Es-

pecially, latest CUDA veresion provide peer-to-peer communication and unified

virtual addressing which enable more improvement in both performance and en-

ergy efficient. Therefore, we will analyze the performance of different application

on multiple GPUs and try to carry out optimization mechanism. Basing on

this, we will design a user-friendly CUDA programming APIs for multiple GPUs

programming.
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