
Electronic Preprint for Journal of Information Processing Vol.20 No.2

Regular Paper

Visual Query Language for Archetype-Based
Electronic Health Records Databases

Shelly Sachdeva1,a) Subhash Bhalla1

Received: July 2, 2011, Accepted: December 16, 2011

Abstract: The healthcare professionals have critical needs for general purpose query capabilities. These users in-
creasingly require the use of information technology. The query needs cannot be met by form based user interfaces (or
through the aids such as, the query builder). Further, the archetype-based Electronic Health Records (EHRs) databases
are more complex, as compared with the traditional database systems. The present study examines a new way to sup-
port general purpose user level query language interface for querying EHR data. It presents the user with user’s view
of clinical concepts, without requiring any intricate knowledge of an object or stored structures. It enables clinicians
and researchers to pose general purpose queries, over archetype-based Electronic Health Record systems.

Keywords: archetype query language, electronic health records, healthcare, high-level query interface, query lan-
guages, user interaction.

1. Introduction

The rise of the web has also led to the emergence of domain-
specific information systems. These applications are often uti-
lized by a large number of users. Furthermore, the large volume
of data generates extensive querying needs. Thus, it has become
necessary to focus on providing an ability to interact with data
resources within EHR databases. In order to query the informa-
tion, the user interface should provide suitable query language
abilities.

1.1 New High-level Query Language
A query language (QL) is defined as a high-level computer

language for the retrieval and the modification of data held in
databases or files. It is usually interactive, on line, and able to
support ad hoc queries. Query Languages have evolved in the
context of database systems (repositories). Query-by-Example
(QBE) [7] is a high-level QL interface for tabular data in rela-
tional databases. In contrast, the web contains the data in the
form of documents (tree with hyperlinks). It is possible to down-
load the documents from the web (in the form of XML) and
use a QL interface for that. It can provide a user-friendly in-
terface. Recent research in this field has led to the develop-
ment of XQuery-By-Example (XQBE) [6]. It is a user-friendly,
visual QL for expressing a large subset of XQuery for data in
the XML form. Similarly for web data, Information Require-
ment Elicitation (IRE) has become essential to elicit informa-
tion requirements through interactive choice prompts [16]. Cur-
rently, there is no usable QL interface, at the level of healthcare
workers. This is a key requirement for information technology

1 Graduate Department of Computer and Information Systems, University
of Aizu, Aizu-wakamatsu, Fukushima 965–8580, Japan

a) sachdevashelly1@gmail.com

in the healthcare domain [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44].
Our study considers a database query interface as a QL for EHR
databases. EHRs are complex and archetype-based (in contrast to
table-based databases).

The study considers QBE as a model which can support many
levels of user skills and many types of functional requirements.
It can provide an interface that accepts the user’s intent and com-
municates well-formed formulas (W.F.Fs) [13] for computations.
The rest of the paper is organized as follows. The data mod-
elling of EHRs and the role of archetypes are emphasized in Sec-
tion 2. Section 3 presents querying archetype enabled EHR sys-
tems. Section 4 presents the visual QL interface for EHRs. It
presents the Query-by-Concept approach, an example and imple-
mentation details. The advantages of the proposed high level QL
are emphasized in Section 5. Section 6 describes the performance
profile, the usability and the evaluation of the proposed approach.
Section 7 gives related discussions and studies. Finally, Section 8
provides the summary and conclusions.

2. Model of EHR Systems

2.1 Data Model
Electronic Health Records (EHRs) have a complex structure

that may include data from about 100–200 parameters, such as
the temperature, the blood-pressure and the body mass index. In-
dividual parameters will have their own contents. Individual pa-
rameters (concepts) are represented as archetypes. For example,
each contains an item, such as ‘data’ (e.g., captured for a blood
pressure observation). It offers the complete knowledge about a
clinical context, (i.e., attributes of data), the ‘state’ (context for
interpretation of data), and the ‘protocol’ (information regarding
the gathering of data), as shown in Fig. 1 (depicting complete-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Fig. 1 Parameter blood pressure as a concept in the form of an archetype.

ness). Thus, the data modeling in healthcare is a time-consuming
process. Most of the time is spent in learning the information
system technologies.

2.2 Archetypes in Two-level Modelling
The medical concepts within EHRs (parameters) are repre-

sented in the form of an archetype. A two-level model is used to
represent a concept and its storage. Under the two-level database
paradigm, the core part of the system is based on the reference
model and the archetype model (includes the generic logic for
the storage, the querying and the caching). Both of the mod-
els are extremely stable, while domain semantics are mostly
delegated to domain specialists who work building archetypes
(reusable), templates (for local use) and the terminology (for gen-
eral use) [33]. The two-level modelling approach, proposed ini-
tially by openEHR, includes the reference modeling (information
modeling) and the content modeling. The Reference Model (RM)
contains a stable and fundamental structure. It represents the
generic structures of components of health record information,
at the storage level. Content models, on the other hand, cover the
informational aspects which are not so stable due to the variabil-
ity and the high rate of change of the domain knowledge (i.e., the
formal description of the physical examination or prescription).
In simpler terms, in a two-level modelling, the RM provides a
general framework for all EHRs and the archetypes define the
rules for using EHR in different contexts. Consider an exam-
ple. The first layer consisting of the reference model contains a
generic class ACTOR. In the second layer, through the use of
content models (archetypes), this generic class can be extended
to be Doctor, Nurse or Insurer. An archetype is an agreed for-
mal and interoperable specification of a re-usable clinical data set
which underpins an electronic health record (EHR), capturing as
much information about a particular and discrete clinical concept
as possible. Thus, an archetype is “the prototype for the capture
of clinical concepts - a machine readable specification of how to
store patient data using the Reference Model.”

Examples of a dual-model EHR architecture are CEN/TC251
EN13606 [9] (developed by the European committee for stan-
dardization) and the openEHR [10] (developed by the openEHR
foundation). Recently, Microsoft has also adopted this approach.
To incorporate this, Health Level 7 (HL7) [11] and Digital Imag-
ing and Communications in Medicine (DICOM) are working on
templating methodology, where templates are conceptually simi-
lar to archetypes.

An archetype contains rules for data entry into the system.

For example, “the maximum and the minimum value,” “allowed
units,” or whether a piece of data is required (or optional). Clin-
ical concepts such as, the blood pressure, the health encounter,
the diagnosis, the laboratory result are described by different
archetypes. Thus, the archetypes specify the design of the clini-
cal data that a health care professional needs to store. They are
general-purpose, reusable and composable. These are clinically
meaningful and interpretable by EHR systems, as they provide
the structure and specify the content. These provide the ability of
systems to reliably communicate with each other at the level of
knowledge concepts. Thus, a level of abstraction has been added
by storing the domain knowledge in the form of archetypes. Sim-
ilarly, the physical data independence is achieved. As a result,
with the expansion of the domain knowledge, the software does
not need to be changed.

Only the first level i.e., the Reference Model (RM) [19], [20]
is implemented in software. This part has the limitations im-
posed by application software and database schemas. RM speci-
fies EHR Extract as the root object which contains the EHR data.
The other parts of the model universe (implemented in software)
are in highly stable languages/models of representation (such as,
programming languages, UML, XML Schema languages, OWL).
With the use of two-level modelling, runtime data now conform
semantically to archetypes as well as concretely to the reference
model.

2.3 Research Motivation and Proposal
The present proposal proposes a visual query interface for

EHRs. The archetypes model the character of clinical data at-
tributes, and store this information, as it expresses data in the
database (rather than in the database schema). The archetype in-
stance is a maximally normalized object [33].

In a traditional setting, users express queries against the
database schema. However the semantics of data can be under-
stood by viewing the data in the context of the user interface
(UI) (of the software tool used to enter the data). Archetypes
have been used for the purpose of data entry and validation [33].
The study proposes a query interface from the conceptual model
of archetype. The term ‘concept’ has one-to-one mapping with
archetype and is a view of a user’s object.

There are 279 archetypes developed up to now by openEHR
and many more are expected in the near future [47]. The
archetypes belong to different levels/categories according to the
hierarchical levels [33]. The different categories have different
structures. For example, ‘COMPOSITION’ is at the top-level of
the hierarchy and is equivalent to a clinical document.

3. Querying EHR System

The existing QLs such as, SQL and XQuery are complicated
for hospital users. For example, XQuery requires the extensive
knowledge of a document structure (its XML schema) in order to
formulate a query. The key challenges in querying EHRs are:
(1) Complex and domain specific semantics,
(2) Frequent references to external information sources such as

dictionaries and ontologies, and
(3) Special treatment of time and location attributes.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Fig. 2 Syntax of AQL.

(4) Archetypes need to be used as the basis for querying.
(5) Large slabs of data.

3.1 Archetype Query Language (AQL)
The standardized EHR system (openEHR) supports a standard

domain-specific QL for archetype-based data [4], [5]. The syntax
of AQL is illustrated by the help of an example. It uses SELECT,
FROM and WHERE clauses. EHR uses a hierarchical structure.
AQL has a containment constraint which specifies the hierarchi-
cal relationships between parent and child archetypes involved in
the query. It makes use of the path expression, naming retrieved
results, the class expression and the archetype predicate, as shown
in the example in Fig. 2. The class expression syntax consists of
openEHR RM class name (mandatory), followed by a variable
name (optional) and by an archetype predicate (optional). The
archetype predicate is used to scope the data source from which
the query expected data is to be retrieved. The ‘$’ in Fig. 2 ex-
presses the fact that the value of ehrUid will be substituted at run
time.
Example: Find all the Blood Pressure (BP) values for a patient,
having the systolic BP and diastolic BP, (where systolic BP ≥
140 or diastolic BP ≥ 90).

3.2 Limitations of AQL
In a significant contrast to SQL and XQuery, AQL for EHRs

is more complex due to the archetype-based structure. In this
study, we adopt the notion of concept (archetype) from EHR,
and propose a Graphical User Language (GUL) interface. The
proposed GUL aims to emulate the QBE-style input forms for
accepting user’s intent. The system facilitates the formation of
non-ambiguous expressions (W.F.F- Well Formed Formula) [13].

4. Visual Query Interfaces

The standard based EHR system has been implemented for
hospitals (emergency department of Austin Health in Australia,
and maternity care in a hospital in Cambodia) [26]. The opereffa
project [40] is the real model of a practical EHR use (which is
archetype-based). It uses PostgreSQL (object-relational database
system). The programming interface may use XQuery/SQL. The
Ocean informatics [43] makes use of XML-enabled relational
databases. These use XQuery/SQL. Recently, AQL embed-
ded in XQuery has been proposed by LiU-EEE [41] for querying
archetype-based EHR databases. The openEHR provides AQL
for querying EHR databases [4]. However, none of the systems
discussed above provide high-level QL interface for archetype-
based data.

The proposed graphic user language (GUL) interface (Fig. 3)

Fig. 3 Different visual query interfaces along with QBC for archetype-
based data.

is based on a top-down approach. In a separate study, we have
proposed the detailed design specifications of a high-level query
interface [46]. However, this approach requires the knowledge of
the archetypes (concepts) present in the clinical document (EHR
instance) on the part of users. The current approach has been
evolved based on the above grounds. Here, the system internal
mappings produce a list of concepts which are linked together in
the clinical document.

The EHR document consists of the details from the RM and
ADL. Figure 4 shows that RM (left, fragment of the openEHR
RM in UML format) and the archetype (centre, in ADL format)
are the blueprint for an EHR document (right, in XML format).
The EHR structure consists of many clinical concepts arranged
in a hierarchical fashion. It has a complex schema [33]. Each
clinical concept has its own detailed structure consisting of many
attributes (example in Fig. 1). The archetypes are defined us-
ing the Archetype Definition Language (ADL) [27] (approved by
ISO [12]). ADL is composed of four main parts: the header, the
definition, the ontology and the revision history. A sample and
details of BP.adl is shown in Fig. 4. Thus, modeling along with
detailed knowledge of schema and ADL, hinder the medical user
from querying. In this light, the aim of the proposed research
activity is:
1. To provide an independent querying capability to clinicians;
and
2. To design a visual query interface for EHR users, who are not
skilled in the use of AQL.

4.1 QBC Approach for EHRs
To explain the QBC approach we consider the following:

(1) User (skilled/semi-skilled hospital worker).
He/she is aware of the medical concepts which constitute the
objects of query in the EHR repository.

(2) EHR Repository Contents: The repository contains EHRs
for individual patients. Each EHR consists of archetypes
at the composition level and the contents level. Thus, the
target is a repository of clinical documents (a sample of a
clinical document is shown in Fig. 4). It consists of multiple

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Fig. 4 The RM (left) and the archetype (centre) are the blueprint for an EHR document (right).

Fig. 5 QBC Map (small) compared to EHR data (large).

archetypes containing multiple concepts such as the blood
pressure, the temperature and the heart rate. These have a
‘containment’ relationship among them because of the hier-
archical nature of the EHR. Different archetypes are at dif-
ferent hierarchical levels, belonging to different categories.

(3) Query-by-Concept (QBC) System:
An individual EHR is organized as a collection of medical
concepts, represented in the form of archetypes. The QBC
system presents the user with a user’s view as an interface to
interact with the EHR repository.
Step1. Select the medical concept from the menu.

The structure is built from the available archetype reposi-
tory. The view is presented by the system to ease the query-
ing. The user selects the desired concept (user’s object)
(Fig. 6 (a)).
Step2. QBC presents a tabular form of concepts and re-
lated attributes using the EHR repository and stored concepts
(archetypes) and their links. The user indicates through mi-
cro steps, his/her choice of options, with respect to the query.

The EHR structure is built from the UML description of
the EHR [39].

QBC overcomes the challenges of a complex schema and ADL
structure as follows.
i) A clinical document contains the information about the con-

cepts and the archetype-based data. The user’s choice is
mapped to a list of required archetypes based on the EHR
document ‘containment’ relationships. The QBC system
generates internal mappings of the concepts and clinical doc-
uments. These mappings produce a list of concepts which
are linked together in the clinical document. For example,
the concept list for an EHR document in Fig. 4 is shown in
Fig. 5. This concept list is relatively small as compared to
the large instance data in an EHR. Thus, QBC generates the
smaller number of concepts which are involved in querying

large slabs of data (Fig. 6 (b)).
ii) Also, each archetype (clinical concept), has a complex struc-

ture of its own contents. The data available in ADL [27] is
used to create an individual QBE like interfaces (Fig. 6 (c)).
In this view, the user can query using a selected level of gran-
ularity and specify the conditions. Consider the view for the
concept ‘blood pressure’ in Fig. 6 (c).

Thus, the user is presented with a high-level view independent
of an underlying EHR database. In QBE, the conventional user
selects the right tables and fills the predicates. In this QBC ap-
proach, the user works with the high-level view of the user’s ob-
ject (concepts). These objects have internal attribute mapping
functions to the actual data stored in an EHR database.

4.2 QBC Example
The proposed approach is implemented on the basic SQL style

data operations for queries (relational algebraic operations/set-
theoretic operations [13]). The proposed QBC steps generate a
well formed formula (with no ambiguity). It can further generate
the AQL expression. Please see Appendix A.1 for QBC expres-
sions for queries 1–14 for all data operations. We explain the
QBC through the following query example.

Query Scenario. Find all the blood pressure values where the
systolic value is greater than or equal to 140 or the diastolic value
is greater than or equal to 90 within a specified EHR. (Sample
Query in Ref. [4])
QBC interface (Fig. 6):
Step 1. The concept ‘blood pressure’ is known to the health
worker. It is selected in this step for a specified patient
(Fig. 6 (a)).
Step 2. The required archetypes connected with ‘blood pressure’,
that is, ‘encounter’ and ‘blood pressure’ are prompted to the user.
QBC internal mappings generate this and present it to the user
(Fig. 6 (b)).

For this query, the user indicates his choice of option as ‘spec-
ify condition’ (Restrict) and ‘display’ (Project), i.e.,
[Restrict] and [Project] single patient data

The user interface based on the archetype description of
‘blood pressure’ is presented by the system as shown in Fig. 6 (c).
The user can click the graphical widgets (checkboxes) to display
the data items required in the result.

The system supports user through graphical widgets for spec-
ifying ‘restrict’ operation (systolic ≥ 140 OR diastolic ≥ 90) as

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Fig. 6 QBC interface for Query Scenario presented in Section 4.2.

Fig. 7 QBC implementation scheme.

shown in Fig. 6 (c).
The example explains the top-down approach, where the user

is presented with the conceptual view of objects (concepts) de-
spite of the physical view (database objects), hiding the complex
schema and ADL details.

4.3 Implementation Details
The proposed system has been implemented as shown in Fig. 7.

It shows the view of an end-to-end request processing. A
user’s request is mapped on to the stored concepts through con-
cept/parameter transformer. The archetype wrapper class acts as
a communicating class. The required concept is requested and
retrieved from the archetype repository. It is parsed and validated
by the ADL Parser component. Upon a successful validation;
the request is forwarded to the AQL Processing engine for the
query execution through the mapping communication class. The
application layer of the openEHR database is presented through
hibernate (object relational mapping) interfaces. This interface
communication is handled by the AQL Processing Engine at the
time of an actual AQL execution. Therefore, the transformer
and AQL processor acts as a mediator between the skilled/semi-
skilled client and the openEHR database. This approach elimi-
nated the low level AQL complexities from the end user view. A
prototype system with query support for the high-level interface
for the semi-skilled users has been utilized for tests and usability

studies.
4.3.1 QBC Prototype System

The QBC prototype has been developed as a client-server
application. The implementation uses Scala 2.9 [22] and Lift
2.4 [28]. The server part runs on an Apache Tomcat application
server [3]. To get the clinical knowledge (information) from an
archetype, the ‘ADL parser’, implemented in the openEHR Java
Reference Implementation Project is being used [17].

Experiments have been conducted for a sample of queries for
various (algebraic) operations such as select, project, join, re-
name, intersect and negation. QBE is a relationally complete
language [7]. Similarly, the study infers that the QBC is a rela-
tionally complete language. Thus, the skilled/semi-skilled user’s
perception has been used for accessing and querying archetype-
based EHR data. The feasibility of QBC as a complete approach
has been enhanced by work in Refs. [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], [43], [44], [45].
4.3.2 Technical Challenges and Solutions

The challenges during the prototype implementation deal with:
i) A multitude of representations.

ii) Different categories of archetypes having different struc-
tures.

iii) The openEHR paths (path to the RM class attribute and the
archetype path).

The QBC system deals with plain text, coded text, paragraphs,
measured quantities with values and units, date, time, date-time,
and partial date/time, encapsulated data (multimedia, parsable
content), basic types (such as boolean, state variable), container
types (list, set) and uniform resource identifiers (URI). It handles
the major difficulty encountered in ‘reference’ object and ‘media-
type’ object representations. The prototype system builds a differ-
ent presentation model according to each category of archetype.
The software has been coded for automatic generation of the
openEHR path.

5. Advantages of Proposed Visual Query
Interface

The QBC overcomes the following key challenges in querying

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Table 1 Comparison of Query Languages and their functionalities.

Query Languages SQL AQL Proposed Approach (QBC)
Project � � �
Restrict � � �
Rename � � �
Existential � � �
Nested � � �
Negation � � �
Join � � �
Relational operators/Boolean operators � � �
Renaming � � �
TOP operator � � �
Disjunction � � �
Union � � �
Sorting � � �
Difference � � �
Filtering � � X
Parameterization Support � � �
Grouping � Not yet Not yet
Cartesian product � Not yet Not yet
Universal Qualification � Not yet Not yet
Path Expression X � �
Update � X X
Querying Schema Order � X X
Querying Instance Order � X X

EHRs:
– Complex and domain specific semantics – Archetypes can sup-
port intelligent querying [33]. These contain domain specific
knowledge. Thus, these ensure semantic interoperability.
– Frequent references to external information sources such as dic-
tionaries and ontologies – The structure of an archetype contain
a ‘term binding’ section for mapping the internal terms to the ex-
ternal terminologies (such as SNOMED [24]), and
– Special treatment of time and location attributes – The pro-
posed GUL has been experimented for the openEHR standard,
where the internal structure of archetypes and the standardized
information model based on the clinical investigator recording
process [33] take care of these attributes.
– Large slabs of data – Relatively few archetypes are used to con-
struct quite large slabs of data. For example,consider ‘ECG re-
sults’, where one archetype corresponds to 10 leads’ worth of
time-series data, potentially hundreds of samples.

6. Performance Profile

QBC has been proposed on the basis of two criteria – function-
ality and user-friendliness. Functional capabilities refer to what
one can do, whereas usability refers to the effort required.

6.1 Performance Considerations
A sample set of queries has been used for preparing the per-

formance profile of various query languages. These have been
considered against the conventional functionality requirements,
which include project, select, rename, existential, nested, nega-
tion and join operations. All developer level query languages,
such as SQL and AQL can provide these basic functionalities as
depicted in Table 1. However, the visual languages tend to pro-
vide limited functionalities in comparison. AQL is under devel-
opment, and few conventional query features, such as, grouping,
cartesian product and universal quantification have not been im-

plemented in AQL grammar. The QBC provides the basic func-
tionality which is sufficient as per the requirement of healthcare
workers. However, it does not provide all functionalities as com-
pared with AQL (or SQL) (shown in Table 1).

6.2 Usability
The following steps were adopted for the estimation of the us-

ability.
(i) Sample set of queries – For the proposed visual QL, the

queries covering all basic algebraic operations have been
considered for studying the usability. Any language as pow-
erful as the relational algebra is called relationally com-
plete [13]. Thus, if the proposed QBC is relationally com-
plete, it can facilitate the user in formulating queries for all
the common query needs.

(ii) Formulated steps – Identify objects/concepts, instances and
then operator/condition.

(iii) Tested with participants – It may be noted that experiments
often depend on students as participants (see Refs. [1], [30],
[32]).

6.2.1 Participants
In all, 15 individuals participated in this study. The partici-

pants were randomly selected from the University of Aizu’s stu-
dent population of over 1,500. Eight undergraduate students and
7 postgraduate students participated in the study. On average,
the students were about 24 years old. However, although all the
students had some computing experience, none of them had any
database QL experience. Thus, the participants would be repre-
sentative of a common young generation of users who are com-
puter literate but normally have little or no training in database
query skills.
6.2.2 Apparatus

The aim of the experiments is to assess the usability as well as
the intuitiveness of the QBC interface. It was decided to conduct

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

the experiments on a one-on-one basis. Each participant was ob-
served by an experimenter while using the interface to formulate
queries for the test questions. By observing the participants dur-
ing the experiments, it became possible to assess the usability of
the interface from close range. These experiments also helped to
show if there were any difficulties faced by the participants (or to
find any ambiguity that may arise). At the end of the experiment,
the experimenter discussed the observations with the participant
and asked for the participant’s comments on the query interface.

For all experiments, the same Dell Studio 1558 Notebook com-
puter was used by each participant. The participants used the
QBC prototype system for archetype-based EHRs (Fig. 7). This
usability estimation study is aimed at examining the effectiveness,
the usability and the users general acceptance of the approach.

Each participant was given a question sheet containing the
same set of 10 queries (query numbered 2, 3, 4, 5, 7, 8, 9, 11,
12, 14) (see Appendix A.1) based on the clinical query examples
used in this article. An effort was made to ensure that the partici-
pants fully understood the queries.
6.2.3 Tasks

For the experiment, each participant used the QBC to formu-
late queries in response to a common set of questions based on
the clinical query examples used in this article. All participants
answered the questions in the same order.

After each successful query completion, the participant was
asked for his or her confidence level (level of ease) in complet-
ing the task, by indicating the level of agreement to the first two
questions from the ASQ [31].
6.2.4 Procedure

Prior to the experiment, participants were given a 15-min Pow-
erPoint presentation by the experimenter to give a brief overview
of the QBC interface with two query examples (1, 6). The QBC
was further demonstrated for building queries based on three sam-
ple questions (the queries numbered 6, 10, 13).

After a short break, the participants had a 5-min practice ses-
sion. Its aim was to acquaint the participants with the mechanics
of the steps of the QBC and the interface so that during the test,
they do not have to spend time to figure out how to use the GUL.
The measured time for the test was then the real query formu-
lation time. Only a minimal amount of time was allocated for
the demonstration and no training on database QL was given to
participants. The effort was made to test the hypothesis that the
interface is intuitive and easy to use by novice users.

When a participant indicated his or her readiness, the experi-
menter asked the participant to formulate the query for the first
test question and started the timer. The participant prepared the
query steps. The experimenter observed the participant’s actions
on the screen and took note of any difficulty or problem. Once the
query had been formulated correctly, the experimenter recorded
the time-to-complete the task and the associated number of query
attempts taken. In case of a failure to construct a query correctly,
the Reset option was used to start over again.

Participants were not allowed to refer to any training notes or
use paper and pencil to help formulate the steps. The partici-
pants were expected to reason, in terms of concepts and algebra
operations, and sequences of algebra operations, in their minds

to formulate query steps. This was done to resemble the way a
user would ultimately use the interface in a real hospital scenario.
The ‘concept description’ support (facilitated in the interface) re-
moves the complexity of remembering the complex structure of
a concept (archetype). Thus, providing the user the flexibility of
querying fine granularity of data.

As mentioned under the Tasks section, after completing each
query formulation task, participants indicated their level of
ease/confidence to the first two questions from the ASQ.
6.2.5 Experimental Design

In line with the objectives, the following measures were
recorded: (a) the number of attempts taken to formulate a query
accurately, (b) the associated time taken, (c) the query accuracy
score, and (d) the participant confidence in task completion.

The choice of these performance measures is based on the need
to study ease-of-use and the effectiveness of the QBC approach,
as well as users’ acceptance of the approach in general. The first
three performance measures would assess the ease-of-use and ef-
fectiveness factors, whereas the fourth would give an indication
of the users’ acceptance of the approach, that is, its efficiency
and effectiveness from the users’ perspective. In addition, the
aim was to assess the effectiveness of the QBC interface for for-
mulating correct queries. To get correct answers to their ques-
tions, the users had the need to formulate their queries correctly
according to logical and specific steps (or any one of a set of al-
ternative steps). Thus, in this study, the number of attempts and
the time taken to build an accurate query are important perfor-
mance measures rather than the accuracy of the query in essence.
Furthermore, determining the number of attempts taken to build
an accurate query was straightforward and involved no subjective
judgment. It is also the case with calculating the query accuracy
score (discussed later). The query performance of end-users is
commonly assessed by three variables: the query accuracy, the
time taken to formulate the queries, and the participants’ confi-
dence in their queries (see Refs. [1], [30], [32]). The confidence
level is usually self-reported by the participant for each query.

In the case of QBC, the user satisfaction with the QBC inter-
face is measured using the ASQ score. We used the first two
items of the three-item ASQ proposed by Lewis [2], using the av-
erage response to these two items as the overall ASQ score for this
study. The two items measure the user satisfaction in terms of the
“ease of completion” and the “time to complete” each query for-
mulation task. ASQ scores range from 1 to 7, with lower scores
indicating a greater satisfaction. The level of users’ skill was a
constant in this experiment and was set at the novice level, for rea-
sons stated earlier. The query complexity has three levels: simple,
medium, and complex. A simple query is defined as a single pa-
tient query involving a single concept (query numbered 1 to 5),
medium as a single/multiple patient (population) query involving
one or two concepts (query numbered 6 to 11), and complex as
a query involving two or more concepts for multiple patients or
multiple patient query involving data from a single patient query
(query numbered 12 to 14). A medium and complex query formu-
lation would involve progressively building a query using micro-
steps. As the number of concepts increases, the query becomes
more difficult. It was aimed to test whether there is any signif-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Table 2 Mean number of attempts taken to formulate accurate queries.

Query Complexity Mean no. of Attempts Taken to Formulate Accurate Queries
Simple 1.20
Medium 1.07
Complex 1.15

Table 3 Means, standard deviations, and the 95% confidence limits for the time taken (in Sec) to
formulate accurate queries.

Query Complexity Mean SD 95% Lower Limit 95% Upper Limit
Simple 21.8 11.08 18.50 25.17
Medium 34.3 9.57 31.35 36.52
Complex 50.2 15.45 49.35 54.82

icant difference between the accuracy scores (defined and deter-
mined as shown next) for simple, medium, and complex queries.
This effort would also show whether users can cope with queries
of increasing complexity using sequences of algebra operations
without any difficulty. This would determine whether the QBC
interface is indeed simple and intuitive for users. In this study,
the accuracy score for each query is defined and determined as
follows:

The query accuracy score is defined as the percentage of ac-
curate queries formulated on the first attempt for a particular test
question = (No. of participants who formulated the query accu-
rately in the first attempt/Total no. of participants) ∗ 100%.

This accuracy score calculates, for each query, the percentage
of participants who were able to formulate the query accurately
on the first attempt. This score would assess the overall effective-
ness of QBC for formulating that query. By computing the accu-
racy scores for simple, medium, and complex queries, we would
be able to determine whether QBC can be used to formulate all
types of query with equal ease.

6.3 Results
6.3.1 Number of Attempts

The means for the number of attempts taken by participants to
formulate accurate queries of different levels of complexity are
shown in Table 2. All the means for the number of attempts are
marginally over 1. This indicates that, on average, participants
were able to formulate accurate queries on their first attempts for
each type of query. Overall, the maximum number of attempts
recorded was 2. Thus, it can be concluded that QBC can be ef-
ficiently used to formulate simple, medium, and complex queries
with equal ease. The second attempts were mainly due to the
fact that participants were initially not familiar with all the alge-
bra operations and the interface, and thus mistakes were (proba-
bly) higher during this learning phase. Some participants, in their
efforts to achieve a record time in completing each query, inad-
vertently clicked on the wrong options in their haste. The other
second attempts were mainly due to carelessness. These involved
cases where the participants did not read the question carefully
and had chosen the wrong concept, for example, laboratory in-
stead of laboratory-hbA1c. However, most participants realized
their mistakes after checking the tabular contents of the chosen
concept presented in step 2.

Overall, participants were able to formulate queries accurately
on the first attempt, and if not, by the second attempt. And it

should be noted that most cases involving second attempts were
not due to ambiguity in formulating queries or difficulty in using
the interface.
6.3.2 Time Taken to Formulate Queries

The means and standard deviations for the times taken (in sec-
onds) to formulate accurate queries are shown in Table 3. The
time taken to formulate an accurate query is defined as the total
time recorded by a participant to click through the correct se-
quence of query steps and options until successful query comple-
tion. As expected, the mean times taken to formulate accurate
queries increases in tandem with the level of query complexity.
However, all the means (as well as the 95% confidence interval
for the population means) are within 1 min, which indicates that
the interface can be efficiently used for formulating queries of
differing levels of complexity.

As participants were given only a limited time for (5-min) prac-
tice session using QBC, some participants took an additional time
to familiarize themselves with the GUI interface. These par-
ticipants took longer times (than the other users) to formulate
queries. They clicked directly on the displayed options (like se-
lecting options on a desktop application) instead of the designated
buttons (e.g., drop down keys, hot keys, shift and select keys) of
the form when choosing options. This resulted in the variations
(as above) in the time taken to formulate queries.

Generally, participants took the longest times to formulate
complex queries. There are basically two reasons for this. First,
the number of query steps is larger. Second, participants need
to employ more reasoning in terms of database operations and
sequences of database operations to formulate queries correctly.
However, participants were able to resolve any difficulty by the
facilitation of structure provided by the system for a chosen con-
cept. The standard deviation for the times taken to formulate
queries is also the highest for complex queries. The reason for
this higher variation is explained. First, at one extreme, some
participants were able to reason very quickly when performing
queries sequences of algebra operations. At the other extreme,
some other participants took more time to figure out the correct
sequences of algebra operations.
6.3.3 Query Accuracy Score

The query accuracy score is defined as the percentage of ac-
curate queries formulated on the first attempt for a test question.
Table 4 shows the means of the query accuracy score for the three
types of queries. The mean for a simple query is 83%). For com-
plex queries, the mean score dropped slightly to 85.6% as partici-

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

pants needed to use more reasoning and time to formulate queries
correctly. Overall, the high mean query accuracy scores recorded
prove that the QBC interface is simple to use even for formulating
complex queries.
6.3.4 Subjective Ratings After-Scenario Questionnaire

(ASQ) Scores
The mean ratings (and standard deviations) for each ASQ item

and for the overall ASQ are shown in Table 5. Overall, the
means for each ASQ item and the overall ASQ score indicate
that participants were highly satisfied with the QBC interface for
formulating queries of varying complexities. As expected, the
participant satisfaction levels were highest for simple queries, as
these queries are the easiest and fastest to complete (see Table 3).
The satisfaction levels decreases marginally as the level of query
complexity increases (higher ASQ score indicates lower satisfac-
tion). Thus, it can be concluded that participants are highly satis-
fied with the QBC for formulating simple, medium, and complex
queries, both in terms of ease of use and time for successful com-
pletion of task, that is, query formulation.
6.3.5 Gradual Learning Curve

It is little challenging for the semi-skilled users to perform mul-
tiple patient query involving data from a single patient query (e.g.,
query 14: Get all patients who are suffering from the same prob-
lem as a specific patient (e.g., Patient X)). A training support can
be prepared for such queries, in the form of interactive examples
(similar examples). It is expected that the users can acquire the
skills.

6.4 Evaluation
Table 6 gives the evaluation of the proposed approach with

respect to health users. The query formulation effort and the lan-

Table 4 Mean for query accuracy score.

Query Complexity Mean (in percentage)
Simple 83
Medium 92
Complex 85.6

Table 5 Means and standard deviations for ASQ scores.

Query Complexity ASQ Item 1a ASQ Item 2b Overall ASQ
Mean SD Mean SD Mean SD

Simple 1.88 1.19 1.83 1.03 1.86 1.11
Medium 2.08 1.03 2.14 1.03 2.11 0.95
Complex 2.45 1.22 2.39 1.30 2.42 1.26

aASQ Item 1 measures satisfaction with “ease of completion” of the task.
bASQ Item 2 measures satisfaction with “time to complete” the task.

Table 6 Evaluation of the proposed approach.

Query
Languages

Expression Formulation Effort Language: Query Capability

Thinking Input Probability
of Error

Training
requirement

Application
dependent

Database
dependent

Functionality
and selectivity

Domain High Medium Medium High Yes No High
Specific QL
(AQL)

(Clerical,
Syntactic)

(Table 1)

High-Level
QL Support
(QBC)

Low Low Low Low Yes Yes Relationally
Complete
Sufficient for
health users
(Table 1)

guage power are the evaluation parameters. The query (expres-
sion) formulation effort further includes thinking, input, probabil-
ity of error and training. Input refers to the amount of human level
effort required to express the request. When the interaction is via
a keyboard, this may be measured by the number of keystrokes.
When pointing devices are used, a good measure of input is the
number of pointed objects. The language power (query capabil-
ity) is how much a user can do with a language. It considers the
application dependency, the database dependency, the functional-
ity and the selectivity. Table 6 shows that the query formulation
effort required for QBC is low and the functionality provided is
sufficient according to the EHR user’s need.

7. Related Studies

Many efforts are made to create query language interfaces [44].
A query interface for searching EHRs temporal patterns is dis-
cussed in Ref. [42]. RetroGuide, enables non-experts to formu-
late query tasks using a step-based, patient-centered paradigm
inspired by workflow technology [38]. It has been compared to
SQL and proposes a research for further development of a novel
query paradigm for EHR data. A recent research explored how to
implement access control for PHRs through standard relational
database queries [35]. vSPARQL helps to access relevant content
by querying against view definitions in semantic web for biomed-
ical ontologies [36]. For effective MEDLINE document retrieval,
a query reformulation technique has been described [37].

MUMPS (Massachusetts General Hospital Utility Multi-
Programming System) is a programming language created in
the late 1960s, originally for use in the healthcare industry. It
is currently used in electronic health record systems as well as
by multiple banking networks and online trading/investment ser-
vices [23]. Due to its programming nature, it cannot be used for
making queries to EHRs. Further, a search engine can be im-
plemented to be on the top of a database. The approach suffers
from the lack of returning precise and accurate answers. Thus,
all these provide an inadequate support to express a query. It has
been found that AQL cannot support clinicians. AQL or a similar
query language requires the use of domain knowledge (stored in
the form of archetypes) [5]. Users find it difficult to write AQL
syntax. An alternative is to use an AQL query builder [8]. It of-
ten limits the query expressiveness. QBE [7], Query By Template
(QBT) [15] and Information Requirement Elicitation (IRE) [16]
were investigated. Their study has led to the design of the QBC
proposal.

The information model given by openEHR and HL7 has a very

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

complex schema for representing the health record [19], [20].
One solution proposed is schema summarization [21]. It repre-
sents the original complex schema with a smaller and conceptu-
ally simpler schema. It helps the users explore the schema, but
still requires the knowledge of the schema by skilled/semi-skilled
medical workers.

The challenge in the healthcare domain is the unknown
schema. The solution can be schema-free XQuery [18], but the
end-users are still uncomfortable in using it because of the re-
quirement of a partial knowledge of the schema. XGI [34] is an
XQuery graphical interface designed for inexperienced biomed-
ical researchers to effectively query different XML data sources.
It is unable to capture the full complexity and the variability of
XQuery but still can fulfill most of their desired needs. It requires
underlying schema knowledge. Similarly, Natural Language in-
terfaces help users avoid the burden of learning logic-based lan-
guage [29]. However, these are difficult to build. These also suf-
fer from problems of the linguistic variability and ambiguities. A
form based approach has limitations, such as, designing a new
form whenever a new need arises. Moreover, a person with a pro-
gramming background has to come each time to design a form
[14].

8. Summary and Conclusions

The present study examines the need to support “general pur-
pose” user-level QL interface for querying EHR databases. The
GUL is easy to use and has been engineered for clinicians using
concepts. It is based on a user-centric model. The framework can
be easily extended for various domains. One such emerging do-
main is the biomedical research (e.g., data on genomics), where
capturing the context of information has also been identified as
an important requirement. Similar high level querying interfaces
can be proposed by presenting the user with user’s view of clinical
concepts, without requiring any intricate knowledge of an object
or stored procedures.

The bottom up approaches of providing high level interface
such as, QBE and XQBE in case of SQL and XQuery respec-
tively, are straightforward. However, it may take much more ef-
fort in case of AQL because AQL uses a mixture of Xpath and
SQL. This study has presented the semi-skilled users with the
top-down approach. The user is presented with a user’s view of
clinical concepts, without requiring any intricate knowledge of an
object or stored structures. The proposed QL offers a higher level
of usability for healthcare specialists who are well acquainted
with the parameters and concepts. Thus, this approach provides
medical persons a more active role in querying EHRs. Currently,
all the prevalent EHR standards (HL7, openEHR, CEN 13606)
are moving towards the archetype-based technology. Hence, the
proposed QL will serve as a model.

Reference

[1] Chan, H.C., Wei, K.K. and Siau, K.L.: Use-database interface: The
effect of abstraction levels on query performance, MIS Quarterly,
Vol.17, No.4, pp.441–464 (1993).

[2] Lewis, J.R.: Computer usability satisfaction questionnaires: Psycho-
metric evaluation and instructions for use, International Journal of
Human-Computer Interaction, Vol.7, No.1, pp.57–78 (1995).

[3] Apache Tomcat server 6, available from 〈http://tomcat.apache.org/〉.
[4] Archetype Query Language Description, available from

〈http://www.openehr.org/wiki/display/spec/
Archetype+Query+Language+Description〉.

[5] Chunlan, M., Heath, F., Thomas, B. and Sam, H.: EHR Query
Language (EQL)-A Query Language for Archetype-Based Health
Records, MEDINFO 2007, pp.397–401 (2007).

[6] Braga, D., Campi, A. and Ceri, S.: XQBE (XQueryBy Example): A
Visual Interface to the Standard XML Query Language, ACM Trans.
Database Syst., Vol.30, No.2, pp.398–443 (2005).

[7] Zloof, M.M.: Query-By-Example, Proc. National Computer Confer-
ence and Exposition (AFIPS ’75), pp.431–438 (1975).

[8] Ocean Informatics: Query builder, available from
〈http://www.oceaninformatics.com/Solutions/ocean-products/
Clinical-Modelling/Ocean-Query-Builder.html〉.

[9] European committee for Standardization, Technical committee on
Health informatics, Standard for EHR communication, available from
〈www.cen.eu〉.

[10] openEHR Foundation, available from 〈www.openehr.org〉.
[11] The HL7 organisation, available from 〈www.hl7.org〉.
[12] The ISO organization, available from 〈www.iso.org〉.
[13] Silberschatz, A., Korth, H. and Sudershan, S.: Database System

Concepts, Chapters on ‘Introduction, Data Models and Query Lan-
guages’, 5th Edition, ISBN 0-07-295886-3, McGraw-Hill Book Com-
pany (2005).

[14] Jagadish, H.V., Chapman, A., Elkiss, A., Jayapandian, M., Li, Y.,
Nandi, A. and Yu, C.: Making database systems usable, Proc. 2007
ACM SIGMOD International Conference on Management of Data,
Beijing, China, pp.13–24 (2007).

[15] Sengupta, A. and Dillon, A.: Query by Templates: A Generalized Ap-
proach for Visual Query Formulation for Text Dominated Databases,
IEEE ADL, pp.36–47 (1997).

[16] Sun, J.: Information Requirement Elicitation in M-Commerce - An In-
teractive Approach to Facilitate Information Search for Mobile Users,
Comm. ACM, Vol.46, No.12, pp.45–47 (2003).

[17] openEHR Java Reference Implementation Project, available from
〈http://www.openehr.org/projects/java.html〉.

[18] Li, Y., Yu, C. and Jagadish, H.V.: Schema-Free XQuery, VLDB,
pp.72–83 (2004).

[19] Beale, T., Heard, S., Kalra, D. and Llyod, D.: The openEHR
Reference Model: EHR Information Model (2008), available from
〈http://www.openehr.org/releases/1.0.2/architecture/rm/ehr im.pdf〉.

[20] HL7 Reference Information Model, available from
〈http://www.hl7.org/v3ballot/html/infrastructure/rim/rim.htm〉.

[21] Yu, C. and Jagadish, H.V.: Schema Summarization, VLDB, pp.319–
330 (2006).

[22] Scala, available from 〈http://www.scala-lang.org〉.
[23] MUMPS, available from 〈http://en.wikipedia.org/wiki/MUMPS〉.
[24] SNOMED (Systematized Nomenclature of Medicine) Clinical Terms,

available from 〈http://www.ihtsdo.org/snomed-ct/〉.
[25] Schuler, T., Garde, S., Heard, S. and Beale, T.: Towards automatic

generation of GUIs from archetypes, Studies in Health Technology and
Informatics, Vol.124, pp.221–226 (2006).

[26] GoK, M.: Introducing an openEHR-Based Electronic Health Record
System in a Hospital, Master thesis, University of Goettingen (2008).

[27] Beale, T. and Heard, S.: The openEHR Archetype Model-Archetype
Definition Language ADL 1.4, openEHR release 1.0.2, Issue date 12
Dec. (2008).

[28] Lift, available from 〈http://www.liftweb.net/〉.
[29] Marti, P., Profili, M., Raffaelli, P. and Toffoli, G.: Graphics, Hy-

perqueries, and Natural Language: An Integrated Aprroach to User-
Computer Interfaces, Proc. Int. Workshop on Advanced Visual Inter-
faces, Vol.36, pp.68–84 (1992).

[30] Siau, K.L., Chan, H.C. and Wei, K.K.: Effects of query complexity
and learning on novice user query performance with conceptual and
logical database interfaces, IEEE Trans. Systems, Man, and Cybernet-
ics - Part A: Systems and Humans, Vol.34, pp.276–281 (2004).

[31] Commarford, P.M.: An investigation of text throughput speeds asso-
ciated with pocket PC input method editors, International Journal of
Human-Computer Interaction, Vol.17, No.3, pp.293–308 (2004).

[32] Greenblatt, D. and Waxman, J.: A study of three database query
languages, Databases: Improving usability and representativeness,
Shneiderman, B. (Ed.), pp.76–87 (1978).

[33] Beale, T. and Heard, S.: openEHR Architecture, The openEHR foun-
dation, release 1.0.2 (2008).

[34] Li, X., Gennari, J.H. and Brinkley, J.F.: XGI: A Graphical Interface
for XQuery Creation, AMIA 2007 Symposium Proceedings, pp.453–
457 (2007).

[35] Sujansky, W.V., Faus, S.A., Stone, E. and Brennan, P.F.: A method
to implement fine-grained access control for personal health records

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

through standard relational database queries, Journal of Biomedical
Informatics, Vol.43, No.5, pp.S46–S50 (2010).

[36] Shaw, M., Detwiler, L.T., Noy, N., Brinkley, J. and Suciu, D.: vS-
PARQL: A view definition language for the semantic web, Journal of
Biomedical Informatics, Vol.44, No.1, pp.102–117 (2011).

[37] Yoo, S. and Choi, J.: On the query reformulation technique for effec-
tive MEDLINE document retrieval, Journal of Biomedical Informat-
ics, Vol.43, No.5, pp.686–693 (2010).

[38] Huser, V., Narus, S.P. and Rocha, R.A.: Evaluation of a flowchart-
based EHR query system: A case study of RetroGuide, Journal of
Biomedical Informatics, Vol.43, No.1, pp.41–50 (2010).

[39] Class Diagrams of RM classes, available from
〈http://www.openehr.org/uml/release-1.0.1/Printable/
Printable101.html/#Diagrams〉.

[40] Opereffa Project, available from 〈http://opereffa.chime.ucl.ac.uk/
introduction.jsf〉.

[41] REST Based Services and Storage Interfaces for openEHR Implemen-
tations, available from 〈http://www.imt.liu.se/ erisu/2010/EEE-Poster-
multipage.pdf〉.

[42] Plaisant, C. et al.: Searching Electronic Health Records for Temporal
Patterns in Patient Histories: A Case Study with Microsoft Amalga,
Proc. AMIA Annu. Symp., pp.601–605 (2008).

[43] Ocean Informatics, available from 〈www.oceaninformatics.com〉.
[44] Catarci, T., Costabile, M.F., Levialdi, S. and Batini, C.: Visual query

systems for databases: A survey, Journal of Visual Languages and
Computing, Vol.8, No.2, pp.215–260 (1997).

[45] Thurston, L.M.: Flexible and Extensible Display of Archetyped Data:
The openEHR Presentation Challenge, Proc. HIC 2006 and HINZ
2006, pp.28–36 (2006).

[46] Sachdeva, S., Yaginuma, D., Chu, W. and Bhalla, S.: AQBE–QBE
Style Queries for Archetyped Data, IEICE Trans. Inf. and Syst.,
Vol.E95-D, No.3, pp.1–11 (Mar. 2012) (to appear).

[47] Clinical Knowledge Manager, available from
〈http://openehr.org/knowledge/〉.

Appendix

A.1 QBC for Queries 1-14

Algebra Operations:

A.1.1 Project
Query 1. Get a patient’s current medication list (Sample Query

in Ref. [5], with the following AQL expression)
QBC interface:
Step 1. The concept ‘medication list’ is known to the user. The
user identifies ‘medication list’ for the selected patient.
Step 2. [Project] single patient data
(archetype description of ‘medication list’ presented by the sys-
tem).

Query 2. Query on structure of EHR
Retrieve all compositions’ name value, context start time and
composer name from a specific EHR (Sample Query in Ref. [4]).
QBC interface:
Same steps as query 1, with ‘composition’ as concept.

Query 3. Return the value of laboratory-glucose for a specific
patient.
QBC interface:
Step 1. The concept ‘laboratory-glucose’ is known and selected
by the user for a specified patient.
Step 2. The required archetypes connected with ‘laboratory-
glucose’, that is, ‘encounter’ and ‘laboratory-glucose’ are
prompted to the user in the form of tabular data.
[Project] single patient data
(archetype description of ‘laboratory-glucose’ presented by the
system).
(archetype description of ‘encounter’ presented by the system).

A.1.2 Restrict and Project
Query 4. Presented in section ‘QBC example’.
Query 5. Get BMI values which are more than 30 kg/m2 for a

specific patient.
QBC interface:
Step 1. The concept ‘body mass index’ is known and selected by
the health worker for a specified patient.
Step 2. The required archetypes connected with ‘body mass
index’, that is, ‘report’ and ‘body mass index’ are prompted in
the form of tabular data.
[Restrict] and [Project] single patient data
(archetype description of ‘body mass index’ presented by the
system).
The system supports facilities for specifying ‘restrict’ operation
(body mass index > 30).

Query 6. Get all HbA1c observations that have been done
in the last 12 months for a specific patient (sample query from
Ref. [6])).
QBC interface:
Step 1. The concept ‘lab test-hba1c’ is known and selected by
the health worker for a specified patient.
Step 2. The required archetypes connected with ‘lab test-hba1c’,
that is, ‘report’ and ‘lab test-hba1c’ are prompted to the user in
the form of tabular data.
(archetype description of ‘lab test-hba1c’ presented by the sys-
tem).
(archetype description of ‘report’ presented by the system).
[Restrict] and [Project] single patient data
The system supports facilities for specifying ‘restrict’ operation
(report - last 12 months).

A.1.3 Rename
Query 7. Find all blood pressure (BP) values for a specific pa-

tient, showing their systolic and diastolic blood pressure values;
also change the tagname of systolic BP as ‘Sys’ and Diastolic BP
as ‘Dias’.
Same steps as query 4, with change of operation as ‘rename’.

A.1.4 Existential Query
Query 8. Return all BP elements having a position in which

the BP was recorded.
QBC interface:
Same steps as query 7, with the operation ‘Exist’ on the position
attribute.

A.1.5 Negation
Query 9. Get the blood pressure values where the position is

not standing.
QBC interface:
Same steps as query 7, with the operation ‘Negate’ on the position
attribute.
Multiple Patient (Population Query)

A.1.6 Intersect
Query 10. Find all the patients who have diabetes but no record

of hypertension diagnosis.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

QBC interface:
Step 1. The concept ‘problemdiagnosis’ is selected by the health
worker. The user selects multiple patient (population) query.
Step 2. The required archetypes connected with ‘problemdiagno-
sis’ that is, ‘problem list’ and ‘problemdiagnosis’ are prompted
to the user in the form of tabular data.
It is performed in the following iterative micro-steps:
(i) [Project] [Restrict] on ‘problemdiagnosis’.
(archetype description of ‘problemdiagnosis’ presented by the
system).
The system supports facilities for specifying ‘restrict’ operation
(problemdiagnosis = diabetes).
(ii) [Project] [Restrict] on ‘problemdiagnosis’.
(archetype description of ‘problemdiagnosis’ presented by the
system).
The system supports facilities for specifying ‘restrict’ operation
(problemdiagnosis != hypertension).
(iii) Result of (i) [Intersect] Result of (ii)
The system supports facilities for specifying ‘intersect’ operation.

A.1.7 Aggregate Operations
Query 11. Get the number of all the patients with diabetes.

QBC interface:
Step 1. The concept ‘problemdiagnosis’ is selected by the health
worker. The user selects multiple patient (population) query.
Step 2. The required archetypes connected with ‘problemdiagno-
sis’, that is, ‘problem list’ and ‘problemdiagnosis’ are prompted
to the user in the form of tabular data.
[Restrict] [Aggregate] operation.
(archetype description of ‘problemdiagnosis’ presented by the
system).
The system supports facilities for specifying COUNT (aggregate
operation) and ‘restrict’ operation (problemdiagnosis = diabetes).

A.1.8 Complex Queries
Scenario 1 (Population multiple patients Query) Restrict, Ag-

gregate, Intersect

Query 12. Get the number of all patients with diabetes who
have HbA1c results greater than 7.0 in the last 12 months (Sam-
ple query from Ref. [6])).
QBC interface:
This query involves solving these 2 simple queries:
(i) Get all patients with diabetes.
(ii) Get all patients who have HbA1c observations > 7 in the last
12 months.
Perform ‘intersect’ on the results obtained from above queries.
For query (i),
Step 1. The concept ‘problemdiagnosis’ is known and selected by
the health worker. The user selects multiple patient (population)
query.
Step 2. The required archetypes connected with ‘problemdiagno-
sis’, that is, ‘problem list’ and ‘problemdiagnosis’ are prompted
to the user in the form of tabular data.
[Restrict] and [Project] multiple patient data.
(archetype description of ‘problemdiagnosis’ presented by the
system).

The system supports facilities for specifying ‘restrict’ operation
(problemdiagnosis = diabetes).
For query (ii),
Step 1. The concept ‘lab test-hba1c’ is known and selected by
the health worker. The user selects multiple patient (population)
query.
Step 2. The required archetypes connected with ‘lab test-hba1c’,
that is, ‘report’ and ‘lab test-hba1c’ are prompted to the user in
the form of tabular data.
(archetype description of ‘lab test-hba1c’ presented by the sys-
tem).
(archetype description of ‘report’ presented by the system).
[Restrict] and [Project] multiple patient data.
The system supports facilities for specifying ‘restrict’ operation
(lab test-hba1c > 7, report - last 12 months).
Perform ‘intersect’ on results obtained from query (i) and query
(ii) followed by [Aggregate]
The system supports facilities for specifying COUNT (aggregate
operation).
Scenario 2 (Population Query) Nested, Negation and Join

Query 13. Retrieve all patients who have not been discharged.
QBC interface:
Step 1. The concepts ‘admission’ and ‘discharge’ are known to
the health worker and the user selects them. The user selects mul-
tiple patient (population) query.
Step 2. [Nested] [Negate] and [Join] operation
(archetype description of ‘admission’ and ‘discharge’ presented
by the system).
It is performed in the following iterative micro-steps:
(i) [Project] for multiple patients from ‘admission’.
(ii) [Project] for multiple patients from ‘discharge’.
(iii) [Join] (i) and (ii) with [Negate] on (ii) (i.e., admission (en-
counter id) ‘not in’ discharge (encounter id)).
Scenario 3. Multiple Patient query involving data from Single

Patient query

Query 14: Get all patients who are suffering from the same
problem as a specific patient (e.g., Patient X).
QBC interface:
(i) [Project] single patient query on problem diagnosis for X.
(ii) [Restrict] population query on problem diagnosis.
(problem diagnosis = result of step (i)).

Shelly Sachdeva received her B.E.
(Hons) and M.Tech. (Hons) degrees in
Computer Science, in India in 2001 and
2004, respectively. She has teaching
experience of 8 years. She is currently
pursuing Ph.D. from University of Aizu,
Japan. Her main research interests are
in the area of electronic health record

databases, the high-level query interfaces, and data quality for
health informatics.

c© 2012 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.20 No.2

Subhash Bhalla received his B.Tech in
Computer Science in 1978. He received
his Ph.D. degree in Computer Science in
1984 from Indian Institute of Technol-
ogy, Delhi, India. His research interests
include the design of new databases to
support multimedia information systems,
data modeling and transactions and dis-

tributed algorithms. He is currently working as professor at Uni-
versity of Aizu, Japan. He has 24 years of experience as faculty,
scientist and researcher.

c© 2012 Information Processing Society of Japan

