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Investigating Approaches to Semantic Category Disambiguation

Using Large Lexical Resources and Approximate String Matching

Pontus Stenetorp,†1 Sampo Pyysalo,†2,†3

Sophia Ananiadou†2,†3 and Jun’ichi Tsujii †4

This paper proposes and investigates several improvements for an existing ma-
chine learning-based system for the task of semantic category disambiguation.
For querying large scale lexical resources with millions of lexical entries using
approximate string matching we investigate the application of a semantically
motivated distance measure, using start/end markers for the query, selecting
the most beneficial lexical resources out of a set and the effect using similarity
thresholds. These approaches are evaluated using six datasets from the domain
of BioNLP and while some modest improvements are observed we fail to es-
tablish a consistent benefit for any of the suggested methods for all datasets.
The introduced system and all related resources are freely available for research
purposes at: https://github.com/ninjin/simsem

1. Introduction

Semantic category disambiguation is the task of determining the semantic cat-

egory (or categories) that a textual span carries in a given context. The task

represents a sub-problem for several well-established tasks in Natural Language

Processing (NLP), most prominently Named Entity Recognition which conceptu-

ally can be seen as two sub-tasks, determining which textual spans that are likely

to carry entity mentions and then disambiguating between the possible semantic

categories for entities.

Other NLP tasks that semantic category disambiguation has previously been

applied to include co-reference resolution22), where co-referring mentions must

share the same semantic category and one can thus exclude unlikely candidates.
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The added semantic information has been used for the task of coordination anal-

ysis18); consider the coordinate clause: “Coffee or tea and a sandwich”; knowing

that the first two members of the clause are drinks makes it possible to infer that

the choice is most likely between which drink you are having with your sandwich,

rather than [coffee] or [tea and a sandwich].

This study focuses in particular on the domain of BioNLP where early an-

notation efforts has covered a multitude of semantic categories13). But despite

the access to annotated resources with several semantic categories, NER studies

have only been concerned with single semantic categories such as “protein” or

“species”5),24). Over the last few years the field has moved towards extracting

events with one or multiple participants, these participants come from multiple

semantic categories and has thus put emphasis on the necessity of multi-category

NER. Lately, as a part of the BioNLP 2011 Shared Task8) the participants of

the annotated events came from as many as 17 semantic categories. High quality

multi-category NER systems have thus become an essential underpinning for ap-

plying and forwarding the state-of-the-art for complex event extraction systems

in the field of BioNLP.

1.1 Previous Work

In order to boost NER performance state-of-the art NER systems16),24) utilises

lexical resources to serve as a prior and to filter our semantic categories which

are easily confused with the target categories (“chemicals” for example follow

similar lexical patterns as “proteins”). We previously introduced a system, Sim-

Sem20), that utilised large scale lexical resources for the task of semantic category

disambiguation.

The novelty of the system was primarily that it utilised approximate as opposed

to strict string matching when performing look-ups for the lexical resources and

that the scale of the lexical resources utilised surpassed those of earlier NER sys-

tems. The method was evaluated for several datasets with results for macro-level

accuracy ranging from 85.9% to 95.3%. However, the study failed to establish a

clear systematic benefit of approximate, as opposed to strict, string matching for

all datasets and was thus inconclusive. For this study we seek to investigate some

possible adjustments to our previously introduced method to better understand

the implications of some of the design decisions from our previous study.
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the role of the FimS/FimR in expression of the fimA gene
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Fig. 1 Typed text-bound annotations15) of an abstract28) from the biomedical domain

2. Methods

2.1 Task Setting

Our task setting is to classify a continuous textual span as belonging to one out

of several given semantic categories from a fixed set. Figure 1?1 illustrates our

task setting and also the possibility of overlapping spans with different semantic

categories.

2.2 Baseline

Since we build upon our previously introduced system20), this section gives a

brief summary of what serves as the baseline for this work. The feature set used

is derived from common features used for NER (Table 1), but in addition we

used SimString?2, which is an implementation of the CPMerge algorithm14), to

generate approximate string matching features for the textual span. This was

done using 170 databases generated from 10 different lexical resource collections

(Table 2) containing over 20,000,000 lexical entries. The cosine measure for

the tri-grams are used to determine the similarity between two given strings.

Using cosine similarity the system has a threshold indicating the percentage of

tri-grams that must be shared between the compared strings to consider them as

a match. Do note that a match for a threshold of 1.0 indicates that the strings

are identical, the same as when using a strict string matching. When querying

each resource the system uses a sliding threshold ranging from 1.0 to 0.7, with

intermediate steps of 0.1. If a match was found for a given threshold, a binary

feature is generated for the given threshold and all lower thresholds for that

database since a match for a higher threshold ensures that any lower threshold

would also return a match.

?1 Visualised using the stav visualiser21), https://github.com/TsujiiLaboratory/stav
?2 Version 1.0, http://www.chokkan.org/software/simstring/

Table 1 String internal features

Feature Type Input Value(s)

Text Text Flu Flu
Lower-cased Text DNA dna
Prefixes: lengths [3, 5] Text bull bul, . . .
Suffixes: lengths [3, 5] Text bull ull, . . .
Stem Text performing perform
Is a pair of digits Bool 42 True
Is four digits Bool 4711 True
Letters and digits Bool C4 True
Digits and hyphens Bool 9-12 True
Digits and slashes Bool 1/2 True
Digits and colons Bool 3,1 True
Digits and dots Bool 3.14 True
Upper-case and dots Bool M.C. True
Initial upper-case Bool Pigeon True
Only upper-case Bool PMID True
Only lower-case Bool pure True
Only digits Bool 131072 True
Only non-alpha-num Bool #*$! True
Contains upper-case Bool gAwn True
Contains lower-case Bool After True
Contains digits Bool B52 True
Contains non-alpha-num Bool B52;s True
Date regular expression Bool 2012-12-20 True
Pattern Text 1B-zz 0A-aa
Collapsed Pattern Text 1B-zz 0A-a

2.3 Linguistically Motivated Metrics

While using a cosine measure for approximate string matching enables fast

look-ups for strings, it is not linguistically motivated since it assigns equal weight

to any n-gram occurring in the string, regardless of the characters and relative

position in the string. To address this issue we propose to use a linguistically

motivated edit distance such as the Levenshtein distance.

For an edit distance with a fixed cost of 100 “EGR-1”, “EGR 1” and “FGR-1”

would all be at the same distance of 100 from each other since they all differ by

one character. But as illustrated in Table 3, using a variable cost edit distance

it is possible to reduce the cost of substituting a hyphen into a space to be

lower since it has less significant semantic implications than changing a letter

into another letter. This leads to “EGR-1” having a shorter distance to “EGR
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Table 2 Lexical resources.

Name Lexical Entries

Arizona Disease Corpus10) 1,195

Entrez Gene11) 3,602,757

Gene Ontology1) 128’955

Generated dictionary19) 61,676

Jochem6) 1,715,744

LINNAEUS Dictionary5) 2,880,878

Protein Information Resource27) (PIR) 686,203

Turku Event Corpus2) 6,273,576

Unified Medical Language System3) (UMLS) 5,872,202
Websters Second International Dictionary 235,882

Table 3 Symmetric distance-matrix illustrating fixed and variable-cost edit distance for
proteins (Fixed/Variable)

EGR-1 EGR 1 FGR-1
EGR-1 - 100/10 100/100
EGR 1 - 100/100
FGR-1 -

1” than “FGR-1”.

We implemented a variable cost edit distance designed to match protein men-

tions26). Since proteins are the dominating category for a majority of our datasets

and we should expect to see significant improvements by adopting a measure de-

signed to match proteins. Henceforth, we refer to this measure as Edit and

NEdit which is normalised in relation to the maximum distance between the

two strings.

We sorted the results returned by SimString by cosine similarity to the query

string and then applied the edit distance to the top results, making a cut-off at

the tenth result from the top. We then used the best match among the distances

for our features. Lastly, the distances were bucketed since both Edit and NEdit

are continuous measures. Edit use buckets from 0 to 100 with step 10, from 100

to 1000 with step 50 and from 1000 to 10000 with step 1000, followed by a catch-

all bucket for all larger numbers. For NEdit we use buckets ranging from 0.0 to

1.0 with a bucket step size of 0.1. We also applied cascading to address feature

sparsity, thus if the feature fired for a given bucket it would also fire for each

bucket which would correspond to a worse match than the one it originally fired

for.

While our choice of edit distance26) takes specific characters into consideration

it does not consider the location of the characters in the string. For example: any

substitution in a string is solely based on the character being substituted and not

on the position of the character. A feature of SimString is the possibility to mark

the beginning and ending of a string with “guards” and use it for the queries.

This is a common feature in NER and since this gives additional information

about the structure of the string we chose to investigate the effects of adding

guards in addition to our variable cost edit distance and we refer to this feature

as Guarded.

2.4 Resource Selection

We speculated that among the lexical resources there could be some resources

that were not beneficial or possibly even harmful to the performance of the clas-

sifier. In order to discover which resources provided the least amount of leverage

we performed a greedy descent search and iteratively removed resources that were

deemed not be beneficial.

2.5 Threshold Tuning

Our previous system20) used a lower-bound threshold cut-off below which they

would not search for any further matches. We considered the possibility that

even looser matching could be beneficial. To evaluate this we searched for an

optimal threshold by gradually decreasing the threshold from 1.0 to 0.1 by steps

of 0.1 and observed if there were any significant changes in performance.

2.6 Metrics

To produce our metrics we gradually increase the amount of training data,

starting from 5% to 100% with steps of 5%. For each sampling point we train

multiple models using random samples of the training set and use the mean to

represent a given data point. We use instance-level accuracy and use the mean

of the data points (analogous to the Area Under the Curve) to summarise our

performance.

2.7 Models

Based on our feature suggestions we construct 8 different candidate models

to compare to our baseline. All models incorporate the string internal (non-
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contextual) features (Internal) from Table 1 and we generate the SimString

features using the lexical resources in Table 2. As our machine learning compo-

nent we use LIBLINEAR?14) with a L2-regularised logistic regression model and

we optimise the penalty parameter using cross-validation on the training data.

This makes our setting identical to that used to evaluate our baseline model from

our previous study20) and thus makes our results comparable.

We generate models for our proposed linguistically motivated Edit and NEdit

features, with and without start/end-of string guards (Guarded).

For the resource selection we used the training portion for each dataset and

performed 5-fold cross-validation for each resource and determined if removing a

given resource would increase performance. Since this approach is computation-

ally expensive we inspected the results from the cross-validation to see how many

iterations each dataset would require until no further significant improvements

could be made. After establishing the number of iterations on the training por-

tion of our datasets we combined the training and development sets to determine

the least beneficial resources for each dataset, which were then left out when

constructing our final ResourceSelection model.

2.8 Corpora

Table 4 describes the corpora used for evaluation. These are the same as in our

previous publication20) which make comparisons to the baseline straight forward.

The datasets are separated into training, development and test sets consisting of

1/2, 1/4 and 1/4. This is done randomly and on an annotation level. The test

set was used to generate the final results prior to submitting the publication and

was thus not used during development in order to ensure the validity of the final

results.

3. Results and Discussion

4. Experimental Set-up

If we refer to Table 5 which summarises our model suggestions, we can see that

the Edit and NEdit features fail to be beneficial for any dataset. Introducing

?1 Version 1.7 of the software

guards gave mixed results, but the results differ depending on the cosine threshold

being 0.4 or 0.7. For 0.7 the results are overwhelmingly negative, while for 0.4

they are slightly beneficial. This may strike us as odd, but the guards have

the side-effect of conceptually raising the cosine threshold since every query now

contain two additional characters, the start and end guard. The guards also add

additional weight to the start and end of the query. In a practical sense this will

result in actions such as capitalisation of the first character and pluralisation and

conjugation receiving additional weight relative to the query length.

To find an optimal threshold using our development set we gradually decreased

the SimString cosine threshold for our baseline model from 1.0 to 0.1 by steps of

0.1. For each step we observed the effect on the accuracy of the model and found

that a threshold of 0.4 greatly outperformed one of 0.7. However, lowering the

threshold further than 0.4 did not give any significant improvements in accuracy

and we used 0.4 as the threshold for our model suggestions. The results for

our new thresholds indicate that there are performance gains to be found; in

particular this can be observed for the ID and EPI datasets but the threshold

tuning can also incur performance penalties as can be seen for NLPBA among

others. In retrospect after taking the results from the guards into consideration,

the results suggest that when searching for an optimal threshold the preferable

way to do so is in combination with determining if using guards are beneficial.

For the resource selection we found that five iterations were a reasonable cut-off

for our greedy descent search. The method shows some promise for GE, SGREC

and in particular the ID dataset with 9.8 in error reduction. However, it is clear

that there can be very negative implications and that our simple descent can

over-fit to the data and have a negative impact such as can be observed with a

11.5 relative error increase for the SSC dataset.

5. Conclusions and Future Research

We have proposed several additions to an existing system and seen indications

that performance can potentially be improved by utilising even looser string

matching than what was previously proposed. For linguistically motivated mea-

sures we have found that adding guards to the beginning and end of strings can

be beneficial but are highly sensitive to the threshold used for the string match-
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Table 4 Corpora used for evaluation, the parenthesised value for GREC is for the collapsed superset SGREC which does not suffer
from the same level of data sparseness. For the corpora containing event triggers (EPI, ID, GE, GREC and SGREC),
the triggers are treated as distinct semantic categories

Name Semantic Categories

BioNLP/NLPBA 2004 Shared Task Corpus7) (NLPBA) 5

Gene Regulation Event Corpus23) (GREC) 64 (6)

Collaborative Annotation of a Large Biomedical Corpus17) (SSC) 4

Epigenetics and Post-Translational Modifications12) (EPI) 17

Infectious Diseases Corpus15) (ID) 16

Genia Event Corpus9) (GE) 11

Table 5 Learning curve means for our proposed models. Abbreviations used: Int. for Internal, Sim. for SimString, g for
Guarded, t for cosine threshold, r for ResourceSelection

Classifier EPI ID GE SSC NLPBA SGREC µ

Int.20) 92.5 91.2 94.6 81.7 92.1 82.1 89.0

Int.Sim.20) (t=0.7) 93.7/+16.0 91.8/+6.8 94.4/-3.7 92.2/+57.4 92.1/0.0 83.4/+7.3 91.3/+20.9

Int.Sim. (g,t=0.7) 93.7/0.0 91.7/-1.2 94.5/+1.8 91.0/-15.4 91.9/-2.5 82.9/-3.0 91.0/-3.4
Int.Sim.Edit (t=0.7) 93.4/-4.8 91.2/-7.3 93.7/-12.5 91.8/-5.1 91.6/-6.3 82.7/-4.2 90.7/-6.9
Int.Sim.Edit (g,t=0.7) 93.5/-3.2 90.5/-15.9 93.8/-10.7 91.3/-11.5 91.6/-6.3 81.8/-9.6 90.4/-10.3
Int.Sim.NEdit (t=0.7) 93.5/-3.2 91.2/-7.3 94.0/-7.1 90.7/-19.2 91.9/-2.5 82.7/-4.2 90.7/-6.9
Int.Sim.NEdit (g,t=0.7) 93.6/-1.6 90.6/-14.6 94.0/-7.1 90.5/-21.8 91.8/-3.8 82.1/-7.8 90.4/-10.3
Int.Sim. (t=0.4) 94.1/+6.3 92.4/+7.3 94.4/0.0 92.4/+2.6 92.0/-1.3 83.3/-0.6 91.4/+1.1
Int.Sim. (g,t=0.4) 94.1/+6.3 93.2/+17.1 94.4/0.0 91.9/-3.8 92.1/0.0 83.3/-0.6 91.5/+2.3
Int.Sim. (r,t=0.4) 93.5/-3.2 92.6/+9.8 94.5/+1.8 91.3/-11.5 91.9/-2.5 84.0/+3.6 91.3/0.0
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ing. As for using variable cost edit distances we somewhat surprisingly find it to

hamper performance, a possible research direction forward would be to induce

a more complex edit distance25) tailored for each semantic category as has been

proposed.

Our system, additional results and related resources are freely available for

research purposes at: https://github.com/ninjin/simsem
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