
IPSJ SIG Technical Report

A Three-Step Performance Automatic Tuning Strategy

using Statistical Model for OpenCL Implementation

of Krylov Subspace Methods

Cong LI†1 and Reiji SUDA†1,†2

In this work, we propose a three-step performance automatic tuning strategy
that will help the developers to write applications with self-adaptive perfor-
mance. We are using OpenCL and Krylov Subspace Methods as our program-
ming language and test problems respectively. By applying machine learning
techniques, we build our statistical performance models of a specific runtime
environment through data collected from experiments executed automatically.
These models are used for searching computational performance related opti-
mal tuning parameters. Finally we further optimize choices of these parameters
using the iterative feature of Krylov Subspace Method. The choices of tuning
parameters and statistical modeling strategies are crucial to the performance of
our tuning strategy. In the paper, we evaluated the statistical models that we
build for autotuning. The results show that the accuracy of SVM classification
model can be as high as 100% and 94.32% for training dataset and test dataset
of SpMV and as high as 100% and 96.21% for training dataset and test dataset
of SAXPY.

1. Introduction

Solving linear systems is a job that locates at the central part of scientific

computations. For instance, fluid simulations and circuit simulations usually in-

volve solution of linear systems. Moreover, the matrices of linear systems usually

appear with sparse structures. For example, the linear systems obtained from

the discretization of continuous fields with Finite Difference Method or Finite

Element Method are sparse matrices.

There has been many data structures and algorithms that are specially cut for

solving sparse linear systems. But the efficiency of these data structures and

†1 Department of Computer Science, Graduate School of Information Science and Technology
at University of Tokyo

†2 CREST, JST

algorithms are heavily depending on the sparsity of matrices arising from sparse

linear systems.

Krylov Subspace Methods belong to the category of iterative methods that

are popularly applied to solve sparse linear systems. This category of numer-

ical methods employ many calculations manipulating vectors and matrices, for

instances CG (Conjugate Gradient) method, GMRES (Generalized Minimum

Residual) method and so on. As a result, the data structures for storing these

vectors and matrices on memory will significantly affect the computing perfor-

mance of Krylov Subspace Methods.

Besides the influence of the layout of matrices and vectors on memory, the

characteristics of computing environment, for instances hardware environment

and software environment and so forth, will also significantly affect the comput-

ing performance measured by Flops or Wall-time. Moreover, after the concept

of GPGPU(General Purpose GPU) being introduced into the field of HPC(High

Performance Computing), the computing environments have become more and

more complex and difficult to harness. OpenCL(Open Computing Language) is

an open, royalty-free standard for cross-platform programming of modern pro-

cessors, for instance CPU, GPGPU and even CELL processors. But one prob-

lem of OpenCL is that it only provides source code platform-portability not

performance-portability, which means OpenCL source code can be compiled and

run on any type of OpenCL supported platforms and processors, but the perfor-

mance can be optimized if we could tune the original source code for the specific

type of platforms and processors.

Tuning source code is an exhausting job even to a skilled programmer. Espe-

cially when the complexity of computer hardware and software is increasing as

today’s, programmers need to consider more tuning targets than before, such as

performance, power consumption and so on.

Software Automatic Tuning or Autotuning is an state-of-art technique which

is one of the most promising solutions to the performance portability problems

mentioned above. Reiji Suda, et al.1) explained and discussed the concepts, topics

and issues of software automatic tuning. They argue that the task of the tuning

mechanism is to control the adaptabilities of the target software so to attain the

optimal performance under the given conditions.

1 c⃝ 2012 Information Processing Society of Japan

Vol.2012-HPC-133 No.1
2012/3/26

IPSJ SIG Technical Report

In this work, we propose a software automatic tuning strategy for Krylov Sub-

space Methods. Our strategy firstly chooses one storage format from a list of

matrix storage formats for a specific hardware and software environment using

statistical models obtained by applying machine learning techniques, and then

employs exhaustive search during runtime to select appropriate values of tuning

parameters to further improve computing performance.

The rest of the paper is organized as follows: Section 2 introduces the back-

ground information of OpenCL programming model and machine learning, and

then we analyse the structure Krylov subspace method in terms of matrix com-

putation involved. Finally we discuss the related works in this section. Section 3

details our three-step tuning strategy. Section 4 shows the results and discussions.

Section 5 summarizes the discussion and describes the future directions.

2. Preliminaries

2.1 Introduction to OpenCL

OpenCL is an open standard maintained by the Khronos group2). It is de-

signed for general purpose computing on GPGPU, CPU and accelerators such as

CELL processors and DSPs. There has existed OpenCL implementation for both

Nvidia GPGPU products and AMD GPGPU products, and also both OpenCL

programming SDK for AMD CPU series and Intel CPU series have been issued.

The latest version of OpenCL standard is the OpenCL version 1.2, but we only

employ OpenCL version 1.1 implementations in this work.

The platform model of OpenCL specification3) contains a host connected to

device(s). Execution is performed on an N-dimensional grid of work-items on

devices by invoking data-parallel kernels. Work-items are kernel instances and

organized into work-groups. Each work-item executes the same code but the

specific execution pathway through the code and the data operated upon can

vary per work-item. Each work-group can be uniquely identified by its work

group ID, and each work-item can be uniquely identified by its global ID or

by a combination of its local ID and work-group ID. The NDRange is an N-

dimensional index space of work-items, where N is one, two or three. Based

on the specific characteristic of devices, the layout of NDRange can affect the

performance, which means the NDRange layout can be one of tuning parameters

for optimizing performance.

2.2 Machine Learning and Statistical Modeling

In Ethem Alpaydin’s book4), he defines machine learning as:

.Machine learning is programming computers to optimize a perfor-

mance criterion using example data or past experience. We have a model defined

up to some parameters, and learning is the execution of a computer program to

optimize the parameters of the model using the training data or past experience.

The model may be predictive to make predictions in the future, or descriptive to

gain knowledge from data, or both..

Most scientists using linear solvers are not primarily trained as numerical an-

alysts and may lack the expertise to select suitable solvers5). And it is not only

linear solver details have impact on the performance but also the data struc-

tures for storing the data on memory have. So it is convenient that the program

have the ability of deciding how to tune itself automatically without or partially

without the involvement of human. This is the reason that we choose machine

learning as our tool to implement our software automatic tuning strategy. Specif-

ically speaking, we use machine learning technique to build our statistical models

on the basis of automatic experimenting, and then use these models to decide

the value of tuning parameters. By tuning parameters, we mean the changes of

their values can have impact on the computing performance, and the program

tunes itself by changing the values of these parameters.

In the machine learning field, supervised learning is one of the most important

types of learning algorithms. Both regression and classification are supervised

learning problems where there is an input, X and output Y , and the task is to

learn the mapping from the input to the output (p.9 in 4)).

2.3 Krylov Subspace Methods

Yousef Saad’s book6) explains the details of Krylov Subspace Methods. He

mentions that a general projection method for solving the linear system

Ax = b (1)

extracts an approximate solution xm from an affine subspace x0+Km of dimension

m by imposing the Petov-Galerkin condition

b−Axm ⊥ Lm (2)

where Lm is another subspace of dimension m. Here, x0 represents an arbitrary

2 c⃝ 2012 Information Processing Society of Japan

Vol.2012-HPC-133 No.1
2012/3/26

IPSJ SIG Technical Report

initial guess to the solution. The Krylov subspace method is a method for which

the subspace Km is the Krylov subspace

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0} (3)

where r0 = b−Ax0. The different versions of Krylov subspace methods arise from

different choices of the subspace Lm and from the ways in which the system is

preconditioned. Most importantly, Krylov subspace methods are iterative meth-

ods, which means they execute the exactly same routines until the convergence

criterion can be satisfied.

CG algorithm (algorithm 6.186)) is one of the most important algorithms of

Krylov subspace methods. It contains one SpMV(Sparse Matrix-Vector Multi-

ply) calculation, two vector inner product calculations, and three calculations of

SAXPY (DAXPY) for each of the CG loops. This implies that we can improve

the performance of CG algorithm by improving the performance of each of this

three types of calculations respectively. Here is the detailed description of CG

algorithm
Compute r0 := b−Ax0, p0 := r0
For j = 0, 1, . . . , until convergence Do :

αj := (rj , rj)/(Apj , pj)

xj+1 := xj + αjpj
rj+1 := rj − αjApj
βj := (rj+1, rj+1)/(rj , rj)

pj+1 := rj+1 + βjpj
EndDo

2.4 Related Works

There has been some works on applying machine learning techniques to linear

system solver related problems. Shuting Xu and Jun Zhang7) have been using

clustering analysis and SVM(Support Vector Machine) classification techniques

to predict whether the a matrix can be solved by a preconditioner (in a precon-

ditioned iterative solver). In their method, the features of sparse matrices are

calculated firstly for training, both unsupervised learning and supervised learning

are applied for learning. They show that the overall accuracy of the prediction

is above 90% for the ILU0 preconditioner and above 87% for the ILUK precon-

fitioners. In America Holloway and Tzu-Yi Chen’ work8), they also evaluate the

effectiveness of machine learning as a tool for predicting whether a particular

combination of preconditioner and iterative method will correctly solve a given

sparse linear system, but the tool that they use is neural network. In anther

paper9), Shuting Xu and Jun Zhang apply SVR (Support Vector Regression) to

predict the condition number the a matrix, their results are not as precise as the

general direct computation methods.

Jee W. Choi and et al.10) proposed a performance model-driven framework for

autotuning of SpMV on GPU. Their model is analytical and requires offline mea-

surement and run-time estimation, and they show that their model can identify

the implementation that achieve within 15% of those found through exhaustive

search. Besides tuning on the basis of existing code, Dominik Grewe and Anton

Lokhmotov11) propose a system-independent representation of sparse matrix for-

mats that allows a compiler to generate efficient, system-specific code for sparse

matrix operations. Katsuto Sato and et al.12) proposed a history-based approach

that uses profile data for performance prediction. Their method is for general al-

gorithms rather than only for linear system solvers or SpMV kernels, and they are

using general linear least square method for building a linear statistical model.

In Takao Sakurai and et al.’s work13), they proposed an auto-tuning method

for selecting the best SpMV algorithms out of seven implemented algorithms

and showed that the maximum speedup established 12.7% for symmetric sparse

matrix and 2.5% for unsymmetric ones. They use exhaustive search for algorithm

selection. Satoshi Ohshima and et al.14) argue that segmented scan method

implementation of CPU is not suitable for GPGPU because of the utilization

of shared memory and the branches with block. So they proposed an improved

version of this method which is called branchless segmented scan method. In Yuji

Kubota and Daisuke Takahashi’s work15), they proposed an auto-tuning strategy

to automatically select matrix storage formats for SpMV by exhaustive search,

and evaluated their strategy on CG solver.

3. Tuning Strategy

In this section, we detail our proposal of three-step tuning method. As we

have explained in 2.3, CG method mainly contains three types of routines, which

are Spmv, inner product and SAXPY (DAXPY). The time consumption of CG

3 c⃝ 2012 Information Processing Society of Japan

Vol.2012-HPC-133 No.1
2012/3/26

IPSJ SIG Technical Report

method depends on the time consumption of them within each loop and the

amounts of loops, and the performance of CG method only depends on time

consumption of these three types of routines within each loop after the input

problem and convergence criterion of CG method is given. In order to tune the

CG method performance, we focus on tuning SpMV, inner product, and SAXPY

(DAXPY) kernel.

In our proposal, we tune SpMV for a specific run-time environment by choosing

an appropriate matrix storage format and and OpenCL work-group size using our

statistical model. The storage formats that we are using are CSR, DIA, COO,

ELLPACK, HYB16). And then we profile the first several loops of CG to decide

a specific OpenCL SpMV kernel of the previously chosen storage format and

to further tune the SpMV kernel by adjusting the work-group size for OpenCL

kernel execution.

We have defined two types of kernels for vector inner product calculation. To

tune the inner product kernels, we simply decide the inner product kernel type

and work-group size by profiling the first several loops of CG.

When it comes to SAXPY (DAXPY), we define four types of kernels on the

basis of OpenCL build-in vector data types. The kernel which is used in run-

time is decided using statistical model, and so is the work group size. Like tuning

SpMV, we further adjust work group size by profiling the first several loops of

CG routine.

We call our method Three-Step Performance Automatic Tuning Strategy be-

cause the implementation of our strategy is done through three steps. The

first step employ an automatic experimenting system to exhaustively profile our

SpMV, inner product and SAXPY (DAXPY) kernels with different configurations

to get our training dataset, and then in the second step we build our statistical

models by learning from training dataset. In the last step, we further tune SpMV,

inner product and SAXPY (DAXPY) using profiling data that is obtained from

the first several loops of CG method execution.

3.1 Matrix Feature Extraction

In our training dataset for building performance model of SpMV kernels, we

need extract information of input sparse matrix features. Table 1 shows the

symbols of each extracted features.

num row : the number of rows of the matrix.

nnz : the number of nonzero elements of the matrix.

nzAveR : the average value of number of nonzero elements over num row.

nzstdDev : standard deviation of nzAveR over the number of nonzero ele-

ments of each row.

nzmax : the number of nonzeros elements in the row that contains the maxi-

mum number of nonzero elements.

nzmin : the number of nonzeros elements in the row that contains the mini-

mum number of nonzero elements.

diagDisAveAveRow : if we let diagDisAveRow be the average value of dis-

tance from nonzero elements to its diagonal element of the row, then diagDis-

AveAveRow is the average value of diagDisAveRow over rows.

diagDisAveAveRowStdDev : the standard deviation of diagDisAveAveRow

over each row’s diagDisAveRow.

avLowBand : the average value of each row’s maximum distance of the nonzero

element in lower part of the matrix over rows.⋆1.

avUpBand : the average value of each row’s maximum distance of the nonzero

element in upper part of the matrix over rows.⋆2.

avLowBandStdDev : the standard deviation of avLowBand over each row’s

maximum distance of the nonzero element in lower part of the matrix.

avUpBandStdDev : the standard deviation of avUpBand over each row’s max-

imum distance of the nonzero element in upper part of the matrix.

3.2 OpenCL Kernel Description

We implement ten types of kernels for SpMV. Since we have five types of matrix

storage formats, there are two types of kernels for each of storage formats. One

kernel of the the the two uses one OpenCL kernel thread for each row of the

matrix, and the other one uses one work-group for the calculation of one row. The

key difference is that the later type of the OpenCL kernel uses local memory to

buffer the intermediate results, and then the kernel employs a reduction procedure

⋆1 if an element of the matrix is noted as aij , then all the elements in lower part of the matrix
satisfies i > j

⋆2 if an element of the matrix is noted as aij , then all the elements in upper part of the matrix
satisfies i < j

4 c⃝ 2012 Information Processing Society of Japan

Vol.2012-HPC-133 No.1
2012/3/26

IPSJ SIG Technical Report

Table 1 Extracted sparse matrix features

num row nnz nzAveR nzstdDev nzmax nzmin diagDisAveAveRow diagDisAveAveRowStdDev avLowBand avUpBand avLowBandStdDev avUpBandStdDev

to obtain the values of each dimension of the output vector’s as the final results.

For inner product kernels, we also implement two types of OpenCL kernels.

The first type uses each kernel thread for each dimension of the vector, and off-

loads the reduction part totally on host. The other type of kernel also uses one

kernel thread for each dimension of the vector, but a part of the reduction job is

done on device using local memory.

We define five types of kernels for SAXPY (DAXPY). The only difference

between these kernels is that they employ different lengths of OpenCL build-in

vector type for calculation. The vector length that we are using are 1, 2, 4, 8

and 16.

In this work, the implementation details of each type of kernels are not im-

portant. The most important thing is that they are different in respect of the

presentation of OpenCL kernel performance under different input problems and

OpenCL work-group sizes, and our target is to let our program decide the which

kernel to use automatically on the basis of criterion.

3.3 Statistical Modelling

In this work, we use two methods for modelling. They are SVM(Support Vector

Machine) for classification and SVR(SVM Regression).

SVM is one of the machine methods that is especially important to data mining

and pattern recognition problems. Kristin P. Bennett and Colin Campbell17) has

discussed its benefits and shortcomings. Chin-Wei Hsu and et al.18) have given

an recipe for rapidly obtaining acceptable results using SVM in terms of practical

utilization. SVR is an extension of SVM to regression problems. In Chih-Chung

Chang and Chih-Jen Lin’ work19), the SVM for classification and SVR that we are

using are called C-Support Vector Classification and ϵ-Support Vector Regression

(ϵ-SVR). The detailed information of SVM for classification and SVR can be

found in Alex J. Smola and Bernhard Schlkopf’s article20) and Christopher M.

Bishop’s book21).

Kernel functions (chapter 6 in 21)) make the SVM nonlinear. In this work,

we employ two types of kernel functions, which are Gaussian RBF (Radial Basis

Function) kernel function and polynomial kernel function for modeling. Gaussian

RBF kernel function is in the form of

exp(−γ∥x− x′∥2) (4)

where γ is an parameter that need to be assigned by users. Polynomial kernel

function is in the form of

(⟨x, z⟩+ v)d (5)

where degree d and offset v are parameters that need to be chosen by users.

By profiling the OpenCL kernels and counting the amount of floats compu-

tations (single precision and double precision) involved in the OpenCL kernels,

we can only get the information of performance. But we also need a criteria to

translate the performance from real number into binary for classification. Here

is the definition of our criterion

valThreshold = valMean+ factor ∗ (valTop− valMean) (6)

where valMean and valTop are the average value and highest value over all the

performance data in the training dataset, and factor is a parameter which is

in the range of [0, 1] and need to be chosen by users. If a performance value

is smaller than valThreshold, we label the corresponding training target as −1,

otherwise we label the corresponding training target as 1.

4. Results and Discussions

To obtain the training dataset, we choose all the forty-five SPD(Symmetric

Positive Definite) sparse matrices with the number of rows that are from 1000

to 5000 from the university of Florida sparse matrix collection. To collect the

performance data, we use the procedure in Fig. 1. We employ this procedure

to collect the performance data from the calculations of the forty-five chosen

matrices one by one. We assign 0.1 to the factor parameter described in 3.3.

Besides matrix features, we also collect data of storage formats, OpenCL kernels

and run-time work-group size. Table 2 represents the all the features we choose

to train SpMV performance model. For the storage formats part of Table 2, if one

5 c⃝ 2012 Information Processing Society of Japan

Vol.2012-HPC-133 No.1
2012/3/26

IPSJ SIG Technical Report

storage format is chosen, we assign 1 to the corresponding column, otherwise we

assign 0 to the column. ”kernels” column of Table 2 contains a sub-column space,

and each column in the sub-column space represents a type a OpenCL kernel that

we implemented. Like the assignment principle for storage formats columns, we

assign 1 to one column in sub-columns if the corresponding OpenCL kernel type

is chosen for the experiment. ”wgs” column represents the work-group size that

we use for NDRange layout at run-time. ”matrix features” column also contains

a sub-column space, please refer to Table 1 for details. Table 3 represents the

features that we choose to train the statistical performance models for SAXPY

(DAXPY). ”kernels” and ”wgs” have the same meaning as they are in Table 2

1: Read the matrix by CSR format

2: Analyze the features of the matrix

3: Execute each of the two kernels of SpMv with the matrix and collect perfor-

mance data

4: Translate the storage format form CSR to DIA, COO, ELL and HYB one by

one and re-do step 3 after each of the translations

5: Execute inner product kernels with the vector length equating to the number

of rows of the matrix and collect the performance data

6: Execute the SAXPY (DAXPY) kernels and collect the performance data

Fig. 1 Auto-experimenting design

Table 2 Features collected for SpMV related training

CSR DIA COO ELL-PACK HYB kernels wgs matrix features

Table 3 Features collected for SAXPY(DAXPY) and Inner product related training

vector length kernels wgs

We use an open-source machine learning library that is called Shark (ver-

sion 2.3.4)22) for training and testing our models, and we run our test under

Ubuntu 11.04. The hardware architectures that we have tested are AMD HD7970

GPGPU, AMD Phenom II X6 1090T CPU and Intel i7-3960X CPU.

We are using two types of criterion to evaluate the performance of our models.

To SVM classification problems, we use the ClassificationError class of Shark

library to evaluate the performance of our models. The class contains a method

to compute the fraction of wrongly classified example. We will use the difference

between 1 and the value of this error to represent the accuracy of our models.

To SVM regression problems, MeanSquaredError class of Shark library contains

methods to evaluate the MSE (Mean Squared Error) given by our models.

We use 5-fold-cross-validation21) to search for an appropriate parameter C for

our SVM model, and then we use the same value through all of our experiments.

In this work, the chosen value of the parameter C is 50. When using RBF

kernel function, the chosen value of the parameter γ is 0.5. We assign 4 and 1.0

to the degree and offset parameters of polynomial kernel function for SpMV,

and assign 6 and 1.0 to the degree and offset parameters of polynomial kernel

function for SAXPY(DAXPY). We use 60% of our dataset as the training dataset

and use the left 40% as test dataset.

Table 4 to Table 7 show the results of our evaluations. ”train.rbf” means eval-

uations of training dataset using RBF kernel function, and ”test.rbf” means eval-

uations of test dataset using RBF kernel function. ”train.poly” and ”test.poly”

means evaluations using polynomial kernel function. ”XXX.s” and ”XXX.d”

means the training and test dataset are obtained from the OpenCL kernel execu-

tions under single precision and double precision on XXX hardware. ”Accuracy”

data are obtained using 1− classification error. Values in Table 4 and Table 5

are measured by percentage.

From the evaluation results, we can see that the statistical models built from

polynomial kernel function present a higher prediction accuracy and lower MSE

on test dataset than training dataset. This behaviour is abnormal, because the

statistical models are obtained by learning from the training dataset rather than

the test dataset. Table 4 and Table 5 illustrate that statistical models that

are built from RBF kernel function for SVM classification problems represent a

higher prediction performance to SpMV than to SAXPY(DAXPY). Table 6 and

Table 7 illustrate that statistical models that are built from RBF kernel function

for SVM regression problems represent similar prediction performance to both

6 c⃝ 2012 Information Processing Society of Japan

Vol.2012-HPC-133 No.1
2012/3/26

IPSJ SIG Technical Report

SpMV and SAXPY(DAXPY).

Table 4 Accuracy of statistical models of SpMV

% HD7970.s HD7970.d X1960.s X1960.d i7-3960X.s i7-3960X.d
train.rbf 100 100 100 100 100 100
test.rbf 93.46 94.32 87.78 86.08 83.81 83.52

train.poly 77.08 75.09 81.63 82.76 83.05 83.14
test.poly 94.32 93.46 87.78 86.08 83.81 83.52

Table 5 Accuracy of statistical models of SAXPY(DAXPY)

% HD7970.s HD7970.d X1960.s X1960.d i7-3960X.s i7-3960X.d
train.rbf 100 100 100 100 100 100
test.rbf 1.7 1.32 96.21 93.18 3.22 2.84

train.poly 42.8 39.77 56.44 60.6 45.45 44.06
test.poly 99.81 100 95.08 91.18 98.3 98.67

Table 6 MSE of statistical models of SpMV

HD7970.s HD7970.d X1960.s X1960.d i7-3960X.s i7-3960X.d
train.rbf 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
test.rbf 0.38 0.28 0.07 0.07 1.7 1.6

train.poly 1.58 1.37 0.23 0.2 4.97 4.67
test.poly 0.24 0.21 0.09 0.09 2.21 2.07

Table 7 MSE of statistical models of SAXPY(DAXPY)

HD7970.s HD7970.d X1960.s X1960.d i7-3960X.s i7-3960X.d
train.rbf 0.0001 0.0001 0.00008 0.00008 0.00009 0.00009
test.rbf 0.28 0.27 0.003 0.0022 0.099 0.097

train.poly 0.98 0.92 0.01 0.01 0.46 0.46
test.poly 0.18 0.17 0.003 0.003 0.14 0.14

5. Conclusion and Future Works

We have proposed a three-step auto-tuning strategy for CG method. The main

idea behind this strategy is to employ statistical performance model to off-load

the burden of exhaustive searching for the appropriate matrix storage format

on OpenCL run-time. To further calibrate tuning parameters, we also employ

on-line tuning using the first several loops of CG method.

We described the statistical performance models built by using machine learn-

ing techniques and evaluated the performance of our models. We have shown that

RBF kernel function can be quit efficient to classification problems of OpenCL

SpMV kernels on all of our tested hardwares, but it only acts efficient on parts

of our tested hardwares to classification problems of OpenCL SAXPY(DAXPY)

kernels. When it comes to SVM regression problems, we have shown that RBF

kernel function is universally more efficient than polynomial kernel function under

our experiment configurations.

Our future target is to future improve the performance of our statistical per-

formance models, and improve our tuning strategy to make it more practical and

robust. Furthermore, we will integrate our statistical performance model into

CG implementation to test the effectiveness of our three-step tuning strategy.

Acknowledgments This work is partially supported by Grant-in-Aid for

Scientific Research (B) ”Adaptive Auto-tuning Technology Aiming Complex Mul-

ticore and Multiprocessor Environments” and JST CREST ”ULP-HPC: Ultra

Low-Power, High-Performance Computing via Modeling and Optimization of

Next Generation HPC Technologies”

References

1) Naono, K., Teranishi, K., Cavazos, J. and Suda, R.: Software Automatic Tuning:
From Concepts to State-of-the-Art Results, chapter1, Springer (2010).

2) Khronos, G.: OpenCL - The open standard for parallel programming of heteroge-
neous systems, Khronos Group (online),
available from ⟨http://www.khronos.org/opencl/⟩ (accessed 2012-02-20).

3) Khronos OpenCL Working Group: The OpenCL Specification version 1.1 Docu-
ment Revision: 44 (2011).

4) Alpaydin, E.: Introduction to Machine Learning, The MIT Press, 2nd edition
(2010).

5) Bhowmick, S., Eijkhout, V., Freund, Y., Fuentes, E. and Keyes, D.: Application of
Alternating Decision Trees in Selecting Sparse Linear Solvers, Software Automatic
Tuning: From Concepts to the State-of-the-Art Results (2010).

6) Saad, Y.: Iterative methods for sparse linear systems, SIAM, 2nd edition (2003).

7 c⃝ 2012 Information Processing Society of Japan

Vol.2012-HPC-133 No.1
2012/3/26

IPSJ SIG Technical Report

7) Xu, S. and Zhang, J.: A new data mining approach to predicting matrix condition
numbers, Commun. Inf. Syst., Vol.4, No.4, pp.325–340 (2004).

8) Holloway, A. and Chen, T.-Y.: Neural Networks for Predicting the Behavior of
Preconditioned Iterative Solvers, ICCS ’07, pp.302–309 (2007).

9) Xu, S. and Zhang, J.: A data mining approach to matrix preconditioning problem,
Technical Report 433-05, Department of Computer Science, University of Kentucky,
Lexington KY (2005).

10) Choi, J.W., Singh, A. and Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs, PPoPP ’10, pp.115–126 (online),
DOI:http://dx.doi.org/10.1145/1693453.1693471 (2010).

11) Grewe, D. and Lokhmotov, A.: Automatically generating and tuning GPU code
for sparse matrix-vector multiplication from a high-level representation, GPGPU-4,
(online), DOI:http://dx.doi.org/10.1145/1964179.1964196 (2011).

12) Sato, K., Komatsu, K., Takizawa, H. and Takizawa, H.: A History-Based Perfor-
mance Prediction Model with Profile Data Classification for Automatic Task Allo-
cation in Heterogeneous Computing Systems, Parallel and Distributed Processing
with Applications (ISPA), 2011 IEEE 9th International Symposium on, pp.135–142
(online), DOI:http://dx.doi.org/10.1109/ISPA.2011.36 (2011).

13) Sakurai, T., Naono, K., Katagiri, T., Nakajima, K., Kuroda, H. and Igai, M.:
Sparse Matrix-Vector Multiplication Algorithm for Auto-Tuning Interface ”Ope-
nATLib”, IPSJ SIG Technical Report Vol.2010-HPC-125 No.2 (2010).

14) Ohshima, S., Sakurai, T., Katagiri, T., Nakajima, K., Kuroda, H., Naono, K., Igai,
M. and Itoh, S.: Optimized Implementation of Segmented Scan Method for CUDA,
IPSJ SIG Technical Report Vol.2010-HPC-126 No.1 (2010).

15) Kubota, Y. and Takahashi, D.: Optimization of sparse Matrix-Vector Multipli-
cation by Auto Selecting Storage Schemes on GPU, IPSJ SIG Technical Report
Vol.2010-HPC-128 No.19 (2010).

16) Bell, N. and Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA,
Nvidia technical report, NVIDIA Corporation (2008).

17) Bennett, K.P. and Campbell, C.: Support Vector Machines: Hype or Hallelujah?,
SIGKDD Explorations, Vol.2, p.2000 (2003).

18) Hsu, C.-W., Chang, C.-C. and Lin, C.-J.: A Practical Guide to Support Vector
Classification, Technical report, Department of Computer Science, National Taiwan
University (2003).

19) Chang, C.-C. and Lin, C.-J.: LIBSVM: A library for support vector machines,
ACM Transactions on Intelligent Systems and Technology (TIST), Vol.2 (online),
DOI:http://dx.doi.org/10.1145/1961189.1961199 (2011).

20) Smola, A.J. and Schlkopf, B.: A tutorial on support vector regression, Statistics
and Computing, Vol.14 (online),
DOI:http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88 (2004).

21) Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science

and Statistics), Springer (2006).
22) Igel, C., Glasmachers, T. and Heidrich-Meisner, V.: Shark, Journal of Machine

Learning Research, Vol.9, pp.993–996 (2008).

8 c⃝ 2012 Information Processing Society of Japan

Vol.2012-HPC-133 No.1
2012/3/26

