
IPSJ SIG Technical Report

On the Halting Problem of a Turing Machine

Eiichi Tanaka †1

In the series of reports the incompleteness theorems and the halting problem
of a Turing machine were discussed on the general recursion theory. This report
studies the latter on the set of partial recursive predicates, because a Turing
machine can compute a partial recursive function. The formula Au(u) defined
by the diagonal sequence Ak(k)(k = 1, 2, 3, · · ·) of the set Ã composed of all
unary partial recursive formulas Ak(u)(k = 1, 2, 3, · · ·) is essentially infinitely
long. Based on this fact this paper shows that the predicate to express the com-
putation of a Turing machine (∃z)T (x, y, z) is proved to be essentially infinitely
long. This fact explains the undecidability of the halting problem of a Turing
machine. In Appendix 1 the non-existence of the incompleteness theorems is
stated based on the theory of computation.

1. Introduction

Gödel’s incompleteness theorems 1) have been considered as one of the epoch
making discoveries in the history of mathematics. Inspired by Gödel’s paper,
Turing 2) studied the halting problem of a computing machine that he proposed,
namely, a Turing machine. He proved that the halting problem of a Turing ma-
chine is undecidable.

The halting problem is described as follows. Can we decide whether a com-
putation of a given Turing machine with given any data exsists or not ? The
problem was proved to be recursively undecidable. We shall study the length of
the predicate for describing the halting problem .

A Turing machine can compute a partial recursive function. Therefore, we have
to study the halting problem on the set of partial recursive functions (predicates).
First of all, we shall prove that the predicate Au(u) defined by the diagonal se-
quence Ak(k)(k = 1, 2, 3, · · ·) of the set Ã composed of all unary partial recursive
predicates Ak(u)(k = 1, 2, 3, · · ·) is essentially infinitely long. Based on this fact

†1 Kobe University

this paper shows that the predicate proposed for proving the undecidability of
the halting problem of a Turing machine is proved to be essentially infinitely long.
In Appendix 1 we shall state the non-existence of the incompleteness theorems.

2. Preliminaries

(1)Predicate logic.
The predicate logic for an arithmetic with addition and multiplication follows

Shoenfield 8), but the classification of symbols is slightly modified.

Definition 1. The symbols of the predicate logic for the arithmetic are defined
as follows. (a1) individual constants (a, b, c, · · ·), (a2) variables (x, y, z, · · ·),
(a3) function symbols (+, ∗), (a4) a predicate symbol (=), (a5) logical symbols
1 (¬,∨), (a6) a logical symbol 2 (∃), (a7) subsidiary symbols ((,), comma).
∃ is called an existential quantifier. In this paper let the basic symbols of the
predicate logic for the arithmetic be the symbols of (a1) ∼ (a5) and (a7).

Let A and B be sets of collections of objects. A mapping from the set of n-
tuples in A to B is called an n-ary function from A to B. A subset of the set of
n-tuples in A is called an n-ary predicate in A. A partial mapping from A to B

is a mapping from a subset of A to B. An n-ary partial function from A to B is
a partial mapping from the set of n-tuples in A to B. An n-ary partial predicate
in A is a partial subset of the set of n-tuples in A. An occurrence of variable x in
predicate A is bound in A, if it occurs in a part of A of the form ∃xA, otherwise
it is free in A.

Definition 2. (b1) An individual constant is a term.
(b2) A variable is a term.
(b3) If t1, t2, · · · , tn are terms and fn is an n-ary function, fn(t1, t2, · · · , tn) is a
term.
(b4) Let {t1, t2, t3, · · · } be an infinite set of terms. Define T1 = t1 + t2 + t3 + · · ·
and T2 = t1 ∗ t2 ∗ t3 ∗ · · · . T1 and T2 are terms.

Definition 3. (c1) If t1, t2, · · · , tn are terms and P is an n-ary predicate,

1 ⓒ 2012 Information Processing Society of Japan

Vol.2012-AL-138 No.10
2012/1/28

IPSJ SIG Technical Report

P (t1, t2, · · · , tn) is a formula.
(c2) If A and B are formulas, A ∨B and ¬A are formulas.
(c3) Let {A1, A2, A3, · · · } be an infinite set of formulas. Define F = A1 ∨ A2 ∨
A3 ∨ · · · . F is a formula.
(c4) If C(x) is a formula and x is a free variable, ∃xC(x) is a formula.

Formulas (A → B), (A ∧ B), (A ↔ B) and ∀xA(x) are the abbreviations of
(¬A∨B),¬(A → ¬B), ((A → B)∧(A ← B)) and ¬∃¬A(x), respectively. Symbol
∀ is a universal quantifier. A formula without free variables is called a closed
formula or a sentence. We sometimes define function symbols and predicate
symbols that are not in the basic symbols. In this paper we assume that defined
function symbols and defined predicate symbols are rewritten using the basic
symbols.

A proof is a finite sequence of one or more formulas such that each formula
of the sequence is either an axiom or an immediate consequence of preceding
formulas of the sequence. If A is the last formula in a proof P , P is said to be
a proof of A. A is said to be provable or to be a theorem. Sometimes ∃xC(x)
represents finite numbers of Cs such as C(x)(x = 1, 2, 3, · · ·). We call such an
∃xC(x) a finite existential formula. If ∃xC(x) represents an infinite number of
Cs such as C(x)(x = 1, 2, 3, · · ·), we call ∃xC(x) an infinite existential formula.

Definition 4. The length of a function is defined as the number of the basic
symbols in the function. If a function consists of infinitely many basic symbols,
it is called an infinite length function. If a function is not an infinite length
function, it is a finite length function. The lengths of a term, a formula and a
predicate are similarly defined.

Terms T1 and T2 in Definition 2 are infinite length terms. Formula F in Def-
inition 3 is an infinite length formula. Let Q be a finite length formula without
infinite existential formulas. Assume that ∃xC(x) is an infinite existential for-
mula and there is an axiom or a theorem such that ∃xC(x) → Q. ∃xC(x) can
be converted to a finite length formula.

Definition 5. If an infinite length function can not be transformed into a finite
one in spite of every effort, the function is called an essentially infinite length
function. An essentially infinite length formula and that predicate are defined in
the similar way.

An expression is a sequence of symbols. If an expression consists of infinite
symbols, it is called an infinite length expression. If not, it is a finite length
expression. The concept of Gödel number is interesting and useful. However,
there is a dicrepancy between the Gödel number of a predicate and its length.
As we shall see later, the predicate ∃zT (x, x, z) concerning the halting problem
of a Turing machine is an example. That is, if we include ∃ in the basic symbol,
the Gödel number of the predicate is finite, but its length may be essentially
infinite. To remove this defect we must realize that the Gödel number of a
predicate is finite if and only if its length is finite. This aim is attained by
excluding a quantifier. This is why an existential quantifier is excluded from the
basic symbols. Note that we need not expand a formula with a quantifier to
one without it. As we shall see in Section 4, if a formula is a well formed non
recursive formula, the length of it is infinitely long.

Many types of Gödel numbering have been proposed. We do not specify any
particular numbering. Gödel numbering satisfies the following characteristics.
(*1) Different finite sequences of finite length expressions have different Gödel

numbers.
(*2) There is an algorithm to decide whether a given number is the Gödel num-

ber of a finite sequence of finite length expressions or not. Therefore, we can
reconstruct the finite sequence of finite length expressions from its Gödel
number.

Consider the following two functions.
G1(x) = S(x). (1)

G2(x) = g1(x) ∗ S(1) + g2(x) ∗ S(2) + g3(x) ∗ S(3) + · · · . (2)
where gk(x) is a function such that if x = k, gk(x) = 1, and otherwise, gk(x) = 0.
S(x) is an arbitrary function. G1(x) and G2(x) are the functions with the same

2 ⓒ 2012 Information Processing Society of Japan

Vol.2012-AL-138 No.10
2012/1/28

IPSJ SIG Technical Report

values, but their expressions are different. The Gödel number of G1(x) is finite
and that of G2(x) is infinite. The Gödel number of a function is only based on
its expression. G2(x) is not an essentially infinite length function, because that
G2(x) can be rewritten to a finite length function G1(x).

The number of infinite length formulas is infinite, and the Gödel number of an
infinite length formula is also infinite. Therefore, if a formula is an infinite length
formula, we can not reconstruct the original formula from its Gödel number.
(*3) A finite sequence of finite length expressions satisfies (*1) and (*2).
(*4) If a finite sequence of expressions contains at least one infinite length ex-

pression, it does not satisfy (*1) and (*2).

Remark 1. Gödel numbering is effective for a finite sequence of finite length
expressions. If a finite sequence of expressions contains at least one infinite length
expression, Gödel numbering is not effective.

(2) Recursion theory
We shall describe a primitive recursive function (predicate), a recursive function
(predicate) and a partial recursive function (predicate).
(d1) Initial functions

The initial functions are defined for natural numbers.
(a) The zero function: Z(x) = 0 for all x.
(b) The successor function: S(x) = x′ for all x, where x′ is the successor of x.
(c) The projection functions: U i

n(x) = xi for i = 1, 2, · · · , n.

(d2) Composition
Let h1, h2, · · · , hr be r functions of n variables (r ≥ 1, n ≥ 0). Let g and f be

a function of r variables and that of n variables, respectively. Define f as follows.
f(x) = g(h1(x), · · · , hr(x)). (3)

(d3) Primitive recursion
Let g and h be an n-ary (n ≥ 0) function and an (n + 2)-ary one, respectively.

Define an (n + 1)-ary function f as follows.
f(x, 0) = g(x). (4)

f(x, y′) = h(x, y, f(x, y)). (5)

Definition 6 A function is primitive recursive, if it can be obtained by a fi-
nite applications of (d2) and (d3) beginning with initial functions (d1). If P is
an n-ary predicate, we define an n-ary function rP such that rP (a) = 0, if P (a),
and rP (a) = 1 , if ¬P (a). We call rP the representing function of P . P is primi-
tive recursive, if rP is primitive recursive.

(d4) µ operator
Function g(x, y) is called regular, if there is a natural number y such that

g(x, y) = 0 for any x. µ operator is to find the least y for a regular function.
Assume that g is an (n + 1)-ary regular function. Define an n-ary function f as
follows.

f(x) = µy(g(x, y) = 0). (6)

Definition 7 A function is general recursive, if it can be obtained by finite
applications of (d2) ∼ (d4) beginning with initial functions (d1). If the rep-
resenting function of a predicate is general recursive, the predicate is general
recursive.

If f(x) and g(x) have the same domain and the same value, we shall write
f(x) = g(x). (7)

Assume that hk(x)(k = 1, · · · , r) are defined and their values are yk(k =
1, · · · , r). g(h1(x), · · · , hr(x)) is defined, iff g(y1, · · · , yr) is defined. This is
called the composition in the weak sense. Modify (d1) ∼ (d4) to define a partial
recursive function.
(d1’) Initial functions
The initial functions are partial functions.

(d2’) Composition
The composition (d2) is done between partial functions in the weak sense.

(d3’) Primitive recursion

3 ⓒ 2012 Information Processing Society of Japan

Vol.2012-AL-138 No.10
2012/1/28

IPSJ SIG Technical Report

The composition (5) is done between partial functions in the weak sense.
(d4’) µ operator
The µ operator is defined under the condition that (6) is defined iff g(x, y) is

defined and g(x, y) 6= 0 for y < y0.

Definition 8 A function is partial recursive, if it can be obtained by finite appli-
cations of (d2’) ∼ (d4’) beginning with initial functions (d1’). If the representing
function of a predicate is partial recursive, the predicate is partial recursive.

Definition 9. A predicate P (x) is recursively enumerable, if there is a recursive
predicate Q(x, y) such that

P (x) ↔ ∃yQ(x, y). (8)

Definition 10. The symbols of the predicate logic for the theory of computation
are defined as follows. Let (ek) be (ak) in Definition 1, where k = 1, 2, 4, · · · , 7.
Let (e3) be function symbols (Z, S, U,+, ∗, µ).

In this section the symbols of (e1) ∼ (e5) and (e7) are called the basic symbols
for the theory of computation. Assume that defined function symbols and defined
predicate symbols are rewritten using the basic symbols.

Definition 11. Let (fk) be (bk) in Definition 2, where k = 1, 2, 3, 4. The
set of n-ary functions include the initial functions, the functions defined by
composition and those by µ operator. (f5) If t1, t2, · · · , tn are terms and
f (n+1)(x1, x2, · · · , xn, y) is an (n + 1)-ary function, f (n+1)(t1, t2, · · · , tn, y) is
a term, where f (n+1)(x1, x2, · · · , xn, y) is defined by primitive recursion and
y = 0, 1, 2, · · · .

Definition 12. The terms generated by Definition 11 are called well formed
terms (wfts, in abbreviation). The predicates generated by Definition 3 applying
terms defined by Definition 11 are called well formed formulas (wffs, in abbrevi-
ation). Let Wt be the set of wfts and Wf be that of wffs. Wt includes infinite
length terms and Wf does infinite length formulas.

3. Infinite Length Formulas

(1) Diagonal Sequences
a) General recursive predicates
Enumerate all finite length general recursive predicates with one free variable

u.
A1(u), A2(u), A3(u), · · · (9)

The set Ã of finite length unary general recursive predicates is a countably infinite
set. Consider predicates I(u) and J(u) such as

I(k) = ¬Ak(k) (k = 1, 2, 3, · · ·). (10)
J(k) = Ak(k) (k = 1, 2, 3, · · ·). (11)

(10) and (11) are called the antidiagonal sequence and the diagonal sequence of
(9), respectively. If I(u) is in Ã, it is a finite length general recursive predicate.
Since I(k) 6= Ak(k)(k = 1, 2, 3, · · ·), it is easy to prove by the diagonal method
that I(u) is not in Ã. Since I(u) is not in Ã, it is not a finite length predicate.
I(u) can not be transformed to a finite length predicate. Therefore, it is an
essentially infinite length predicate. Furthermore, we have

J(u) = ¬I(u). (12)
Since I(u) is an essentially infinite length predicate, so is ¬I(u). That is, J(u) is
an essentially infinite length predicate.

Change the order of predicates in Ã. Let it be as follows.
A′1(u), A′2(u), A′3(u), · · · (13)

Let I ′(u) and J ′(u) be the antidiagonal sequence and the diagonal sequence of
(13), respectively. I ′(u) and J ′(u) are also essentially infinite length predicates.
Note that there are infinitely many different sequences defined by all finite length
unary general recursive predicates. For each sequence, there are an antidiagonal
sequence and a diagonal sequence. Both of them are essentially infinite length
sequences. If an antidiagonal sequence and a diagonal sequence are defined based
on all finite length unary predicates, we need not pay attension to the order of
predicates.

4 ⓒ 2012 Information Processing Society of Japan

Vol.2012-AL-138 No.10
2012/1/28

IPSJ SIG Technical Report

b) General recursive functions
Enumerate all finite length general recursive functions with one free variable u.

Let them be Bk(u)(k = 1, 2, 3, · · ·). Define a modified diagonal sequence K(u)
and the diagonal sequence L(u) such as

K(k) = Bk(k) + 1 (k = 1, 2, 3, · · ·). (14)
L(k) = Bk(k) (k = 1, 2, 3, · · ·). (15)

It is easy to see that K(u) is an essentially infinite length function. Note that
K(u) = L(u) + 1. (16)

From (16) the diagonal sequence L(u) is also an essentially infinite length func-
tion.

Lemma 1. Let Ã be the set of all general recursive predicates with a free
variable u and each member of Ã be written as Ak(u)(k = 1, 2, 3, · · ·). Au(u) is
an essentially infinite length predicate. Let B̃ be the set of all general recursive
functions with a free variable u and each member of B̃ be written as Bk(u)(k =
1, 2, 3, · · ·). Bu(u) is an essentially infinite length function.

c) Partial recursive predicates
Enumerate all finite length partial recursive predicates with a free variable u.

C1(u), C2(u), C3(u), · · · (17)
The set C̃ of them is a countably infinite set. Let Ck(h) = ∗ indicate that
predicate Ck(h) is not defined for h. Define Ck(k)=true and ¬Ck(k)=false for
Ck(k) = ∗, and Ck(k)=Ck(k) and ¬Ck(k)=¬Ck(k) for Ck(k) 6= ∗. Consider
predicates M(u) and N(u) such as

M(k) = ¬Ck(k) (k = 1, 2, 3, · · ·). (18)
N(k) = Ck(k) (k = 1, 2, 3, · · ·). (19)

If M(u) is in C̃, it is a finite length partial recursive predicate. Since M(k) 6=
Ck(k)(k = 1, 2, 3, · · ·), it is easy to prove by the diagonal method that M(u) is
not in C̃. Since M(u) is not in C̃, it is not a finite length predicate. M(u) can
not be transformed to a finite length predicate. Therefore, it is an essentially
infinite length predicate. Furthermore, we have

N(u) = ¬M(u). (20)
Since M(u) is an essentially infinite length predicate, so is N(u). That is, N(u)

is an essentially infinite length predicate. Consider the mapping
Ck(k) → N(k)(k = 1, 2, 3, · · ·). (21)

Note that the mapping is ∗ → true, true → true or false → false. Furthermore
the mapping is one to one from Cu(u) to N(u). That is, the mapping is a
contruction mapping. N(u) is an essentially infinite length predicate, so is the
diagonal sequence Cu(u).

d) Partial recursive functions
Enumerate all finite length partial recursive functions with a free variable u. Let

them be Dk(u)(k = 1, 2, 3, · · ·). Define P (k) and Q(k) as follows. If Dk(k) = ∗,
P (k) = 1 and Q(k) = 0. If Dk(k) 6= ∗, P (k) = Dk(k) + 1 and Q(k) = Dk(k).
Note that

P (k) = Q(k) + 1. (22)
It is easy to see that P (u) and Q(u) are essentially infinite length functions.
Consider the mapping

Dk(k) → N(k)(k = 1, 2, 3, · · ·), (23)
Note that the mapping includes ∗ → 0 or n → n, where n is a natural number.
Furthermore the mapping is one to one from Du(u) to Q(u). That is, the mapping
is a contruction mapping. Q(u) is an essentially infinite length predicate, so is
the diagonal sequence Du(u).

Lemma 2. Let C̃ be the set of all partial recursive predicates with a variable u

and each member of C̃ be written as Ck(u)(k = 1, 2, 3, · · ·). Cu(u) is an infinite
length predicate. Let D̃ be the set of all partial recursive functions with a variable
u and each member of D̃ be written as Dk(u)(k = 1, 2, 3, · · ·). Du(u) is an infinite
length function.

(2) The halting problem 6)

A Turing machine is classified by a pair (m, n), where m and n are the number
of symbols and that of states, respectively. m and n run on natural numbers.
Let x, y and z be the Gödel number of a given Turing machine, a given data
and the Gödel number of a Turing machine computation, respectively. Predicate
∃zT (x, y, z) means that there is a computation z for a given Turing machine x

5 ⓒ 2012 Information Processing Society of Japan

Vol.2012-AL-138 No.10
2012/1/28

IPSJ SIG Technical Report

and a given data y, where T (x, y, z) has been considered as a primitive recursive
predicate. The halting problem is described as follows. Can we decide whether
a computation of a given Turing machine with given any data exists or not ?
The halting problem has been formulated as the decision problem of predicate
∃zT (x, y, z). It is well known that predicate ∃zT (x, x, z) is recursively undecid-
able.

Let tk be the Gödel number of the Turing machine that computes a function
Dk(u). Then, ∃zT (tk, h, z) indicates the existence of the computation of Dk(h).
Therefore, the framework T (x, y, z) can treat all unary finite length partial re-
cursive functions. That is, T (x, y, z) satisfies the premise of Lemma 2. Therefore
T (x, x, z) is an essentially infinite length predicate. So is ∃zT (x, x, z).

Lemma 3. Predicate T (x, x, z) is an essentially infinite length predicate.

We have proved that T (x, x, z) is an essentially infinite length predicate. It
goes without saying that T (x, y, z), ∃zT (x, x, z) and ∃zT (x, y, z) are essentially
infinite length predicates. That is, the undecidability of the halting problem is
interpreted in the length of the predicate.

4. Concluding Remarks

We can summarize the conclusion just obtained as follows:
(1) A diagonal sequence and an antidiagonal sequence defined by all finite length
unary partial recursive functions (predicates) are essentially infinite length unary
functions (predicates).
(2) The predicate for the halting problem of a Turing machine is an essentially
infinite length predicate. Therefore, it is very natural that the halting problem
is undecidable.
(3) In Appendix 1 it is shown that there is no finite length predicate in Wf that
can not be proved nor refuted. The arithmetic is consistent and the consistency
of the arithmetic is provable in it. That is, the incompleteness theorems do not
hold.

References

1) Gödel, K.: ”Über Formal Unentscheidbare Sätze der Principia Mathematica und
Verwandter Systeme, Monatshefte für Mathematik und Physik, Vol.38, pp.173-198
(1931).

2) Turing, T.: On Computable Numbers, with an Application to the Entschei-
dungsproblem, Proceedings of the London Mathematical Society, Ser.2, Vol.42, pp.
230-265 (1936).

3) Kleene, S. C.: Recursive Predicates and Quantifiers, Transaction of the American
Mathematical Society , Vol.53, pp.41-74 (1936).

4) Kashima, R.: Incompleteness theories (in Japanese),Lectures on Foundations of
Mathematics - The Incompleteness Theorems and the Development (in Japanese),
Nihonhyouronsha, Tokyo,(1997)

5) Tanaka, K.: Logic of Arithmetic - Formal Systems and Non-standard Models - (in
Japanese), Shokabo, Tokyo (2002).

6) Karp, C. R.: Languages with expressions of infinite length , North-Holland, Ams-
terdam (1964).

7) Davis, C.: Computability and Unsolvability , McGraw-Hill, NY (1958).
8) Shoenfield, J. R.: Mathematical Logic, Addison-Wesley, Massachusets (1967).
9) Heijenoort, J.: From Frege to Gödel, Harvard University Press, Massachusetts

(1967).
10) Tanaka, E.: Reflections on Gödel and Turing, Inf. Proc. Soc. Japan, SIG Technical

Report , Vol.2010-AL-131, No.12, pp.1-6 (2010).
11) Tanaka, E.: Reflections on the Diagonal Theorem, and related topics, Inf. Proc.

Soc. Japan, SIG Technical Report, Vol.2011-AL-135, No.3, pp.1-8 (2009).

Appendix 1 From the Viewpoint of the Thory of Computation
We proved that sub(x, x, z) is an essentially infinite length function 10). This

means that Gödel’s proof of the incompleteness theorems is incorrect. Further-
more we revealed that the diagonal theorem does not hold 11). The left problem
is whether the incompleteness theorems exist or not. We shall discuss the prob-
lem and show the non-existence of the theorems. Hereafter, a recursive function
(predicate) means a general recursive function (predicate).

(1) Recursive functions and predicates
We shall confirm that the computation of a primitive recursive function and

that of a general recursive function terminate in finite operations.

6 ⓒ 2012 Information Processing Society of Japan

Vol.2012-AL-138 No.10
2012/1/28

IPSJ SIG Technical Report

Let x denote ”x1, x2, · · · , xn” . The initial functions Z(x) = 0 and S(x) = x′

are determined, if x is given. U i
n(x) = xi is obtained, if x and i are given.

If x, h1, h2, · · · , hr, g are given, a function f(x) defined by composition can be
computed.

Consider a primitive recursion. Assume that x and y are given. f(x, y) is
computed in the following way.

f(x, 0) = g(x).
f(x, 1) = h(x, 0, f(x, 0)) = h(x, 0, g(x)).
f(x, 2) = h(x, 1, f(x, 1)).

· · ·
f(x, y) = h(x, y − 1, f(x, y − 1)).

(24)
The computation of a primitive recursion terminates in finite operations, if x

and y are finite. A function obtained by finite applications of a composition and
a primitive recursion beginning with initial functions is a function with finite
symbols. Therefore a primitive recursive function is a finite length function. If
rP is primitive recursive, P is a finite length predicate.

Remark A-1. Both a primitive recursive function and a primitive recursive
predicate are finite lengths.

A regular function g(x, y) has y0 such that g(x, y0) = 0, where y0 is a finite
value. Even if y0 is not known, y0 can be obtained by finite times computations of
g(x, y) for y = 0, 1, 2, · · · . Define p(z) such that if z = 0, p(z) = 1, and otherwise,
p(z) = 0. The function µg(x, y0) is expressed in the following way.

µg(x, y0) = 0 ∗ p(g(x, 0)) + 1 ∗ p(g(x, 1)) + · · ·+ y0 ∗ p(g(x, y0)). (25)
The function µg(x, y0) is a finite length function. From (25), a recursive function
is a finite length. If rP is recursive, predicate P is a finite length.

Remark A-2. Both a recursive function and a recursive predicate are finite
lengths.

(2) Well formed recursive functions and predicates

Recall the following important and widely accepted understanding of a recur-
sive function.
(g1) A function is a computable function.
(g2) A computable function is a recursive function.

The latter is called Church’s thesis. From Remark A-2 a recursive function
is a finite length function. Note that we study a function in Wt. Therefore ”a
function” of ”a finite length function” is ”a recursive function”. From Remark
A-2, we have the following.
(g3) A recursive function is a finite length function in Wt, and vice versa.

From (g2) and (g3), we have the following.
(g4) A computable function is a finite length function in Wt, and vice versa.

We shall discuss predicates in Wf . Replacing a function with a predicate, we
have the similar statements.
(h1) A recursive predicate is a decidable predicate.
(h2) A decidable predicate is a recursive predicate.
(h3) A recursive predicate is a finite length predicate in Wf , and vice versa.
(h4) A decidable predicate is a finite length predicate in Wf , and vice versa.

Note that since the general recursion theory includes Peano arithmetic, (h4)
holds in the arithmetic. From (h4) we have the following lemma that denies the
first incompleteness theorem.

Lemma A-1. There is no finite length predicate in Wf that can not be proved
nor refuted.

Let A be any finite length recursive predicate. From (h4) A is decidable.
A ∨ ¬A is tautology, provable, and decidable. Furthermore, A ∧ ¬A is always
false, unprovable and decidable. The arithmetic can not derive A ∧ ¬A. A
theory T is inconsistent if every predicate of T is a theorem of T ; otherwise,
T is consistent. Therefore the arithmetic is consistent. The consistency of the
arithmetic is provable in the arithmetic. The following lemma denies the second
incompleteness theorem.

7 ⓒ 2012 Information Processing Society of Japan

Vol.2012-AL-138 No.10
2012/1/28

IPSJ SIG Technical Report

Lemma A-2. The arithmetic is consistent. The consistency of the arithmetic is
provable in it.

(3) Well formed non recursive functions and predicates
Note that ”a function” is ”a well formed function”. Since we study functions

in Wt, the negation of ”a finite length function” is ”an essentially infinite length
function in Wt”, and the negation of ”a recursive function” is ”a non recursive
function in Wt”. The negation of both (g1) and (g2) introduces to (i1).
(i1) A non recursive function in Wt is a non computable function in Wt, and vice
versa.

By the negation of both (g3) and (g4), we have (i2) and (i3), respectively.
(i2) A non recursive function in Wt is an essentially infinite length function in
Wt, and vice versa..
(i3) A non computable function in Wt is an essentially infinite length function in
Wt, and vice versa.

From (i2) we have the following.
(i4) A recursive enumerable but not recursive function is an essentially infinite
length function.

Note that ”a predicate” is ”a well formed predicate”. Since we study predi-
cates in Wf , the negation of ”a finite length predicate” is ”an essentially infinite
length predicate”, and the negation of ”a recursive predicate” is ”a non recursive
predicate in Wf”. Similarly we have the followings.
(j1) A non recursive predicate in Wf is an undecidable predicate in Wf , and vice
versa.
(j2) A non recursive predicate in Wf is an essentially infinite length predicate in
Wf , and vice versa.
(j3) An undecidable predicate in Wf is an essentially infinite length predicate in
Wf , and vice versa.

From (j2) we have the following.
(j4) A recursively enumerable but not recursive predicate is an essentially infinite
length predicate.

Lemma A-3. A non recursive function in Wt is an essentially infinite length
function. A non recursive predicate in Wf is an essentially infinite length predi-
cate.

(4) Comments on some recursively enumerable predicates
(k1) Let r.e. indicate ”recursively enumerable”. Predicate ∃zT (x, x, z) has been
considered as r.e. but not recursive one 7). However, T (x, x, z) is an infinite
length predicate, that is, the predicate is not recursive. Therefore ∃zT (x, x, z) is
not r.e.. The predicate is in Wf and not recursive. Then it is an infinite length
predicate.
(k2) In the proof of Rice’s theorem K appears, where K = {x|∃zT (x, x, z)} and
K is supposed to be r.e.. Even if the wording is incorrect, Rice’s theorem holds.
(k3) A non recursive function in Wf is an essentially infinite length function. A
non recursive predicate in Wf is also an essentially infinite length predicate.
(k4) Gödel 1) states that Bewk(x) is not recursive. The predicate is in Wf . From
Lemma A-3 it is an essentially infinite length predicate.

Appendix 2
Reflections on the Diagonal Theorem, and related topics, 11)

”Errata: Reflections on the Diagonal Theorem, and related topics” was dis-
tributed at the meeting (May 16,2011). We shall make it more concise.
p.1, left, ↓ line 7. ”formulas” → ”formula”.
p.4, right, ↑ line 5. ”(32)” → ”(10)”.
p.5, left ∼ p.6, left. Delete subsection ”Peano arithmetic - Π1 incompleteness”.
p.7, right, ↓ line 6. ”ser.2,42,pp.230-265,(1936)” → ”pp.821-865”.

8 ⓒ 2012 Information Processing Society of Japan

Vol.2012-AL-138 No.10
2012/1/28

