
IPSJ Transactions on Advanced Computing Systems Vol.5 No.1 80–87 (Jan. 2012)

Regular Paper

Adaptive Data Compression on 3D Network-on-Chips

Yuan He1,a) HirokiMatsutani2 Hiroshi Sasaki2 Hiroshi Nakamura2

Received: May 11, 2011, Accepted: September 11, 2011

Abstract: The three-dimensional Network-on-Chip (3D NoC) is an emerging research topic exploring the network
architecture of 3D ICs that stack several wafers or dies. As such topics being extensively studied, it is found negative
impacts of 3D NoC’s vertical interconnects are raising concerns considering their footprint sizes and routability degra-
dation. In our evaluation, we found such vertical bandwidth limitation can dramatically degrade system performance
by up to 2.3×. Since such limitations come from physical design constraints, to mitigate performance degradation, we
have no other choice but to reduce the amount of communication data on-chip, especially for those data moving verti-
cally. In this paper, therefore, we carry out a study of data compression on 3D NoC architectures with a comprehensive
set of scientific workloads. Firstly, we propose an adaptive data compression scheme for 3D NoCs, taking account of
the vertical bandwidth limitation and data compressibility. Secondly, we evaluate our proposal on a 3D NoC platform
and we observe that the compressibility based adaptive compression is very useful against incompressible data while
the location-based adaptive compression is more effective with more layers for the 3D NoC. Thirdly, we find that in
a bandwidth limited situation like a CMP with 3D NoCs having multiple connected layers, adaptive data compression
with location-based control or with both compressibility and location based control is very promising if the number of
layers grows.

Keywords: 3D Network-on-Chip, data compression, Chip-Multi Processor

1. Introduction

As semiconductor technology progresses, the number of pro-
cessing cores integrated on a single chip has continually in-
creased. As a proof, commercial/prototype chips that have 64 or
more cores have already been produced [18], [19]. Meantime, to
meet the increasing demand of on-chip bandwidth, Network-on-
Chips (NoCs) [20] have been widely adopted as a replacement of
traditional bus-based interconnects for this many-core paradigm.

Recently, the concept of NoCs is being extended to ICs that
have three-dimensional structures, namely the 3D NoC [21], in
order to mitigate the wire delay and wire energy which are in-
creasingly posing severe problems to modern VLSI design. Tra-
ditionally, the wire delay can be mitigated by inserting inverting
buffers (i.e., repeaters) on long wires, but the buffers themselves
add gate delay and consume energy; thus repeater insertion is not
a fundamental solution to the problem. With 3D ICs, a number
of wafers or dies are stacked very closely (e.g., 5 µm to 50 µm);
thus a 3D structure significantly reduces wire length, wire delay,
and wire energy compared to 2D counterparts.

For these reasons, 3D NoC is an emerging research topic, and
its network topology [22], router architecture [23], [24], and rout-
ing algorithms [25] have already been extensively studied.

However, many studies on 3D IC architectures have underes-
timated the negative impact of vertical interconnects, as reported
in Ref. [5]. Unfortunately, these vertical interconnects, such as

1 Graduate School of Engineering, The University of Tokyo, Bunkyo,
Tokyo 113–8656, Japan

2 Graduate School of Information Science and Technology, The Univer-
sity of Tokyo, Bunkyo, Tokyo 113–8656, Japan

a) he@hal.ipc.i.u-tokyo.ac.jp

through-silicon vias (TSVs) and microbumps, also consume a
certain amount of area. In addition, they affect the routability
of wires negatively, because some vertical interconnects inter-
fere with metal layers. Thus, although 3D IC technologies are
believed sound beyond Moore’s Law, their vertical bandwidth is
still a major concern. In practice, we find that such vertical band-
width limitation can severely degrade the system performance by
up to 2.3× (see Section 2).

Since vertical bandwidth limitations come from the physical
design constraints mentioned above, to mitigate the performance
degradation, we have no other choice but to reduce the amount of
communication data, especially for those data moving vertically.
In this paper, therefore, we carry out a study of data compression
on 3D NoC architectures with a comprehensive set of scientific
workloads.

The contributions of this paper are the following. Firstly, to
the best of our knowledge, this is the first work to characterize
and evaluate the effect of data compression on 3D NoCs. Sec-
ondly, we are the first to introduce and explore adaptive control
of data compression on 3D NoCs. Thirdly, with our evaluation
results, we show that the three adaptive compression policies are
very promising compared to static compression when applied on
3D NoCs.

The remainder of this paper is organized as follows. Section
2 briefly surveys 3D IC technologies and introduces the 3D NoC
model we focus on. Section 3 discusses the compression tech-
nique to be used and our adaptive compression scheme to be in-
vestigated. The experimental platform, including the simulation
model and workloads, is described in Section 4, while Section 5
is devoted to evaluation results and insights into the effects of data

c© 2012 Information Processing Society of Japan 80



IPSJ Transactions on Advanced Computing Systems Vol.5 No.1 80–87 (Jan. 2012)

Fig. 1 2D and 3D NoC topologies.

compression on 3D NoCs for CMPs. Section 6 overviews related
work, and finally, this paper is concluded in Section 7.

2. 3D NoC Design and Its Limitations

3D ICs bring us many benefits like increased system integra-
tion, reduced wire length and increased data locality, but how
different wafers or dies are stacked vertically remains an open
question for the research community and the industry. Various
interconnection technologies of 3D ICs have been developed for
the purpose of vertical stacking, such as wire-bonding, micro-
bump [1], [2] and through-silicon via (TSV) [3], [4].
• Wire-bonding is a die-to-die interconnection formed with
bonding wires. It has a footprint recorded from 35 to
100 um [4]. It is the most common approach and has been
highly utilized by System-in-Package designs. The limitation
is the number of wires and their density as only edges of a chip
is used for the purpose of bonding. Obviously, the bonding
wire length can be the cause of a considerable communication
delay.
• Micro-bump forms a die-to-die interconnection through sol-
der balls. It has a footprint known to be from 10 to 100 um [4].
This approach is generally limited to stack only two dies with
face-to-face connections but it can also be used to form connec-
tions of more than two dies with face-to-back design although
this is believed inefficient because of factors like heat.
• Through-silicon via (TSV) is a wafer-level intercon-
nection making use of via-holes formed through multiple
wafers. The footprint of TSV is 5 to 50 um thus it has the
potential of offering a better interconnection density than wire-
bonding and micro-bump. However, it suffers from high manu-
facturing cost due to the fact that an extra process to form these
interconnects [4]. Another constraint of TSV comes from rout-
ing, as TSV interconnects interfere with gates and wires. So
considering yield and cost, the number of TSV interconnects
has major impact in design and it should be considered care-
fully ahead of manufacturing [5].
As briefly explained above, all three interconnection technolo-

gies of 3D ICs have a limitation of going vertical, that is, the
die-to-die or wafer-to-wafer interconnection can become a band-
width bottleneck. With larger numbers of such interconnects, we
are facing the difficulty of design complexity and cost of manu-
facturing. To depict this vertical bandwidth limitation, we employ

Fig. 2 System performance degradations under link limitations for 3D NoC.

a 3D NoC model with heterogeneous link widths, which is, for
vertical links that are used to move data between dies or wafers,
we model them as having smaller bit widths compared to hori-
zontal links. In our study, we also try to capture the effects from
different numbers of layers (dies/wafers). We have our 3D NoCs
modeling 2, 4 and 8 layers. An example of the baseline 2D NoC
and three 3D NoC configurations are illustrated in Fig. 1. A grey
square represents a tile of the modeled NoCs while the blue and
orange arrows denote horizontal and vertical links, respectively.

Moreover, Fig. 2 presents an example of how this link limi-
tation can affect the system performance. Please note the de-
tailed evaluation conditions and environment will be shown in
Section 4. Both 2D and 3D NoCs are configured in the same way
except their link widths. For this particular evaluation, we tested
a 2D NoC having 128-bit links and an 8-layer 3D NoC. For the
3D NoC, its horizontal links are set to 128-bit while its vertical
links are 16-bit wide. Both configurations assume a total of 16
cores. In this evaluation, the execution time of the same work-
load is being increased by up to 2.3×. As shown in Fig. 2, these
numbers are far larger than the the 2D NoC with 128-bit links.
Thus, vertical link bandwidth limitation is a major bottleneck for
any system moving to 3D design.

In our network model, as shown in Fig. 3 (b), basic building
blocks (tile) of our 3D NoCs are connected with each other by
routers and links. For comparison purpose, we also include the
tile of a 2D design in Fig. 3 (a), whose router is at most having
six ports and two of them are used to connect to a processor core
and an L2 cache bank. For 3D NoCs, two more ports may be
added to the router and through two additional links, different
dies/wafers are connected. The network routing scheme is also
re-defined since X-Y routing for 2D is not sufficient for the 3D

c© 2012 Information Processing Society of Japan 81



IPSJ Transactions on Advanced Computing Systems Vol.5 No.1 80–87 (Jan. 2012)

Fig. 3 Tiles of 2D and 3D NoCs.

design. As shown in the last paragraph, because of the layer-to-
layer bandwidth limitation, our 3D NoC models narrower vertical
links. More details on configurations of the 3D NoC model are
covered in Section 4 where we discuss the simulation model.

3. Data Compression on NoCs

Data compression is a popular architectural technique and it
has been applied in many fields to conserve on-chip/off-chip
bandwidth, to enlarge cache/memory capacity or to reduce com-
munication latency. In our work, we use data compression to
conserve bandwidth and to reduce latency for 3D NoCs. In this
section, we discuss the compression technique in details. We are
going to introduce the compression algorithm, frequent pattern
compression, at first. After which, we will focus on implementa-
tion issues of this compression algorithm. And finally, our pro-
posal of adaptive control on compression will be presented.

3.1 Compression Algorithm and Implementation
There are several state-of-the-art data compression algo-

rithms which have been applied on NoCs, including frequent
pattern compression (FPC) [10] and frequent value compres-
sion (FVC) [11], [12]. In this paper, we select FPC because of
its simplicity and effectiveness. FPC is a significance-based com-
pression scheme having small compression/de-compression over-
heads; unlike FVC, it has no synchronization overhead. FPC
compresses frequent patterns appeared in data packets. In our
case, there are seven such patterns with which we seek to com-
press each 32-bit of data and a full description of these patterns
are presented in Fig. 4. Of all these patterns, the selection was
made upon their frequencies. In Ref. [10], it is found that zero
words, words with 8-bit data and words with 16-bit data are the
most frequent patterns for workloads from SPLASH-2 [15] and
NPB 3 [16]. Therefore, we selected these patterns as shown in
Fig. 4. For all seven data patterns, we assign a 3-bit index to each
of them. Along with another index for uncompressed data words,
there are in total eight indexes which are the compression over-
head. For example, a data word of 32 zeros will be replaced with
an index of 000 after compression, while an 8-bit sign-extended
data word will be replaced with an index of 001 plus the 8-bit
data. Please note that although indexes are fixed to 3-bit, the
actual data appended to the index may be different in size. For
the last index which is “111,” the data is uncompressed which
results in a negative effect after the combination of index and
data. FPC has advantages of high compression ratio and paral-

Fig. 4 Patterns of the frequent pattern compression.

Fig. 5 An example of the frequent pattern compression.

lel compression. For 128-bit data, we can always split it into 4
parts and compress all parts with four compression circuits at one
time. But since FPC employs variable length compression, the
de-compression may have to be done in a serial manner.

Regarding the implementation, similar to Refs. [10], [11], [12],
data compression/de-compression circuits in our work are as-
sumed to be implemented in network interfaces (NI) of our 3D
NoCs. At NIs, any injecting data traffic will be compressed and
receiving data traffic will be de-compressed; but it is important
to note that the enhanced NIs will also have area, latency and
energy overheads. The compression and de-compression pro-
cesses are carried out for data packets only. In our evaluation,
any data packet has a 512-bit body which is the size of a cache
line. When compression is applied, the 512-bit data is broken
into 32-bit pieces, which are then encoded with the eight patterns
shown in Fig. 4. If the flit size is 128-bit and the compression
ratio is between 25% and 50% (like the one shown in Fig. 5), the
original packet is composed of a header flit and 4 body flits while
the compressed packet carries a header flit and 3 body flits. This
results in a 5-flit to 4-flit packet size reduction.

As we mentioned earlier, the compression process of FPC can
be done in parallel for several data words at a time. As stated
in Ref. [6], this compression process is only taking one cycle per

c© 2012 Information Processing Society of Japan 82



IPSJ Transactions on Advanced Computing Systems Vol.5 No.1 80–87 (Jan. 2012)

data word, thus with multiple parallel encoders, the timing over-
head of compression is one cycle per packet. For de-compression,
since FPC is a variable length compression scheme, it is unable
to carry out the de-compression in parallel. But as proposed in
Ref. [10], it is able to overlap the network latency with part of
this de-compression latency. In details, the receiving and de-
compression pipeline is designed to work with only a fraction of a
packet received. After the first body flit containing indexes of all
compressed words (the compression overhead) is received, there
is a pre-computation process in order to obtain the length of com-
pressed data before its arrival. Hence, the de-compression does
not need to rely on receiving the entire compressed packet. By
applying this improvement, the de-compression timing overhead
can be kept within two cycles per packet. Thus, in our evalua-
tion, we assume one cycle of compression delay and two cycles
of de-compression delay for any data packet. However, for in-
compressible packets, their sizes, in terms of number of flits, will
be the same or even increased after the compression. This opens
up another opportunity for adaptive control in order to avoid neg-
ative effects, such as increased packet latency due to having more
flits or effortless de-compression.

In Ref. [10], it is recorded that with 45 nm process, the area
overhead and dynamic power consumption of compressor/de-
compressor circuits are 0.183 mm2 and 0.273 W, respectively. In
our paper, since both the packet size and the compression/de-
compression algorithm and process are the same as Ref. [10], we
expect a similar area overhead. Power issue is not discussed in
our paper and is left for future work.

3.2 Proposed Adaptive Compression for 3D NoCs
In Sections 2 and 3.1, we have discussed our 3D NoC model

and its vertical bandwidth limitation. To help mitigating the ver-
tical bandwidth limitation and making better use of FPC, we
present an adaptive compression scheme for 3D NoCs. Based
on FPC, our adaptive compression scheme utilizes compressibil-
ity and location based mechanisms to control the compression
process while static FPC employs a constant-on rule that every
data packet gets compressed. For any data packet waiting to be
injected to the network, we have set up two policies to determine
whether the compressor should be invoked or not. There is also a
third policy which aggregates these two proposed policies.
• Compressibility based control requires the compression
process, which incurs overhead of compression. The reason
for proposing this policy is that negative compressibility and
effortless de-compression should always be avoided. After the
actual compression process, we can identify the size of the
compressed packet. If it is known that the compressed packet
cannot derive any flit reduction from the original packet, then
the network interface disregards the compressed packet and in-
stead it splits and injects the original packet. With this pol-
icy, for packets whose compressibility is not good enough for
any flit reduction, we can save the timing overhead of sending
more flits or carrying out an effortless de-compression when
compared to static compression. However, if the data is in-
compressible, we lose one cycle per packet when compared to
no compression. When this is the only adaptive control im-

Fig. 6 Compressibility-based adaptive control.

Fig. 7 Location-based adaptive control.

plemented, the compressibility is always checked in spite of
the packet direction. Figure 6 gives three examples of this
adaptive control and only the third case has the compression
incurred since that packet has less number of flits after com-
pression.
• Location based control is simple. It does not require the
compression process. As shown in Fig. 7, this method detects
packets going across layers, such as Fig. 7 (b) and Fig. 7 (c),
and compresses them. Layer crossing packets can be easily
detected by checking several bits of the packet header indicat-
ing the destination node. There are two reasons for proposing
this policy. Firstly, we believe 3D NoC will grow with increas-
ing number of layers, which means more traffic will be layer-
crossing. Secondly, if most of the compressible packets are
crossing layers, compressing these traffic is more promising
since they also suffer from the vertical bandwidth limitation as
described in Section 2.
• Compressibility and Location based control is the
logical conjunction of the above two policies. A layer-crossing
packet will be examined for compressibility to determine if its
compressed form is going to be injected to the network. Please
note that packets travelling within the same layer will neither
be checked for compressibility nor be compressed. Like the
second policy, this policy also targets at the vertical bandwidth
limitation. However, it removes any negative compressibility
or effortless de-compression for these layer-crossing packets
and it also removes the timing overhead of the compressibility
check for packets traveling in the same layer. It has one cycle
of timing overhead if a layer-crossing packet is incompressible
when compared to no compression. Three examples are shown
in Fig. 8, while only the third one has compression incurred
since both conditions are satisfied.
To successfully implement this adaptive control on FPC, it is

necessary to have a bit in the header indicating the compression
status for all data packets. When compressed, this bit in the

c© 2012 Information Processing Society of Japan 83



IPSJ Transactions on Advanced Computing Systems Vol.5 No.1 80–87 (Jan. 2012)

Table 1 Simulation configurations.

Component Parameter

Processors 16

L1 Cache Each core has a total of 64 KB of private L1 cache (split I and D),
which is 4-way set-associative and has 64 bytes per line and 1 cycle
of access latency.

L2 Cache Shared L2 cache divided into 16 banks. Each bank is 256 KB, 16-
way set-associative and has 6 cycles of access latency.

Memory 4 GB of DRAM with 160 cycles of access latency.

Topology 16 nodes organized in three 3D Mesh topologies, 4 by 2 by 2 layers,
2 by 2 by 4 layers and 2 by 1 by 8 layers.

Network Interface 2-stage pipeline for splitting packets into flits and flit injection; and
2-stage pipeline for flit reception and combining flits into a packet.
The compression/de-compression circuits are implemented here.

Router 3-stage pipeline with X-Y-Z routing, wormhole switching and 3 vir-
tual channels.

Link Uneven link width is implemented; the planar link width is 128-bit
and the vertical link width is 16-bit.

Compression Overhead For all compression methods, compression takes 1 cycle while de-
compression takes 2 cycles. For compressibility based adaptive pol-
icy, the compressibility check is 1 cycle. For location-based adaptive
policy, the destination node detection does not cost any additional
cycle. Similarly for compressibility and location based adaptive pol-
icy, the compressibility check takes 1 cycle but it is only for packets
which travel across layers and this destination node detection does
not take any additional cycle.

Fig. 8 Compressibility- and location-based adaptive control.

packet header will be set to “1,” or this bit is set to “0” when
the packet is not compressed.

4. Experimental Platform

In this section, we are going to explain the experimental plat-
form in details. Firstly, we will quantify the parameters of our
simulation model; and secondly, we are going to briefly introduce
the workloads tested in our simulation.

For our 3D NoC model, our simulation is carried out for a 16-
core SNUCA CMP system with shared L2 cache using the Mul-
tifacet GEMS simulator [13] based on Simics [14]. To correctly
simulate data compression and its effect on NoCs, we have modi-
fied the detailed network model of GEMS. Each core has a pair of
dedicated instruction/data L1 caches and the L2 cache is divided
into 16 banks. The coherence model of caches includes MOESI
protocol with 2 distributed on-chip directories implemented on
the bottom layer. Directories are used to maintain coherence of
memory hierarchies and served as memory controllers; in our
simulation, directory entry access costs 6 cycles, same as the L2
cache. So any L2 cache miss at a core will result in a directory

access to locate the needed data, which is either in another core’s
L1 cache or in the main memory. The whole memory address
space is interleaved across these two directories, each of which is
also a channel to the main memory. The router has a fixed 3-stage
pipeline, wormhole switching and 3 virtual channels; the network
interface is implemented with a 2-stage pipeline. Compression al-
ways consumes one cycle of latency while de-compression takes
two cycles.

The simulation parameters also assume each core has 64 KB
of L1 cache split for instruction and data. Each L2 cache bank is
256 KB. Three 3D topologies are evaluated. One is having eight
cores per die and two stacked dies which forms a 4 by 2 by 2 3D
Mesh network. The other two are 4 cores stacked as 4 layers and
2 cores stacked as 8 layers, respectively. They form a 2 by 2 by
4 and a 2 by 1 by 8 3D Mesh topologies, one by another. Note
that all planar links for 3D NoCs are 128-bit wide and all vertical
links are 16-bit wide. We select these two link widths after con-
sidering the footprint of TSVs. Footprint of a TSV is much larger
than that of a wire or a driver cell. For example, a typical size of
via-last TSVs ranges from 5 to 20 um [5], while that of an inverter
cell is only 0.57 um by 2.47 um in the case of OSU’s free 45 nm
standard cell library. Furthermore, wire-bonding and microbump
are believed to be more area hungry according to Ref. [4] as we
mentioned in Section 2.

Routers in this 3D NoC model employ deterministic X-Y-Z
routing and 2 more ports are needed as connections to routers
at neighbor dies/wafers. Packet communication between layers
assumes that each 128-bit flit is transferred over 16-bit links in 8
cycles; however, routing and arbitration for vertical going flits are
not different from non-vertical going ones.

For simplicity, configurations are summarized in Table 1. We
use wormhole switching with credit-based flow control for both
horizontal and vertical transfers. We assume that the flow con-

c© 2012 Information Processing Society of Japan 84



IPSJ Transactions on Advanced Computing Systems Vol.5 No.1 80–87 (Jan. 2012)

Fig. 9 Normalized execution time with static/adaptive compression on 3D NoCs.

trol signals for vertical are implemented by TSVs, while those
for horizontal are implemented with metal wires.

In order to have a diverse performance evaluation, we selected
nine workloads from SPLASH-2 [15] and NPB 3 [16] suites for
our simulations with 16-core input. The NPB benchmark pro-
grams are compiled with OpenMP and problem size of Class S.

5. Results

Depending on memory access characteristics, on-chip band-
width requirements and compressibility of workload, data com-
pression on 3D NoCs can bring several benefits. In this sec-
tion, we are going to make clear how these benefits look like
in practice. We will discuss and quantify the normalized exe-
cution time for 3D NoCs under two compression schemes, static
and adaptive. Note that for adaptive compression, we applied
each policy separately. In total, there are four sets of results un-
der static compression (SC), compressibility-based compression
(AC1), location-based compression (AC2) and the conjunction of
AC1 and AC2 (AC1+2). These results are obtained with normal-
ization to execution time under no compression (NC) and they are
presented in Fig. 9 with each histogram representing a workload.

Firstly, static data compression on 3D NoCs is fairly effective.
Of the 27 cases (9 workloads with 3 topologies) we have tested,
only 4 of them show zero or negative performance improvement,
which means for these cases, the overhead of compression is not
well covered by the amount of network latency reduced. These 4
cases are, SC of BT on 4 by 2 by 2 in Fig. 9 (e) and SCs of EP on
2 by 1 by 8, 2 by 2 by 4 and 4 by 2 by 2 in Fig. 9 (f).

Secondly, adaptive control of data compression is more effec-
tive than SC. AC1 outperforms SC for all tested workloads and
configurations. This is supported by the fact that if compression
is beneficial, then AC1 is the same as SC, while if compression
is not carried out because of it results in more flits or no flit re-

duction, then we waste one cycle at the compressibility check,
but we save 2 cycles at de-compression and maybe latency at the
network. We found the improvement ranges from 1 to 5%, thus
avoiding incompressible packets is very useful. As we proposed,
AC2 performs better than SC with more layers. With topology
of 4 by 2 by 2, AC2 outperforms SC in only one case, between
AC2 and SC of fft on 4 by 2 by 2 in Fig. 9 (a); but this number
climbs up to 6 with topology of 2 by 1 by 8. The 6 cases are,
fft in Fig. 9 (a), ocean in Fig. 9 (b), radix in Fig. 9 (c), raytrace in
Fig. 9 (d), BT in Fig. 9 (e) and MG in Fig. 9 (h). Similarly, AC1+2
also outperforms SC with more layers; it can also be noted that
because of avoiding unnecessary compression which is harmful
on layer-crossing traffic, AC1+2 is better than SC for all work-
loads with topology 2 by 1 by 8.

Thirdly, between AC1 and AC2, AC2 misses chances of com-
pression for traffic travels within layer and it also suffers from un-
necessary compression for packets going across layers. For these
two reasons, AC1 is generally better than AC2 but with topology
of 2 by 1 by 8, it is observed that AC2 outperforms AC1 in two
cases as for raytrace and BT. This means the benefit gained by
compressing layer-wise packets with AC1 does not compensate
for its compression and de-compression overhead, while AC2’s
gain from compressing layer-crossing packets well exceeds its
unnecessary compression. Another reason is that with more lay-
ers, it is less possible for AC2 to lose chances to compress data
within a layer.

Finally, after combining the two policies, it is seen that AC1+2
outperforms AC2 in almost all cases with the same reason as AC1
outperforms SC. This means layer-crossing packets also favor
the compressibility check, which improves AC2 by denying all
incompressible layer-crossing packets. Another important obser-
vation is AC1+2 outperforms AC1 in two cases under topology of
4 by 2 by 2, which are fft and radix. However, this number grows

c© 2012 Information Processing Society of Japan 85



IPSJ Transactions on Advanced Computing Systems Vol.5 No.1 80–87 (Jan. 2012)

to 3 for topology of 2 by 2 by 4 with BT, EP and LU; and it fur-
ther grows to 4 for topology of 2 by 1 by 8 with radix, raytrace,
BT and MG. We can see AC1+2 also performs better while the
chip is implemented with more layers. This is the same as AC2;
if having more layers, AC1+2 also loses less chances of traffic
within a layer.

More specifically, for both 2 by 2 by 4 and 4 by 2 by 2, AC1
has been recorded a performance improvement of up to 7% over
NC, and is better than SC, AC2 and AC1+2. This 7% of improve-
ment with AC1 is seen in Fig. 9 (b), (d) and (h) for ocean on 2 by
2 by 4, raytrace on 4 by 2 by 2 and MG on 4 by 2 by 2. However,
with 2 by 1 by 8, AC1+2 is seen to have the best performance
improvement of up to 11% over NC in Fig. 9 (d) for raytrace.

6. Related Work

In this section, we present a short summary of previous work
related to this paper. Data compression for NoCs, as an effi-
cient on-chip optimization, has been extensively studied for 2D
design [10], [11], [12]. In Ref. [10], the authors were the first to
apply frequent pattern compression on a CMP with Network-on-
Chip architecture. Their primary goal was to make a compari-
son between cache compression and network compression with
the same algorithm, in terms of their effects on performance and
energy consumption. Both Refs. [11] and [12] were about com-
pressing data on NoCs with another candidate algorithm, frequent
value compression. Although their results are showing positive
feedback, we believe that for any architecture having multiple
communicating nodes, frequent value compression can be ineffi-
cient because of its overheads of area and synchronization make
it scale poorly. In Ref. [11], the authors also propose a solution
to the area overhead and an adaptive compression control mech-
anism taking into account the network congestion.

Before the study of data compression on NoCs was carried out,
there were already many efforts of applying data compression on
bus and cache [6], [7], [8], [9]. Moreover, a study carried out
in Ref. [17] had proved that both cache and bus compression are
highly efficient in terms of further scaling CMP designs.

7. Conclusions

In this paper, we have evaluated how adaptive data compres-
sion affects system performance for CMPs implemented with 3D
NoCs. We also presented what difference on performance is made
with adaptive schemes of data compression proposed in the paper.
We find that in a bandwidth limited situation like a CMP with 3D
NoCs having multiple connected layers, adaptive data compres-
sion with location-based control or with both compressibility and
location based control is very promising if the number of layers
continues to grow.

Furthermore, according to the evaluation result, we believe that
if frequent pattern compression is to be utilized, then compress-
ibility check is a must since it is always better than static com-
pression. Secondly, if a 3D implementation has many layers and
few cores per layer, AC1+2 is very efficient since it targets specif-
ically at the vertical bandwidth limitation and most of the traffic
are layer-crossing. Finally, although the improvements vary case
by case, we believe our results are quite conservative since we

simulate with Simics whose processor model is in-order and we
use a relatively smaller problem size for our workloads (espe-
cially the NPB ones). In practice, modern processor cores are
generally more advanced with a higher bandwidth requirement.
In consequence, we believe that a more promising improvement
than our results can be expected if a similar 3D design has our
adaptive FPC implemented.

Reference

[1] Black, B., Annavaram, M., Brekelbaum, N., DeVale, J., Jiang, L., Loh,
G.H., McCaule, D., Morrow, P., Nelson, D.W., Pantuso, D., Reed, P.,
Rupley, J., Shankar, S., Shen, J.P. and Webb, C.: Die Stacking (3D)
Microarchitecture, Proc. International Symposium on Microarchitec-
ture (MICRO’06), pp.469–479 (2006).

[2] Kumagai, K., Yang, C., Goto, S., Ikenaga, T., Mabuchi, Y. and
Yoshida, K.: System-in-Silicon Architecture and its Application to
H.264/AVC Motion Estimation for 1080HDTV, Proc. International
Solid-State Circuits Conference (ISSCC’06), pp.430–431 (2006).

[3] Burns, J., McIlrath, L., Keast, C., Lewis, C., Loomis, A., Warner, K.
and Wyatt, P.: Three-Dimensional Integrated Circuits for Low-Power
High-Bandwidth Systems on a Chip, Proc. International Solid-State
Circuits Conference (ISSCC’01), pp.268–269 (2001).

[4] Davis, W.R., Wilson, J., Mick, S., Xu, J., Hua, H., Mineo, C., Sule,
A.M., Steer, M. and Franzon, P.D.: Demystifying 3D ICs: The Pros
and Cons of Going Vertical, IEEE Design and Test of Computers,
Vol.22, No.6, pp.498–510 (2005).

[5] Kim, D.H., Athikulwongse, K. and Lim, S.K.: A Study of Through-
Silicon-Via Impact on the 3D Stacked IC Layout, Proc. IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’09),
pp.674–680 (2009).

[6] Alameldeen, A.R. and Wood, D.A.: Frequent Pattern Compression:
A Significance-Based Compression Scheme for L2 Caches, Tech-
nical Report 1500, Computer Sciences Department, University of
Wisconsin-Madison (2004).

[7] Alameldeen, A.R.: Using Compression to Improve Chip Multipro-
cessor Performance, PhD Thesis, University of Wisconsin at Madison
(2006).

[8] Alameldeen, A.R. and Wood, D.A.: Adaptive Cache Compression for
High-Performance Processors, ACM SIGARCH Computer Architec-
ture News, Vol.32, No.2, pp.212–223 (2004).

[9] Thuresson, M., Spracklen, L. and Stenstrom, P.: Memory-Link Com-
pression Schemes: A Value Locality Perspective, IEEE Trans. Com-
put., Vol.57, No.7, pp.916–927 (2008).

[10] Das, R., Mishra, A.K., Nicopoulos, C., Park, D., Narayanan, V., Iyer,
R., Yousif, M.S. and Das, C.R.: Performance and Power Optimization
through Data Compression in Network-on-Chip Architectures, Proc.
IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA’08), pp.215–225 (2008).

[11] Jin, Y., Yum, K.H. and Kim, E.J.: Adaptive Data Compression for
High-Performance Low-Power On-Chip Networks, Proc. IEEE/ACM
International Symposium on Microarchitecture (MICRO’08), pp.354–
363 (2008).

[12] Zhou, P., Zhao, B., Du, Y., Xu, Y., Zhang, Y., Yang, J. and Zhao,
L.: Frequent Value Compression in Packet-based NoC Architectures,
Proc. Asia and South Pacific Design Automation Conference (ASP-
DAC’09), pp.13–18 (2009).

[13] Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M.,
Alameldeen, A.R., Moore, K.E., Hill, M.D. and Wood, D.A.: Mul-
tifacets General Execution-driven Multiprocessor Simulator (GEMS)
Toolset, ACM SIGARCH Computer Architecture News, Vol.33, No.4,
pp.92–99 (2005).

[14] Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D.,
Hallberg, G., Hogberg, J., Larsson, F., Moestedt, A. and Werner, B.:
Simics: A Full System Simulation Platform, IEEE Computer, Vol.35,
No.2, pp.50–58 (2002).

[15] Singh, J.P., Weber, W. and Gupta, A.: SPLASH: Stanford Parallel
Applications for Shared-Memory, ACM SIGARCH Computer Archi-
tecture News, Vol.20, No.1, pp.5–44 (1992).

[16] Jin, H., Frumkin, M. and Yan, J.: The OpenMP Implementation of
NAS Parallel Benchmarks and Its Performane, NAS Technical Re-
port NAS-99-011, NASA Advanced Supercomputing (NAS) Division
(1999).

[17] Rogers, B., Krishna, A., Bell, G., Vu, K., Jiang, X. and Solihin, Y.:
Scaling the Bandwidth Wall: Challenges in and Avenues for CMP
Scaling, Proc. International Symposium on Computer Architecture
(ISCA’09), pp.371–382 (2009).

[18] Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey,

c© 2012 Information Processing Society of Japan 86



IPSJ Transactions on Advanced Computing Systems Vol.5 No.1 80–87 (Jan. 2012)

C., Mattina, M., Miao, C.-C., Brown III, J.F. and Agarwal, A.: On-
Chip Interconnection Architecture of the Tile Processor, IEEE Micro,
Vol.27, No.5, pp.15–31 (2007).

[19] Vangal, S.R., Howard, J., Ruhl, G., Dighe, S., Wilson, H., Tschanz,
J., Finan, D., Singh, A., Jacob, T., Jain, S., Erraguntla, V., Roberts,
C., Hoskote, Y., Borkar, N. and Borkar, S.: An 80-Tile Sub-100-W
TeraFLOPS Processor in 65-nm CMOS, IEEE Journal of Solid-State
Circuits, Vol.43, No.1, pp.29–41 (2008).

[20] Benini, L. and De Micheli, G.: Networks on Chips: Technology And
Tools, Morgan Kaufmann (2006).

[21] Sheibanyrad, A., Petrot, F. and Janstch, A.: 3D Integration for NoC-
Based SoC Architectures, Springer (2010).

[22] Pavlidis, V.F. and Friedman, E.G.: 3-D Topologies for Networks-
on-Chip, IEEE Trans. Very Large Scale Integration Systems, Vol.15,
No.10, pp.1081–1090 (2007).

[23] Kim, J., Nicopoulos, C., Park, D., Das, R., Xie, Y., Vijaykrishnan, N.,
Yousif, M. and Das, C.: A Novel Dimensionally-Decomposed Router
for On-Chip Communication in 3D Architectures, Proc. International
Symposium on Computer Architecture (ISCA’07), pp.138–149 (2007).

[24] Park, D., Eachempati, S., Das, R., Mishra, A.K., Narayanan, V.,
Xie, Y. and Das, C.R.: MIRA: A Multi-layered On-Chip Interconnect
Router Architecture, Proc. International Symposium on Computer Ar-
chitecture (ISCA’08), pp.251–261 (2008).

[25] Ramanujam, R.S. and Lin, B.: Randomized Partially-Minimal Rout-
ing on Three-Dimensional Mesh Networks, IEEE Computer Architec-
ture Letters, Vol.7, No.2, pp.37–40 (2008).

Yuan He received his B.Sc. and M.E.
(Hons) from the University of Auckland,
New Zealand in 2005 and 2009, respec-
tively. He is currently a Ph.D. student with
the University of Tokyo, Japan. His re-
search is focused mainly on optimizations
for interconnection networks of multi-
core processors. He is a student member

of IEEE and IPSJ.

Hiroki Matsutani received the B.A.,
M.E., and Ph.D. degrees from Keio
University in 2004, 2006, and 2008,
respectively. He was a Research Fellow
with Graduate School of Information
Science and Technology, the University
of Tokyo, from 2009 to 2011. He is
currently an Assistant Professor at De-

partment of Information and Computer Science, Keio University.
His research interests include the areas of computer architecture
and interconnection networks.

Hiroshi Sasaki received his B.E., M.E.,
and Ph.D. degrees from the University of
Tokyo in 2003, 2005, and 2008, respec-
tively. He was a Project Assistant Pro-
fessor at the University of Tokyo from
2008 to 2011, and is currently a Project
Associate Professor at Department of Ad-
vanced Information Technology, Kyushu

University. His research interests include computer architecture
and operating systems for future microprocessors.

Hiroshi Nakamura received his B.E.,
M.E., and Ph.D. degrees in Electrical En-
gineering from the University of Tokyo in
1985, 1987, and 1990, respectively. He
was a Visiting Associate Professor at the
University of California, Irvine from 1996
to 1997. He is currently a Professor of
Department of Information Physics and

Computing at the University of Tokyo. His research interests in-
clude low-power processor, VLSI design, power-aware comput-
ing, high-performance computer systems, and dependable com-
puting. He is a member of IEICE and IPSJ, and a senior member
of IEEE and ACM.

c© 2012 Information Processing Society of Japan 87


