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Abstract: With the unprecedented growth of data generated by mankind nowadays, it has become critical to de-
velop efficient techniques for processing these massive data sets. To tackle such challenges, analytical data processing
systems must be extremely efficient, scalable, and flexible as well as economically effective. Recently, Hadoop, an
open-source implementation of MapReduce, has gained interests as a promising big data processing system. Although
Hadoop offers the desired flexibility and scalability, its performance has been noted to be suboptimal when it is used
to process complex analytical tasks. This paper presents E3, an elastic and efficient execution engine for scalable data
processing. E3 adopts a “middle” approach between MapReduce and Dryad in that E3 has a simpler communication
model than Dryad yet it can support multi-stages job better than MapReduce. E3 avoids reprocessing intermediate
results by adopting a stage-based evaluation strategy and collocating data and user-defined (map or reduce) functions
into independent processing units for parallel execution. Furthermore, E3 supports block-level indexes, and built-in
functions for specifying and optimizing data processing flows. Benchmarking on an in-house cluster shows that E3

achieves significantly better performance than Hadoop, or put it another way, building an elastically scalable and
efficient data processing system is possible.
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1. Introduction

In the “information explosion era” nowadays, the data created
by mankind has increased rapidly. While data has become an
important commodity in modern business where data analysis fa-
cilitates better business strategizing, the decision making in busi-
ness is currently facing the Big Data challenge: the volume of
data is growing at unprecedented pace; the data to analyze are
diverse in types such as structured, semi-structured, and unstruc-
tured; and analytical applications are becoming more and more
complicated. To tackle such challenges, analytical data process-
ing systems must be extremely efficient, scalable, and flexible as
well as economically effective.

A traditional method of managing large-scale data is through
the use of parallel database management systems (PDMSes),
which have their roots from the late of 1980s with pioneer
Gamma [5] and Grace [9] projects. The parallel database tech-
nology offered by vendors such as Teradata, Netezza and Vertica,
is typically a small or medium-size clustered deployment of a
database management system that provides an environment for
users to perform an analytical query via internal support of paral-
lel query processing.

However, as the company’s business grows, it needs to up-
grade its hardware capacity on a frequent basis in order to ac-
commodate the increasing workload, which presents many chal-
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lenges in terms of both technical support and cost. Therefore, the
“cloud computing” revolution, in which large clusters of com-
modity servers are exploited to perform various computing tasks
with a “pay-as-you-go” model, becomes a feasible solution that
mitigates the pain. Unfortunately, the approaches adopted by
most traditional PDMSes cannot be directly applied to cloud data
managements mainly due to the elasticity issue of the new en-
vironment. In the cloud, a large number of low-end machines,
instead of a smaller number of high-end machines, are deployed
to process massive datasets, and more importantly, the demand
for resources may vary drastically from time to time due to the
changes in the application workload. As a consequence, PDM-
Ses may not be able to take full advantage of the cloud since users
may desire to elastically allocate resources from the cloud based
on the load characteristics while PDMSes are mainly designed
and optimized for fairly static or fixed-size clusters.

Hadoop *1, an open-source implementation of MapReduce [4],
has recently become a popular tool for processing massive-scale
data analytical tasks. By providing a data-parallel programming
model, Hadoop can control the job execution in many advan-
tageous ways: automatic division of job into tasks, automatic
placement of computation near data, automatic load balancing,
recovery from failures and stragglers, and most importantly, elas-
tic scalability from tens to thousands of machines. Furthermore,
users only need to focus on the application logic rather than the
complexities of parallel computing.

*1 http://hadoop.apache.org/
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Nevertheless, although Hadoop provides the desired flexibility
and scalability, its performance is not satisfactory when it is used
to process complex analytical tasks since those tasks are eval-
uated as a MapReduce chain which requires to re-scan and re-
process intermediate results during data processing. Furthermore,
for some application scenarios, the one-input two-phase data flow
of MapReduce is relatively rigid and hard to adapt. Hadoop does
not allow for stateful multiple-step processing of records and the
opaque nature of the map and reduce functions impedes most of
query optimization techniques.

In our recent study [15], we identified the design factors (e.g.,
I/O modes, indexing utilization, record parsing scheme, group-
ing algorithm and scheduling policy) that affect the performance
of Hadoop and investigated alternative methods for each factor.
Based on these findings, this paper presents E3, an elastic and
efficient execution engine for scalable data processing. The key
idea of improving performance is that E3 avoids reprocessing in-
termediate results by adopting a stage-based evaluation strategy
and collocating data and user-defined functions (map or reduce)
into independent processing units for parallel execution. One ad-
vantage of this approach is the efficient processing of join analyti-
cal queries in which E3 joins multiple datasets in one go and thus
avoids frequent checkpointing and shuffling of intermediate re-
sults, which is a major performance bottleneck in most of the cur-
rent MapReduce based systems. In addition, E3 also utilizes in-
dexes for speeding up query processing and provides built-in sup-
port for specifying and optimizing data processing flows. The re-
sults of benchmarking our system against Hadoop on an in-house
cluster confirm the superior performance of E3 over Hadoop, or
put it another way, building an elastically scalable and efficient
processing system is possible.

This paper proceeds as follows. The following section presents
related work. Section 3 discusses the desired properties of a scal-
able data processing system. We describe the design of E3 in
Section 4 and present its performance in Section 5. Section 6
concludes the paper.

2. Related Work

Systems for large-scale data processing can be classified into
four groups, including parallel database systems, MapReduce [4]
based systems, DAG-based systems, and parallel computing sys-
tems.

Parallel Database Systems. The research on parallel
databases started in late 1980s [6]. Pioneering research systems
include Gamma [5], and Grace [9]. Parallel database systems are
mainly designed for processing relational data in a fairly static
cluster environment while the design of MapReduce is driven by
the increasing demand of processing Big Data with diverse data
types in a large-scale dynamic cluster environment. Compar-
isons between parallel databases and MapReduce are presented
in Refs. [19] and [23], which shows that the main differences be-
tween the two systems are performance and scalability.

Although parallel database systems can be deployed in cloud
environment, they are not able to exploit the built-in elasticity
feature which is important for startups, small and medium sized
businesses. Parallel database systems are mainly designed and

optimized for a cluster with a fixed or fairly static number of
nodes and the inflexibility for growing up and shrinking down
clusters on the fly based on load characteristics limits their elas-
ticity and suitability for pay-as-you-go model.

Fault tolerance is another issue of parallel database systems
in the new environment. Historically, it is assumed that node fail-
ures are uncommon in small clusters, and therefore fault tolerance
is often provided for transactions only. The entire query must be
restarted when a node fails during the query execution. This strat-
egy may cause parallel database systems not being able to process
long running queries on clusters with thousands of nodes, since
in these clusters hardware failures are common rather than excep-
tional.

However, many design principles of parallel database systems
such as indexing techniques, horizontal data partitioning, par-
titioned execution, cost-based query processing and declarative
query support, could form the foundation for the design and opti-
mization of systems to be deployed in the cloud.

MapReduce-based Systems. MapReduce is first introduced
by Dean and Ghemawat [4] for simplifying the construction of
web-scale inverted indexes. The framework is then also employed
to perform filtering-aggregation data analysis tasks [20]. It is pos-
sible to evaluate more complex data analytical tasks as well, by
executing a chain of MapReduce jobs [4], [19].

MapReduce systems have considerable advantages over paral-
lel database systems. First, MapReduce is a pure data processing
engine and is independent of the underlying storage system. Con-
sequently, MapReduce and the storage system are able to scale
independently, which makes this approach go well with the pay-
as-you-go model. Second, map tasks and reduce tasks are as-
signed to available nodes on demand and users can dynamically
increase or decrease the size of the cluster without interrupting
the running jobs. Third, map tasks and reduce tasks are inde-
pendently executed from each other, enabling MapReduce to be
highly resilient to node failures. When a single node fails during
job execution, only map tasks and/or reduce tasks on the failed
node need to be restarted, but not the whole job.

Nevertheless, the performance of Hadoop, an open-source im-
plementation of MapReduce, has been noted to be suboptimal in
database context [19]. In our recent study [15], we have identi-
fied five design factors that affect the performance of Hadoop,
including I/O modes, indexing utilization, record parsing, group-
ing algorithm and scheduling policy, and investigated alternative
methods for each factor. In this paper, we introduce E3 – an elas-
tic and efficient execution engine for scalable data processing –
based on these findings.

We note that there are also a number of analytical query pro-
cessing systems that are built on top of Hadoop such as Pig [18]
and Hive [26]. These systems provide a high-level query lan-
guage and associated optimizer for efficient evaluating complex
analytical queries. Compared to these systems, E3 utilizes in-
dexes for speeding up query processing and provides built-in sup-
port for specifying and optimizing data processing flows. There-
fore, E3 can be used as a new building block for these systems to
generate an efficient query plan.

DAG-based Systems. When developing applications with
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Hadoop, users can only express the application logic in two sim-
ple steps – map and reduce. However, to support more complex
applications, developers have to manually cascade a sequence of
MapReduce steps, which can significantly degrade the perfor-
mance due to the considerable cost of materializing intermediate
results and scanning these data repeatedly.

On the contrary, in Dryad [13], an analytical job is structured
as a data flow directed acyclic graph (DAG) in which vertices are
computations, i.e., executable programs, while edges are commu-
nication channels which could be files, TCP pipes, and shared-
memory FIFOs. Each vertex can have several input and output
channels. Therefore, Dryad subsumes other computation frame-
works, such as MapReduce or the relational algebra. As an exe-
cution engine, Dryad runs the job by executing the vertices of the
graph on a set of available machines in the cluster. Like Hadoop
and E3, Dryad also handles job creation and management, re-
source management, job scheduling and monitoring, fault toler-
ance and re-execution. Especially, the graph can be refined during
execution via the just-in-time planning and dynamic optimization
techniques.

Overall, Dryad facilitates users more in developing applica-
tions than MapReduce does since the mapping from algorithms
to implementation is simpler in Dryad. However, the trade-off is
that the interface of Dryad is more complex, and building DAGs
(especially setting the communication channels between vertices
in a large graph) by handed code could be a tedious task.

Clustera [7], an integrated computation and data management
system, shares similar goals and designs with Dryad in many
ways. Both are targeted toward handling a wide range of applica-
tions ranging from single process, computationally intensive jobs
to parallel SQL queries. The two systems also adopt the same
way of structuring a distributed computation as a DAG. However,
Clustera adopts different implementation strategies, i.e., exploit-
ing modern software building blocks such as application servers
and relational database systems, in order to provide system per-
formance, scalability and portability.

Parallel Computing Systems. These systems are mainly
developed on high-performance computing platforms such as
MPI [10], PVM [24] or computing on GPUs [25] to solve large
and complex problems, typically for scientific computations.
However, most of these models only provide primitives for the
key operations such as point-to-point communications, collec-
tive operations, process groups, communication contexts, process
topologies, and datatype manipulation. These primitives are too
low-level and developing programs using these models requires
developers to handle the synchronization of parallel executions
on their own, which is not as convenient as MapReduce, Dryad
or E3 where all the burdens of synchronization are automatically
handled by the system.

E3 vs. MapReduce vs. Dryad. E3 shares the same design
philosophy with MapReduce and Dryad. These three systems
all provide a programming model for users to write data ana-
lytical programs that process a subset of the dataset and a com-
munication mechanism for coordinating user specified programs
for arbitrary complicated computations. The differences between
these systems lie in the flexibility and efficiency of the program-

ming/communication model that each system provides.
Compared to MapReduce and Dryad, E3’s programming

model is much richer. The programming model introduces
InputIterator and ProcessingUnit interface to abstract the
data access method and the data manipulation program. With
proper implementations, E3 can support various data access meth-
ods including sequential scan, B+-tree, and hash lookup. Fur-
thermore, users can implement multi-pass algorithms in a single
ProcessingUnit. MapReduce and Dryad, on the other hand,
are mainly designed for developing a single pass data processing
program (each task only involves a single map() and reduce()
function) by the sequential data access method.

The communication model of E3 is also richer than MapRe-
duce but less flexible than Dryad. MapReduce has no built-in
facilities for users to coordinate their programs as a data flow. E3

and Dryad, on the other hand, provides such support. Both sys-
tems support users to connect their programs as a DAG graph.
However, unlike Dryad, E3 does not allow users to fine-tune the
communication channels between tasks. E3 only supports one
communication method, i.e., TCP and does not change the com-
munication graph at runtime.

E3 as part of epiC Cloud Data Management System. E3 is
part of our bigger system named epiC *2 – an elastic power-aware
data-intensive Cloud computing platform – for providing scalable
database services in the cloud. In epiC, two typical workloads in-
clusive of data intensive analytical jobs (OLAP) and online trans-
actions (OLTP) are supported to simultaneously and interactively
run within the same storage and processing system.

The overall architecture of epiC cloud data management sys-
tem is shown in Fig. 1. The system consists of the following main
modules: Query Interface, OLAP/OLTP Controller, the Elastic
Execution Engine (E3) and the Elastic Storage System [1], [27]
(ES2). Here we will briefly introduce these modules. The de-
tails of how these modules work together in a cohesive system
are described elsewhere [2].

The Query Interface provides a SQL-like language for up-level
applications and compiles an input SQL query into a series of
read and write operations (for OLTP query) or a set of analyti-
cal jobs (for OLAP query), which will be handled by the OLTP
and OLAP Controller [30] respectively. E3, a sub-system of epiC
that is presented in this paper, is designed to efficiently perform

Fig. 1 E3 as part of epiC cloud data management system.

*2 http://www.comp.nus.edu.sg/˜epiC/
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large scale analytical jobs in the cloud. ES2, the underlying cloud
data storage system for supporting both OLAP and OLTP work-
loads, provides data access interfaces for upper-layer query pro-
cessing engines, i.e., the OLAP/OLTP Controller. ES2 develops a
generic indexing framework [3] for declaration of various types
of distributed indexes (e.g., hash indexes [22], B+-tree-like in-
dexes [29], and R-tree-like indexes [28]) over the cloud data in or-
der to facilitate efficient processing of ad-hoc queries. The main
idea of these indexes is to use P2P structured overlays (such as
Chord [22], BATON [14] and CAN [21]) as global indexes and
combine with local disk-resident indexes at each index node. This
strategy is more efficient than the IR-based strategies in integrat-
ing distributed independent databases over unstructured network
that are proposed in Ref. [17].

3. Desired Properties of a Scalable Data
Processing System

This section presents the desired properties of a scalable data
processing system which is designed for performing data analysis
on Big Data.
Handling Data Diversity One of the major characteristic of

Big Data is the diversity of data type. Traditionally, the
data that the business produces are transactional data. These
kinds of data are structured and often modeled as relational
tables. However, the emergence of Web 2.0 has changed
the situation significantly. Nowadays, business produces
not only structured data but also semi-structured and non-
structured data. This is because Web 2.0 enables businesses
to build a much closer relationship with their customers than
traditional technology (e.g, phone-call or periodical cus-
tomer meeting) does. By posting product information on so-
cial website like Facebook or Twitter, businesses can drive
more interactions with their customers and thus get more
user feedback. These user-generated data constitute a large
part of Big Data.
The ability to analyze data of various types poses a chal-
lenge to a data processing system. This “cross-data” ana-
lytical ability enforces the data processing system to adopt a
generic data model instead of the well-known relational data
model. As demonstrated by Google’s MapReduce system,
key-value data model tends to be appropriate for Big Data
analysis.

Query Interface A typical data analytical task is performed in
two consecutive steps. In the first step, the task retrieves
some data from the underline storage systems (e.g., RDBMS
or a file system). In the second step, a user-specified pro-
gram is launched on those data retrieved and completes the
analysis. The first step is called data retrieval. Tradition-
ally, the data retrieval step is performed by emitting a SQL
query to the underline database through JDBC or ODBC in-
terface. Unfortunately, such an interface is only designed for
structured data and particularly for relational databases. The
JDBC or ODBC interface along with SQL is not appropriate
for Big Data analysis as Big Data is diverse and is not al-
ways stored in a relational database. A solution to this prob-

lem, adopted by MapReduce, is to introduce a Reader inter-
face to retrieve data from storage systems. To be compatible
with different storage systems, the Reader interface should
be generic. However, current Reader’s interface only sup-
ports sequential data access. Specific data accessing method
such as indexing (e.g., B+ tree) is not supported at the in-
terface level, users must use ad hoc ways to utilize those
data accessing methods. An ideal data retrieval interface de-
sign should cover as much data accessing method as possible
without loss of generality.

Data Flow Complicated data analytical tasks are often repre-
sented as a data flow where a set of programs or functions
(each of them performing part of the computation) commu-
nicate with each other to complete the task. For example, a
typical relational database system evaluates a SQL query by
first building a query tree where each node (called operator)
performs certain computation logic, and then processes the
data from leave nodes to the top node.
Big Data analysis requires the data processing system to of-
fer a flexible way for the users to build the data processing
flow. The system must provide a robust mechanism for the
users to write their very own data processing programs and
connect those programs as a data flow for automatically par-
allel execution. The mechanism must be general enough and
not be bound to any specific domain. The major drawback of
the relational database approach is that the data processing
flow produced by the optimizer can only be used to evaluate
relational queries and can not be used to perform other kinds
of data analysis.

Performance A Big Data analytical system should perform
data analytical tasks as efficiently as possible. This requires
the data processing system to efficiently invoke user speci-
fied programs, efficiently execute data flow, and use the right
technique to serialize and de-serialize data between user pro-
grams. Unfortunately, recent studies [15], [19] show that
high performance is one of the missing features of MapRe-
duce.

Fault Tolerance Big Data analytical tasks are often long-
running queries. To complete the data analysis in reason-
able time, the task is always performed on a large shared-
nothing cluster which consists of hundreds or even thousands
of nodes. At this scale, transient or permanent hardware fail-
ures during data processing are not uncommon. Thus, the
data processing system must provide a reliable solution to
efficiently recover from partial failures without restarting the
whole analytical job.

4. Design of E3

In this section, we present E3, a scalable data processing sys-
tem that we designed for Big Data analytic. The design of E3

is largely inspired by two other large-scale data processing sys-
tems: MapReduce [4] and Dryad [13]. Following MapReduce,
we design the programming interface to be as simple as possible.
The burdens of parallelization, fault-tolerance, and data distribu-
tion are hidden by the runtime system. Like Dryad, we enable
users to directly specify the data processing flow but with a much
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simpler way. We also provide some features like indexing which
are missing in those systems. In the following sections, we first
present the programming model of E3. Then, we describe several
components of E3 in detail.

4.1 Programming Model
The programming model of E3 mainly consists of three inter-

faces: the ProcessingUnit interface for writing the analytical
programs, the InputIterator and OutputIterator interfaces
for retrieving records from the input and writing results to the
output of the ProcessingUnit, and the Splitter interface for
splitting inputs. Since E3 is developed using Java, we only sup-
port Java as the programming language for the time being. Fur-
thermore, users also provide a XML configuration file to connect
ProcessingUnits as the data processing flow and specify the
inputs and outputs of each ProcessingUnit. A concrete exam-
ple of E3 job configuration for the word count application [4] is
presented in the appendix of this paper.

Users write data analytical programs by implementing the
ProcessingUnit interface. The ProcessingUnit can have ar-
bitrary number of inputs and produce arbitrary number of out-
puts. Each input is associated with a name which is defined in
the job configuration file and is used in the ProcessingUnit
for retrieving records from the corresponding data source. We
support three kinds of inputs: files stored in a distributed filesys-
tem (e.g., HDFS), relational tables stored in a DBMS, or outputs
from another ProcessingUnit. Users can implement specific
InputIterator interface to support more input types. The sys-
tem can automatically split inputs of large size into a set of small
sized splits and launch a set of ProcessingUnits to process
those input splits, i.e., one process for each input. Users can fully
control the splitting process by providing a specific Splitter
implementation. Inspired by MapReduce, E3 treats the input as
a sequence, i.e., a list of records. Each record is a triple (pid,
key, value) where pid is the partition number indicating which
partition the record comes from and the key/value pair encodes
the data of interest to analyze. The records in the input sequence
can be iterated by a InputIterator. The InputIterator can
be configured to iterate each record of the input by a sequential
scan or a subset of records by an index scan. The details of the
InputIterator will be presented in Section 4.4.

The ProcessingUnit writes results to its outputs by
OutputIterator. Each output is also a sequence and is asso-
ciated with a name. A special name “jobOutput” is reserved and
is used to reference to the final output of the whole E3 job.

Users specify the data processing flow in the job configuration
file. The data processing flow is expressed as a set of stages, each
of which consists of a set of ProcessingUnits. The stages are
executed sequentially according to the declaration order. But the
ProcessingUnits in each stage are launched by E3 in parallel.
Users link two ProcessingUnits defined in different stages by
specifying the input of one ProcessingUnit as the output of the
other one.

4.2 Execution Overview
E3 is designed to run on a large shared-nothing cluster. Like

Fig. 2 Architecture of E3.

MapReduce and Dryad, we employ the master-slaves architec-
ture as shown in Fig. 2: one node acts as the single master node
and the other nodes are worker nodes.

The master node is responsible for job management and the
worker nodes launch processes to run ProcessingUnits. The
E3 job is executed as follows.
1. The first step is job initialization step. The master node

builds a FIFO queue of processing stages according to the
job specification file. For each stage, the master node
creates a set of tasks for each ProcessingUnit in that
stage by splitting the inputs of that ProcessingUnit with
Splitter. For each input split that the Splitter produces,
we create a single task for that input split.

2. The master node steps through the stage queue and executes
those stages one by one. The master node executes a stage
by assigning tasks of that stage to available worker nodes to
launch. The status information of the launched stage is main-
tained by an in-memory state machine data structure. The
stage is in ready state if it is scheduled by the master node,
and in running state if the first of its tasks is assigned to the
worker node. The stage is marked as completed if all of its
tasks are completed. To overlap data transmission and com-
putation, we allow master to schedule tasks from two con-
secutive stages simultaneously. The master node also uses
a similar data structure to monitor the status of scheduled
tasks.

3. When the worker node receives a task from the master node.
It firsts check whether the inputs of the task are ready. An
input item is ready if it is a data source item (e.g., a file or
a database table). If the input item is the output of another
ProcessingUnit, the input item is ready only if the output
of that ProcessingUnit is fetched by the worker node.

4. When all inputs are ready, the worker node invokes the
ProcessingUnit of this task to perform the computation.
Unlike MapReduce in which user can only specify a single
map or reduce function in each task, in E3, the user can spec-
ify arbitrary number of map, reduce or any other data trans-
formation functions. The user can either use pre-defined se-
quence processing algorithm or any customized algorithm to
drive those functions. The user write intermediate and fi-
nal results through OutputIterator. The intermediate re-
sults can be written to the memory of the ProcessingUnit.
But the final results must be written to the output of the
ProcessingUnit (i.e., a local file) so that the output can
be fetched by other ProcessingUnits.
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5. The master node uses a web page to display the status in-
formation of each submitted job. If all tasks of a job is com-
pleted, the job is thus marked as completed. The master node
finally updates the job web page to notify the user.

4.3 Fast Startup
Launching tasks on a cluster of machines could be expensive

especially for small jobs whose running time is short (typically
less than 1 minute). The non-trivial startup overhead is well un-
derstood in previous studies [15], [19] that study the performance
of Hadoop. In summary, previous studies show that the startup
cost comes from two parts: 1) the cost of launching a new pro-
cess in the worker node and 2) the timed-interrupt (i.e., polling)
method for retrieving new tasks from the master node.

In E3, we adopt two techniques to reduce the startup cost. First,
we use the process pool technique, which is widely used in par-
allel databases [16], to entirely eliminate the cost of launching a
new process. The worker node creates a fixed sized pool of pro-
cesses at start up. After that, the worker node picks up an idle
process to run a new task and return that process to the process
pool when the task is completed.

Hadoop adopts the polling method for worker nodes to ask for
tasks from the master node. To make the master node be scalable,
worker nodes can only periodically send task requests to the mas-
ter node in order to avoid overwhelming the master node. So, the
master node can only assign tasks to worker nodes at certain time
window determined by the interval of successive task requests.
Even though it is scalable, this approach obviously produces long
latency during task assignment. E3 solved this problem by adopt-
ing a timed polling approach.

When the master node receives a task request from a worker
node, if the master node has no available tasks at hand, instead
of responding the worker node with a NULL task at once, the
master node suspends the task request for a fixed time window.
When the time window has passed and the master node still has
no tasks, a NULL task is returned. When the worker node re-
ceives a NULL task, it sends the next task request immediately
instead of waiting for a fixed period. Therefore, the master node
can assign tasks to worker nodes in real time. A problem of the
timed-polling approach is that when the master node suspends
the task request, the thread for handling that task request is hang.
Therefore, the thread pool of the master node will be quickly ex-
hausted when a large number of task requests are pending. E3

introduces a suspend/resume threading model to solve this prob-
lem. When the task request is suspended, the thread for handling
that task request is returned to the thread pool instead of waiting.
When the time window has passed, the master node re-allocates
a thread from the thread pool to process the task request.

4.4 Data Access
The ProcessingUnit accesses records from the underlying

storage system through the InputIterator interface. In E3,
the InputIterator interface, inspired by Generic Program-
ming [11], [12], acts as the replacement of JDBC interface for
data accessing.

As we described previously, the input of a ProcessingUnit

is treated as a sequence. The sequence is represented by a pair of
InputIterators which points to the beginning and end of the
sequence respectively. Users can consider InputIterator as a
“pointer” which points to a certain record in the input sequence.
The user can fetch the record that the InputIterator points at
and forward InputIterator to sequentially iterate each record
in the input sequence. The following codes show the definition
of InputIterator interface. Users invoke get() to retrieve the
record that the input iterator points to, use increment() to for-
ward the input iterator, and test whether the input iterator passes
the end of input with notEquals()

interface InputIterator {
Triple get()

InputIterator increment()

boolean notEquals(InputIterator end)

}
The above interface only supports sequentially iterating each

record in the input sequence. To efficiently process a subsequence
of input through certain indexing structure, we require additional
efforts. We first introduce the Dijkstra’s notation [8] for repre-
senting a subsequence by using a pair of keys. Then we present
the implementation of such notation in E3.

The Dijkstra’s notation represents an ordered subsequence of
input with the form of a half open range [k1, k2) (or k1 ≤ k < k2

equivalently) where k1 represents the first valid key in the subse-
quence and k2 is the first invalid key out of the subsequence. For
example, the half range [1, 5) represents the ordered subsequence
with 1, 2, 3, and 4 as the key. There are mainly two advantages
of this notation. First, an algorithm which requires iterating each
key in the subsequence can be expressed in a simple loop as fol-
lows:

for (k = k1; k != k2; k = next(k)) {
\\ Do computations with k

}
The above algorithm only requires inequality comparison and a

next() function which returns the next key in the subsequence.
Thus, the algorithm is very easy to be implemented using our
InputIterator interface. We just need to create a pair of itera-
tors which points to the bounding keys and replace the bounding
keys with the corresponding iterators as follows:
InputIterator begin = new InputIterator(k1)

InputIterator end = new InputIterator(k2)

for (k = begin; k.notEquals(end); k.increment()) {
\\ Do computations with k

}
Therefore, to support index based range scan, we do not need

to add additional methods to InputIterator. Providing an ap-
propriate InputIterator implementation which can utilize the
index structure to efficiently point to the bounding key is suffi-
cient.

Second, it was shown that subsequence with three other forms
(i.e., (k1, k2], (k1, k2), [k1, k2]) can all be converted into the above
half open notation by the “offset by one” trick [8]. Furthermore,
a sequence with a single key can be represented as [k, k). Thus,
our InputIterator interface along with the Dijkstra’s notation
can be used to deal with any kinds of range scan and single point
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lookup and compatible with all sorted indexes (e.g., B+-tree) and
hash indexes.

4.5 Data Types
Like MapReduce, the data type of key or value produced by

the InputIterator is an uninterpreted byte string. However,
the user can use any data types such as compound key and multi-
attributed value by encoding these complex data types as byte
strings and decoding those byte strings at runtime. The encoding
process is performed at the data loading phase. Thus, the perfor-
mance of encoding is less important since it is only performed
once. However, one must care the decoding performance because
the decoding function is invoked each time the data is processed.

In general, there are two decoding schemes: immutable de-
coding and mutable decoding. The immutable decoding scheme
decodes a byte string by creating a dedicated immutable object
of desired type in decoding and discarding that object after it is
processed. The mutable decoding scheme creates a “reusable”

object for decoding all byte strings and push that object to user
function for processing. Our previous study shows that the muta-
ble decoding is preferred since its performance is faster than the
immutable decoding by an order [15]. Even though MapReduce
does not restrict the user to employ immutable decoding scheme.
Such decoding scheme is very popular in MapReduce domain re-
sulting in a large performance degradation in a variety of data
analytical tasks [15], [19], [23]. This may be due to the fact that
the mutable decoding introduces more programming efforts than
immutable decoding.

To achieve high performance, E3 only adopts mutable decoding
scheme. To reduce the programming effort, E3 introduces a con-
cept of Assigner and decouples the object creation and decoding
procedure. To decode the byte string, users just create an object
of desired type using standard Java new Object() statement and
pass that object to the Assigner. The Assigner automatically
reuses the object and handles all related issues.

4.6 Fault Tolerance
In current implementation, the fault tolerance mechanism of

E3 is identical to MapReduce. When a worker node fails, we re-
execute all tasks that are assigned to that node. Completed tasks
in the final stage are not needed to re-execute.

We have found that this coarse-grained fault tolerance mecha-
nism is not efficient in many cases. We will adopt an exception
based fault tolerance mechanism to efficiently recover partial or
permanent software/hardware failures in the next version of E3.

5. Performance Evaluation

In this section, we present the performance of E3. We note
that E3 is part of the ongoing epiC project. At the present time,
we have built the basic execution engine, the InputIterators
to access data stored in HDFS files, and Assigners to parse
records. However, some advanced features of E3 are in early
implementation phase and not ready for extensive experiments.
Therefore, we only report the performance comparisons between
E3and Hadoop on the job startup and two simple analytical tasks
drawn from a benchmark presented in Ref. [19]. A more compre-

hensive performance study will be conducted in the near future
when the other pieces of the system have been built.

5.1 Benchmarking Environment
The benchmarking is conducted on a 65 nodes in-house cluster

(called awan onwards) which includes one master node and 64
worker nodes. Each node in awan is equipped with an Intel Xeon
X3430 Quad Core CPU (2.4 Ghz), 8 GB memory, two 450 GB
SCSI disks, and 1 Gbps ethernet interface. The buffered reads of
each disk is approximately 110 MB/sec. All nodes in awan run
a CentOS operation system. We also use Java 1.6.0 16 as the
runtime environment for both E3 and Hadoop.

5.2 System Settings
Hadoop Settings: The benchmark is performed against

Hadoop version 0.19.2. We configure the Hadoop system follow-
ing instructions presented in Ref. [19]. The settings are summa-
rized as follows: 1) The JVM runs in the server mode with max-
imal 1024 MB heap memory for either the map or reduce task;
2) We ran two concurrent map tasks in each TaskTracker node *3;
3) We enable the JVM reuse. 4) The I/O buffer is set to 128 KB;
5) The block size of HDFS is set to 256 MB; 6) The replication
factor is set to 1 (no replication). The rest of Hadoop parameters
remains their default values.

E3 Settings: We set the size of process pool of each worker
node to be two. We also set the size of thread pool of the master
node for handling HTTP requests to be 200.

To deploy E3 and Hadoop on the awan cluster, we perform an
additional setting. For Hadoop, we run the JobTracker and Na-
meNode on a dedicated awan node. Each of the other awan nodes
act as both the DataNode and the TaskTracker node. Similarly, for
E3, we run the master node on a dedicated node and the worker
node on each of the other nodes. To benchmark the scalability of
both systems, we vary the cluster size, i.e., the number of worker
nodes, from 8 to 64 nodes. Finally, we run each benchmark task
three times and report the average result.

5.3 Datasets
For analytical tasks, we use two datasets (Grep, Rankings)

which are chosen from Ref. [19]. The schemas of the two datasets
are as follows.

CREATE TABLE Grep(

key VARCHAR(10) PRIMARY KEY,

field VARCHAR(90) );

CREATE TABLE Rankings(

pageURL VARCHAR(100) PRIMARY KEY,

pageRank INT,

avgDuration INT);

For the Grep task, we generate datasets according to two set-
tings: a small-scale setting and a large-scale setting. For the
small-scale setting, we generate 5.6 million records (∼535 MB)
per node. In the large-scale setting, we generate 10 GB records

*3 The analytical tasks that we performed do not require the reduce func-
tions. Thus, we leave the setting of concurrent reduce tasks as the default
value.
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for each node. For the Selection task, we generate 18 million
Rankings records (∼1 GB) for each node. The generated datasets
are stored as plain text files in the slave nodes and uploaded to
HDFS without further modification.

5.4 Job Startup
The basic service that parallel data processing systems pro-

vides is launching the user program in a cluster for parallel execu-
tion. This process is called job startup or job stage-in. In general,
the job startup process is expected to be as fast as possible so that
the startup cost does not offset the benefits of parallelism.

In the first benchmark, we study the performance of job startup
of two systems: E3 and Hadoop. We design a special benchmark
task called sleep job to achieve this goal. The idea is to execute
a set of sleep tasks, each of which does dummy computations ex-
cept for sleeping a fixed short period, on the cluster and measure
the overall execution time of the whole job. Since the sleep task
launched in each node does not perform real computations, the
execution time of the whole job is mainly dominated by system
overhead introduced by job start.

We run this benchmark in two settings. In the first setting, we
vary the cluster size from 8 to 64 and launch two sleep tasks in
each node to study the scalability of each benchmarked system.
We launch two sleep tasks per node since both system (E3 and
Hadoop) are configured to be able to run two tasks concurrently.
In the second setting, we fixed the cluster size to 64 and vary
the sleep tasks launched in each node from 2 to 10 and study
the performance of each benchmarked system with an increas-
ing workload. In either setting, the sleep period is set to be 200
milliseconds.

For Hadoop, we implement a customized MapRunner for the
sleep job which sleeps for the specified period and dost not invoke
any map functions. We also set the number of reducers to be zero.
For E3, we implement a customized Splitter which output an
empty input split for each sleep task. The E3 job consists of a
single ProcessingUnit which performs the trivial sleep task.

Figure 3 and Fig. 4 show the results of this experiment. As
can be clearly seen from Fig. 3, the startup cost of Hadoop is
non-trial. The overall execution time ranges from 7.3 seconds
(8 nodes) to 9.2 seconds (64 nodes) while the actual execution
time of each task is only 0.2 seconds (200 milliseconds). E3, on
the other hand, is fairly efficient. The execution time ranges from
0.37 seconds (8 nodes) to 1.2 seconds (64 nodes). We attribute
the efficiency of E3 to its adoption of suspend/resume pattern for
task assignments. The suspend/resume pattern significantly re-
duces the delay between successive task polling requests issued
from worker nodes. The startup overhead of E3 is mainly domi-
nated by propagating the user program files to each cluster node.
In general, the file propagation cost is proportional to the cluster
size.

For the 64 nodes cluster, Fig. 4 shows that even the startup cost
of Hadoop is still high, the cost is slightly amortized by the in-
creasing workloads. However, there is still a large performance
gap between E3 and Hadoop.

Fig. 3 Sleep task results – varying cluster size.

Fig. 4 Sleep task results – varying sleep tasks.

5.5 Grep Task
For the Grep task, both systems (E3 and Hadoop) are required

to scan through the input datasets searching for a three-character
pattern “XYZ.” The SQL command to perform this task is as fol-
lows:
SELECT * FROM Grep where field LIKE ’%XYZ%’;
Since the pattern appears once in every 10,000 records approx-

imately, the performance of this work is mainly limited by the
job startup/termination and the sequential scan speed of the data
processing systems.

The MapReduce program that we used to perform this task is
identical to the one described in Ref. [19]. The program consists
of a single map function which takes the Grep record as the in-
put key/value pair, performs a string match on the value part and
finally outputs the matching record.

The E3 job that performs the Grep task consists of a single stage
which involves a single ProcessingUnit implementation called
GrepTask. The GrepTask uses the same function in MapReduce
program described above to perform the string matching logic and
employs input and output iterators to retrieve records from the in-
put and write matching records to the output.

Figure 5 and Fig. 6 plot the results of this experiment on two
settings (535 MB per node and 10 GB per node). Figure 5 shows
that for small-scale dataset (i.e., 535 MB per node), E3 performs
significantly faster than Hadoop by a factor of 3.6. The speedup
ratio between E3 and Hadoop (i.e., 3.6) is larger than the speedup
ratio between parallel databases against Hadoop (i.e., 2.5) re-
ported in previous study [19]. This result confirms that E3 can
achieve similar or even better performance than parallel databases
in certain analytical tasks such as Grep. We attribute the effi-
ciency of E3 to its efficient startup method. Launching a large-
scale parallel tasks is not expensive in E3. Low overhead startup
enables the system to spend most its time on processing the data.
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Fig. 5 Grep task results – 535 MB/node data set.

Fig. 6 Grep task results – 10 GB/node data set.

Overall, E3 can process the data at the speed of 84 MB/sec to
104 MB/sec while Hadoop’s data processing speed can approxi-
mately reach at most 30 MB/sec. For the large-setting (i.e., 10 GB
per node), the performance gap between E3 and Hadoop is much
smaller since the startup cost of Hadoop is amortized by the in-
creasing amount of data processing for this experiment. However,
E3 is still faster than Hadoop by around 30%.

5.6 Selection Task
In the second analytical task, we need to find records in the

Rankings dataset (1 GB per node) whose pageRank is above a
given threshold. The threshold is set to 10, which results in ap-
proximately 36,000 records out of 18 millions records in each
node. The SQL command of this task is as follows:
SELECT pageURL, pageRank

FROM Rankings where pageRank > 10

The MapReduce program that we used to perform this task is
also identical to the one presented in Ref. [19]. A map function
takes a text line from the source file as its input. The map function
adopts a immutable decoding scheme to split the value part into
multiple fields and check whether the pageRank field is greater
than the threshold. Finally, the map function outputs the qualified
records.

The E3 job that we implemented to evaluate this task still
consists of a single ProcessingUnit defined in a single stage.
Like the MapReduce program, the ProcessingUnit also takes
a text line from the source file as its input. However, the
ProcessingUnit employs the mutable decoding scheme by cre-
ating a Ranking record and passing that record to the Assigner
for decoding.

Figure 7 plots the performance of both system when perform-
ing this task. As can be clearly seen from Fig. 7, E3 outperforms
Hadoop by a even larger performance gap (by a factor of four).

Fig. 7 Selection task results.

Again, the performance gap between E3 and Hadoop is also larger
than the performance gap between DBMS-X over Hadoop (by
a factor of three at most) reported in Ref. [19] even DBMS-X
adopts a cluster index on the selection column while E3 does not
employ any indexing techniques. The reason of the excellent per-
formance of E3 is due to its efficient task launching technique
and reduction of decoding cost by adopting the mutable decod-
ing scheme. Note that we are not claiming a system equipped
with a fast startup and decoding scheme can always outperform
a system employing storage optimizing techniques like indexing.
In fact, we believe that E3 can achieve better performance when
the storage layer is optimized. However, in order to benchmark
the performance of E3 on indexed datasets, we need to implement
appropriate InputIterators. Hence, we leave it as future work.
What we emphasized here, based on the experimental results, is
that for a large-scale parallel data processing system, the runtime
system overhead such as startup and decoding may also dominate
the query processing. Therefore, in addition to optimize the stor-
age layer, the system designer should also consider to reduce the
runtime overhead at the system level as much as possible.

6. Conclusion

The unprecedented growth of data generated in the “infor-
mation explosion era” nowadays has intrigued the design and
development of MapReduce (and its open-source Hadoop) for
massive-scale data processing. However, the performance of cur-
rent Hadoop implementation has been noted to be unsatisfactory
for database applications. We have identified the design factors
that affect its performance and developed E3, an elastic and effi-
cient execution engine for scalable data processing.

E3 adopts a “middle” communication model for connecting
subtasks in the data flow of a job, while MapReduce and Dryad
are on the other two extremes, in that E3 has a simpler communi-
cation model than Dryad yet it can support multi-stages job better
than MapReduce. The novelty of E3 is that it avoids reprocessing
intermediate results by adopting a stage-based evaluation strat-
egy, and collocating data and user-defined functions into inde-
pendent processing units for parallel execution.

More importantly, E3 provides the richest programming model
compared to MapReduce and Dryad for its support of block-level
indexes, and built-in functions for specifying and optimizing data
processing flows. Benchmarking on an in-house cluster shows
that E3 achieves better performance than Hadoop. In terms of fu-
ture work we are going to develop and benchmark E3 completely
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and examine the ability to execute multiple jobs concurrently and
the cooperation between them.
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Appendix

A.1 A Sample E3Job

This section contains a E3job that counts the number of oc-
currences of each unique word in the input files (i.e., the Word
Count program presented in Ref. [4]). We present both the java
program and the job configuration file. To save space, some triv-
ial details like tokenizing the input value and Java generic types
are intentionally omitted. The job consists of two stages. Each
stage contains a single processing unit. The first stage tokenizes
the input strings and the second stage produces the final word
frequencies. The job configuration file specifies the input of each
processing unit as well as the Splitter for splitting the input.

<?xml version = "1.0"?>

<JobConfig>

<Output path="/results/WordCount" />

<!-- First stage: Scan and tokenize the input value

string -->

<Stage description="Map phase">

<ProcessingUnit name="WordCountMapper"

class="WordCounter">

<Input splitter="DFSSplitter">

<Item name="WordInput" type="source"

path="/test/data" />

</Input>

</ProcessingUnit>

</Stage>

<!-- Second stage: Compute the word frequencies -->

<Stage description="Reduce phase">

<ProcessingUnit name="WordCountReducer"

class="Adder">

<!-- PuOutputSplitter for splitting

ProcessingUnit’s output -->

<Input splitter="PuOutputSplitter">

<!-- The input is from the output of
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WordCounterMapper -->

<Item name="AdderInput" type="inter"

path="WordCountMapper" />

</Input>

</ProcessingUnit>

</Stage>

</JobConfig>

public class WordCounter implements ProcessingUnit {

private static class WordMapper implements Mapper {

public void map(LongWritable key, Text value,

OutputCollector output) {

// Tokenize value

// output.emit(word, 1);

}

}

public void run(ProcessingUnit in,

ProcessingUnitOutput out) {

InputIterator begin =

new LineInputIterator(in.get("WordInput"));

InputIterator end = new LineInputIterator();

OutputCollector collector =

new Collector(out.getOutput());

CoreAlg.forEach(begin, end, new WordMapper(),

collector);

}

}

public class Adder implements ProcessingUnit {

private static class Adder implements Reducer {

public void reduce(Text key, Iterator values,

OutputCollector output) {

// Sum and output the final value

// output.emit(word, count);

}

}

public void run(ProcessingUnit in,

ProcessingUnitOutput out) {

InputIterator begin =

new InterInputIterator(in.get("AdderInput"));

InputIterator end = new InterInputIterator();

OutputCollector collector =

new Collector(out.getOutput());

CoreAlg.forEachGroup(begin, end, new Adder(),

collector);

}

}
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