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3点上の最適なオンラインページ移動

松 林 昭†1

ページ移動問題とは，辺重みを持つ無向グラフ G = (V, E)，正整数 D，点列
s0, r1, . . . , rk ∈ V が与えられ，

Pk
i=1(dsi−1ri + D · dsi−1si ) を最小化するような

点列 s1, . . . , sk ∈ V を求める問題である．ただし，duv は点 u と点 v の G 上の距
離である．この問題は長年研究されているが，|V | = 3 という極端に単純な場合です
ら，D = 1, 2の場合を除き，決定的オンラインアルゴリズムの厳密な競合比は知られ
ていない．本報告では 3点上のページ移動問題に対する決定的なオンラインアルゴリ
ズムの競合比が一般の D に対して 3 + Θ(1/D) であることを示す．

Optimal Online Page Migration on Three Points

Akira Matsubayashi†1

The page migration problem is as follows: given a sequence of requests from
nodes on a network to access a page stored in a node, to compute a sequence of
migrations of the page so that the total sum of service costs and the migration
costs is minimized, where a service cost is the distance of the request node and
the page, and a migration cost is the distance of the migration multiplied by the
page size D ≥ 1. No tight competitive ratio of a deterministic online algorithm
has been known even for an extreme case of three nodes, except for D = 1, 2. In
this report, we prove that the tight competitive ratio of a deterministic online
algorithm for the page migration problem on three nodes is 3 + Θ(1/D).

1. Introduction

The problem of computing an efficient dynamic allocation of data objects stored in

nodes of a network so that the cost to serve requests for the data objects and to re-
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allocate the data objects is minimized commonly arises in network applications such

as memory management in a shared memory multiprocessor system and Peer-to-Peer

applications on the Internet. In this paper, we study one of the classical variations of

the problem, called the page migration problem, in which requests are to be served using

unicast communication, and we are allowed to migrate data objects, i.e, no replication

is allowed. Serving a request costs the distance of communication, and migrating a

data object costs the distance of migration multiplied by the data size D ≥ 1. The

objective function to be minimized is the total sum of the service costs and the migra-

tion costs. The page migration problem has been generalized to several settings such

as k-page migration3), file allocation problem2),4),9), and data management on dynamic

networks1),5).

We consider deterministic online page migration algorithms. Black and Sleator6) first

studied competitive analysis of the page migration problem and presented optimal 3-

competitive deterministic online algorithms on trees, uniform networks, and products of

those networks, including grids and hypercubes. Currently best deterministic algorithm

on general networks that achieves a competitive ratio of 4.086 was proposed by Bartal,

Charikar, and Indyk3). This upper bound was improved in 10) to 2+
√

2 for the specific

case that D = 1. Moreover, an optimal 3-competitive deterministic algorithm on three

nodes for D = 1 was presented in 8). In 11), a 3-competitive deterministic algorithm

on three nodes for D = 2 and a lower bound of 3+Ω(1/D2) for D ≥ 3. were presented.

The lower bound greater than 3, specifically 85/27 ≈ 3.148, for deterministic algorithms

was first presented by Chrobak, Larmore, Reingold, and Westbrook8). This bound was

proved for D = 1 on an arbitrarily large tree-of-rings network, i.e., a network whose

blocks are rings, and was improved in 10) to 3.1639 by refining this technique. It was

also mentioned in8) that the lower bound is greater than 3 even on four nodes, although

neither explicit value nor proof was given. An explicit lower bound of 3.1213 on five

nodes was proved in 10).

Randomized algorithms have been investigated in e.g., 4)，8)，9)，12). The best-

known randomized algorithms on general networks were presented by Westbrook12).

The algorithms achieve an asymptotic competitive ratio of (3 +
√

5)/2 ≈ 2.6180 as

D → ∞ and a tight competitive ratio of 3 against oblivious and adaptive online adver-
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saries, respectively.

In this report, we provide a tight deterministic competitive ratio on three nodes.

Specifically, we first prove that a typical work function algorithm achieves a competi-

tive ratio of 3 + 1/D on three nodes. We then provide a lower bound of 3 + Ω(1/D),

which is greater than 3 for any D ≥ 3, for three node networks.

2. Preliminaries

The page migration problem can be formulated as follows: given an undirected graph

G = (V, E) with edge weights, s0, r1, . . . , rk ∈ V , and a positive integer D, to compute

s1, . . . , sk ∈ V so that the cost function
∑k

i=1
(dsi−1ri + Ddsi−1si) is minimized, where

duv is the distance between nodes u and v on G. The terms dsi−1ri and Ddsi−1si

represent the cost to serve the request from ri by the node si−1 holding the page and

the cost to migrate the page from si−1 to si, respectively. We call si and ri a server

and a client, respectively. An online page migration algorithm determines si without

information of ri+1, . . . , rk. We denote by A(σ) the cost of a page migration algorithm

A for a sequence σ = r1 · · · rk. A deterministic online page migration algorithm Alg is

ρ-competitive if there exists a constant value α such that Alg(σ) ≤ ρ · Opt(σ) + α for

any σ, where Opt is an optimal offline algorithm. We denote by Optu(σ) the minimum

(offline) cost to process σ so that sk = u. For a node u and k ≥ 1, we write a sequence

consisting of k repetitions of u as uk.

We suppose that graphs considered here have a node set V = {a, b, c} and edge

weights x = dab, y = dac, and z = dbc for edges (a, b), (a, c), and (b, c), respectively. We

denote L := x + y + z and assume that max{x, y, z} < L/2.

3. 3 + 1/D-Competitive Algorithm

An online algorithm that determines the output after processing σ using the infor-

mation of Optu(σ) for all possible outputs u is called a work function algorithm and

has extensively been studied for related online problems7)–9). Optu(σ) is called a work

function in this context. A work function algorithm is well-defined because Optu(σ)

can be computed by dynamic programming8), i.e., for a request issued from r after σ,

Optu(σr) = min
v∈V

{Optv(σ) + drv + Dduv}, and Optu(∅) = Dds0u,

where ∅ denotes an empty sequence. We consider a quite common work function al-

gorithm denoted by WFA, which moves the server s to a nearest node among nodes

v minimizing Optv(σ) + drv + Ddsv after servicing the request from r. We prove the

following theorem:

Theorem 1 WFA is 3 + 1/D-competitive on 3-node networks.

We suppose that WFA locates the server on s after processing σ, and that a request

is issued from r ∈ V after σ. In the rest of this section, for a function f of σ, we use the

notation f = f(σ) and f ′ = f(σr) for simplicity. For u ∈ V , let û be a nearest node to

u among nodes v minimizing Optv + drv + Dduv. Then,

Opt′
s = Optŝ + drŝ + Ddsŝ ≥ Opts + drŝ, and (1)

Opt′
s ≤ Opt′

ŝ + Ddsŝ. (2)

These follow from |Optu−Optv| ≤ Dduv for any u, v ∈ V 8). It follows from (1) and (2)

that drŝ ≤ Opt′
ŝ − Opts + Ddsŝ. Therefore, we have

WFA′ − WFA = drs + Ddsŝ ≤ drŝ + (D + 1)dsŝ ≤ Opt′
ŝ − Opts + (2D + 1)dsŝ. (3)

By summing up (3) overall requests in σr, we obtain WFA′ ≤ Opt′
ŝ + (2 + 1/D)M ′,

where M ′ = M(σr) is D times the total sum of migration distances of WFA in process-

ing σr. Hence, if

Ddŝu + M ′ ≤ Opt′
u for any u ∈ V , (4)

then by choosing u minimizing Opt′
u, we have WFA′ ≤ Opt′

ŝ +(2+1/D)Opt′− (2D +

1)dŝu ≤ (3 + 1/D)Opt′ − (D + 1)dŝu, which completes the proof of Theorem 1.

The rest of this section is devoted to prove (4). For this purpose, we accurately ana-

lyze the potential function, and therefore, generalize the network to a continuous ring

R of length L containing a, b, and c with the preserved distances. Specifically, we define

R as an interval {p | 0 ≤ p < L} modulo L, i.e., any real number p is equivalent to

p − bp/Lc · L. We define an extended work function at a point p ∈ R as

w′
p = min

q∈V ∪{p}
{wq + drq + Ddpq}, and

wp = Dds0p if σ = ∅.
It should be noted that wu = Optu for any u ∈ V . For a point p ∈ R, p̂ is a nearest
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図 1 R 上で q̂ が存在する範囲．上下の矢印はそれぞれ dqq̂ ≤ dqp̂ と dpp̂ ≤ dpq̂ を表す．
Fig. 1 Range in which q̂ exists on R. Upper and lower arrows represent dqq̂ ≤ dqp̂ and dpp̂ ≤ dpq̂ ,

respectively.

point to p among points q ∈ V ∪ {p} minimizing wq + drq + Ddpq. The farthest point

of p on R is denoted by p̄. For p, q ∈ R, we define [p, q] as the closed interval of length

dpq between p and q on R if dpq < L/2, R otherwise. Notations (p, q], [p, q), and (p, q)

are used to denote the intervals obtained from [p, q] by excluding p, q, and both p and

q, respectively. Lemmas 1–3 below state basic properties of wp.

Lemma 1 For any p, q ∈ R, it follows that wp − wq ≤ Ddpq.

Proof The lemma clearly holds if σ = ∅. Otherwise, it follows from the minimality of

w′
q that w′

q ≤ wp̂ + drp̂ + Ddqp̂ = w′
p − Ddpp̂ + Ddqp̂ ≤ w′

p + Ddpq. �
Lemma 2 For any p ∈ R and q ∈ (p, p̂], it follows that q̂ = p̂.

Proof It follows from the minimality of w′
p that

w′
p = wp̂ + drp̂ + Ddpp̂ ≤ wq̂ + drq̂ + Ddpq̂. (5)

Applying dpp̂ = dpq + dqp̂ to the inequality, we obtain

wp̂ + drp̂ + Ddqp̂ ≤ wq̂ + drq̂ + D(dpq̂ − dpq) ≤ wq̂ + drq̂ + Ddqq̂ = w′
q. (6)

By the minimality of w′
q, (6) holds with equality. This means that (5) also holds with

equality. Therefore, p̂ minimizes wp̂ + drp̂ + Ddqp̂, and q̂ minimizes wq̂ + drq̂ + Ddpq̂.

By the minimalities of dqq̂ and dpp̂, it follows that dqq̂ ≤ dqp̂ and dpp̂ ≤ dpq̂. Because

q ∈ (p, p̂], q̂ exists only at p̂ (Fig 1). �
Lemma 3 For any p ∈ R and q ∈ [p, p̂), it follows that wq − wp̂ > (D − 1)dp̂q.

Proof Because q is nearer to p than p̂ is, it follows that wp̂ + drp̂ + Ddpp̂ < wq + drq +

Ddpq. Thus, because dpp̂ = dpq + dqp̂, we have wq − wp̂ > drp̂ − drq + D(dpp̂ − dpq) ≥
(D − 1)dp̂q. �

To prove (4), we utilize connection between the increased amount of the work func-

tion and its one-sided derivatives, which are defined as mp−0 := limq→p−0
wq−wp

dpq
and

mp+0 := limq→p+0
wq−wp

dpq
for any p ∈ R. The following lemma guarantees that these

derivatives exist and are integers.

Lemma 4 For any p ∈ R, mp−0 and mp+0 are integers with −D ≤ mp±0 ≤ D.

Proof We prove the lemma by induction on σ. If σ = ∅, then {mp−0, mp+0} ⊆ {−D, D}
by the definition of wp. Assume that the lemma holds for a sequence σ. By Lemma 2, if

p 6= p̂, then any point q ∈ (p, p̂) has q̂ with q 6= q̂ = p̂. Therefore, I := {q ∈ R | q 6= q̂} is

a union of disjoint intervals (i, î) such that any point q ∈ (i, î) has q̂ = î. This means that

w′
q = wî+drî+Ddqî. Moreover, w′

î
= wî+drî because ˆ̂i = î by Lemma 2. Therefore, for

any p ∈ [i, î] and q 6= p in (i, î), it follows that (w′
q −w′

p)/dpq = D(dqî −dpî)/dpq = ±D.

The set R \ I is a union of disjoint intervals [i, j] (with not necessarily distinct end-

points i and j) such that any p ∈ [i, j] has p̂ = p. Therefore, for q 6= p in (i, j), it follows

that
w′

q − w′
p

dpq
=

(wq + drq) − (wp + drp)

dpq
=

wq − wp

dpq
+

drq − drp

dpq
. (7)

This approaches an integer as q → p because the first term approaches an integer by

induction hypothesis, and because the second term approaches ±1. By Lemma 1, the

absolute value of (7) is at most D. Because q̂ ∈ V for any q ∈ R, I consists of finite

disjoint intervals. Therefore, an end-point of an interval of I is an end-point of an

interval of R \ I, and vice versa. Thus, we have the lemma. �
Lemma 5 For any p ∈ R \ V , it follows that mp−0 + mp+0 ≤ 0, i.e., wp is convex

only in the region containing a node in V .

Proof We prove the lemma by induction on σ. If σ = ∅, then mp−0 = mp+0 = −D

for p = s̄0, and {mp−0, mp+0} = {−D, D} for p ∈ R \ {s0, s̄0}. Assume that the lemma

holds for a sequence σ. If m′
p−0 ≤ mp−0 and m′

p+0 ≤ mp+0, then the lemma holds by

the hypothesis. We assume without loss of generality that m′
p−0 > mp−0. There are

two such cases from the proof of Lemma 4.

One case is that m′
p−0 becomes D, i.e., for some interval (i, î) in I with i < î, p ∈ (i, î)

and D(dqî − dpî)/dpq = D for any q with i < q < p. It should be noted that p 6= î

because p /∈ V . Then, for any q ∈ (p, î), it follows that D(dqî − dpî)/dpq = −D, and

hence m′
p+0 = −D.

The other case is that m′
p−0 = mp−0+1, i.e., for some interval [i, j] in R\I with i < j,

p is contained in (i, j] and (drq1−drp)/dpq1 → 1 as q1 → p with i < q1 < p ≤ r < p+L/2.

Because p 6= r by p /∈ V , it follows that p < r, and hence, we have (drq2−drp)/dpq2 → −1
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as q2 → p with p < q2 < min{j, r}. This means that m′
p+0 = mp+0 − 1. Thus, we have

the lemma. �
For u ∈ V \ {s}, let ms→u := limq→u, q∈[s,u)

wq−wu

duq
and ms := min{ms→u | u ∈

V \ {s}}. We prove (4) together with two other claims in the following lemma:

Lemma 6 The following claims hold.

( 1 ) For {p, q} := V \ {s}, wp ≥ D(L − dsp) + M , or wq ≥ D(L − dsq) + M , or

wp + wq ≥ msdpq + DL + 2M .

( 2 ) For any u ∈ V , wu + wū ≥ ws + DL
2

+ M .

( 3 ) For any u ∈ V , wu ≥ Ddsu + M .

Proof Claim 3 follows from Claim 2. This is because ws − wū ≥ −Ddsū by Lemma 1,

and therefore, for any u ∈ V , wu ≥ ws − wū + DL
2

+ M ≥ −Ddsū + DL
2

+ M =

−D(L
2
− dsu) + DL

2
+ M = Ddsu + M .

We prove Claims 1 and 2 by induction on events of service and migration of WFA

for requests in σ. We suppose that w and m are updated to w′ and m′ in the event

of WFA’s service, respectively, and that M is updated to M ′ in the event of WFA’s

migration. If σ = ∅, then the claims hold. This is because wp + wq − msdpq − 2M =

D(dsp + dsq) + Ddpq = DL, and because wu + wū − ws − M = D(dsu + dsū) = DL
2

for

any u ∈ V . Assume that the claims hold for all events in σ, and that a request is issued

from r after σ.

We first prove Claim 1 for the event of WFA’s service for r. If wp ≥ D(L− dsp) + M

or wq ≥ D(L−dsq)+M , then w′
p ≥ wp ≥ D(L−dsp)+M or w′

q ≥ wq ≥ D(L−dsq)+M

follows, and hence, Claim 1 holds for the event. Therefore, we assume that wp + wq ≥
msdpq + DL + 2M .

Case 1.1: p̂ = s. Then, m′
s→p = −D, and hence m′

s = −D ≤ ms. This means that

w′
p + w′

q − m′
sdpq ≥ wp + wq − msdpq ≥ DL + 2M by induction hypothesis.

Case 1.2: p̂ = q. Then, it follows from Claim 3 of induction hypothesis that

w′
p ≥ wq + Ddpq ≥ Ddsq + M + Ddpq = D(L − dsp) + M .

Case 1.3: q̂ ∈ {s, p}. Similar to the case p̂ ∈ {s, q}.
Case 1.4: p̂ = p and q̂ = q. If m′

s ≤ ms + 1, then w′
p + w′

q − m′
sdpq ≥

wp + drp + wq + drq − (ms + 1)dpq ≥ wp + wq − msdpq ≥ DL + 2M by induction

hypothesis. If m′
s > ms + 1, then ms→p or ms→q, say, ms→p increases by more than

1. By (the proof of) Lemma 4, this means that ms→p < D − 1, and that there exists

i ∈ (s, p) with p ∈ (i, î]. It follows from Lemma 2 that p = p̂ = î. Therefore, it fol-

lows from Lemma 3 that wj − wp > (D − 1)dpj for any j ∈ (i, p), which contradicts

ms→p < D − 1.

Second, we prove Claim 2 for the event of WFA’s service for r. Because ws̄ = ws +

ws̄−ws ≥ DL
2

+M by induction hypothesis, it follows that w′
s+w′

s̄−w′
s ≥ ws̄ ≥ DL

2
+M .

Therefore, without loss of generality, it suffices to prove that w′
p + w′

p̄ ≥ w′
s̄ + DL

2
+ M .

Case 2.1: p̂ = s. Then, ŝ = p̂ = s by Lemma 2. Therefore, it follows that

w′
s = ws + drs. Moreover, w′

p = ws + drs + Ddsp ≥ wp + drs by Lemma 1. Thus,

we have w′
p +w′

p̄ −w′
s ≥ wp +drs +wp̄ − (ws +drs) ≥ DL

2
+M by induction hypothesis.

Case 2.2: p̂ = q. Then, w′
p ≥ D(L − dsp) + M as shown in Case 1.2. Moreover,

w′
p̄ ≥ w′

s − Ddsp̄ = w′
s − D(L

2
− dsp) by Lemma 1. Thus, we have w′

p + w′
p̄ ≥

D(L − dsp) + M + w′
s − D(L

2
− dsp) = w′

s + DL
2

+ M .

Case 2.3: p̂ = p. The proof for the case ˆ̄p = s is similar to that for the case

p̂ = s. If ˆ̄p = p, then it follows from Claim 3 of induction hypothesis that

w′
p̄ = wp + drp + Ddpp̄ ≥ Ddsp + M + DL

2
. Moreover, w′

p ≥ w′
s − Ddsp by Lemma 3.

Thus, we have w′
p + w′

p̄ ≥ w′
s + M + DL

2
. Assume the remaining case ˆ̄p = q. Then,

wp̄ −wq > (D− 1)dp̄q by Lemma 3. This means ms→q = D because ms→q is an integer

at most D by Lemma 4, and because there is no node of V between p̄ and q, and

therefore, no convex point in (p̄, q) by Lemma 5.

Case 2.3.1: ms→p = D. Then, it follows from Claim 1 of induction hypothesis that

wp ≥ D(L − dsp) + M , or wq ≥ D(L − dsq) + M , or wp + wq ≥ Ddpq + DL + 2M .

The third inequality implies the first or second inequality. Therefore, it follows that

w′
p ≥ wp ≥ D(L − dsp) + M , or that w′

p̄ = wq + drq + Ddqp̄ ≥ D(L − dsq) + M +

drq + Ddqp̄ ≥ M + D(L− dsp̄). Both cases can be proved using similar arguments for

Case 2.2.

Case 2.3.2: ms→p ≤ D−1. This means wq̄−wp ≤ (D−1)dpq̄ because there is no node

of V between q̄ and p, and therefore, no convex point in (q̄, p) by Lemma 5. Therefore,

it follows that w′
p + w′

p̄ = wp + drp + wq + drq + Ddqp̄ ≥ wq + wq̄ + dpq̄ + drp + drq ≥
ws + DL

2
+ M + L

2
by induction hypothesis. Because w′

s ≤ ws + drs ≤ ws + L
2

by the

minimality of w′
s, we have w′

p + w′
p̄ ≥ w′

s + DL
2

+ M .
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Finally, we prove Claims 1 and 2 for the event of WFA’s migration from s to another

node, say, p after WFA services the request issued from r. After the service, it follows

that

w′
s − w′

p = Ddsp. (8)

Therefore, it follows that m′
p = −D. Moreover, it follows from Claims 2 and 3 (for the

event of WFA’s service) that

w′
u + w′

ū ≥ w′
s + DL

2
+ M for any u ∈ V , and (9)

w′
p ≥ Ddsp + M. (10)

Furthermore, because q̄ ∈ (s, p), it follows that

w′
s − w′

q̄ = Ddsq̄ = D(L
2
− dsq). (11)

We obtain w′
s ≥ 2Ddsp +M from (8) and (10), and w′

q ≥ D(L−dsq)+M from (9) with

u = q and (11). Thus, we have w′
s+w′

q−m′
pdsq ≥ 2Ddsp+M +D(L−dsq)+M +Ddsq =

DL + 2(Ddsp + M) = DL + 2M ′. Moreover, it follows from (8) and (9) that

w′
u + w′

ū − w′
p ≥ w′

s + DL
2

+ M + Ddsp − w′
s = DL

2
+ M ′ for any u ∈ V . �

Therefore, the proof of (4) is completed, and hence we have Theorem 1.

4. Lower Bound

In this section we prove the following theorem:

Theorem 2 There exists no deterministic ρ-competitive page migration algorithm

on 3-node networks if ρ = 3 + o(1/D). In particular, there exists no deterministic

3-competitive page migration algorithm on 3-node networks if D ≥ 3.

In this section we assume without loss of generality that y ≥ x ≥ z. Let Alg be a

deterministic online page migration algorithm. We denote σ also by σv if Alg leaves

the last server on a node v after processing σ.

Lemma 7 Let P ⊆ V , Q := V \ P , and let p ∈ P and q ∈ Q be joined by an edge

with the minimum weight w overall edges joining P and Q. If there exist ρ > 3 and a

sequence σq of clients such that (ρ−1)Optp(σq)+Optq(σq)−Alg(σq)+(ρ−5)Dw < 0,

then there exists a sequence σ′ = σ′
p with Alg(σqσ

′) > ρ · Optp(σqσ
′) or a sequence

σ′′ = σ′′
q with Alg(σqσ

′′) > ρ · Optq(σqσ
′′).

Proof We prove that σ′ := pk1ql1 · · · pki−1qli−1pki or σ′′ := pk1ql1 · · · pkiqli is a desired

sequence for some i. Here, kj (resp. lj) (1 ≤ j ≤ i) is the minimum positive integer

such that Alg moves the server from a node of Q (resp. P ) to a node P (resp. Q) after

processing σqp
k1ql1 · · · pkj−1qlj−1pkj (resp. σqp

k1ql1 · · · pkj qlj ).

Assume for contradiction that Alg(σqσ
′) ≤ ρ · Optp(σqσ

′) and Alg(σqσ
′′) ≤

ρ · Optq(σqσ
′′). Because Alg incurs a cost at least w to serve a request in σ′ or

σ′′ and a cost at least Dw to migrate between P and Q, it follows that

Alg(σpσ′
p) ≥ Alg(σq) + (Ki + Di + Li−1 + D(i − 1))w, and

Alg(σpσ′′
q ) ≥ Alg(σq) + (Ki + Di + Li + Di)w,

where Kj :=
∑j

h=1
kh and Lj :=

∑j

h=1
lh for 1 ≤ j ≤ i. Moreover, an offline algorithm

that locates and keeps the server on p (resp. q) after processing σq can process σqσ
′

(resp. σqσ
′′) with a cost of Optp + Li−1w (resp. Optp + Kiw). Therefore, it follows

that Optp(σqσ
′
p) ≤ Optp(σq) + Li−1w, and Optq(σqσ

′
q) ≤ Optq(σq) + Kiw. By the

inequalities above, we have

Alg(σq) + (Ki + Di + Li−1 + D(i − 1))w ≤ ρ(Optp(σq) + Li−1w), and

Alg(σq) + (Ki + Di + Li + Di)w ≤ ρ(Optq(σq) + Kiw),

which yield the recurrences

Ki ≤ (ρ − 1)Li−1 − D(2i − 1) + A, and

Li ≤ (ρ − 1)Ki−1 − 2Di + B,

where A := (ρ · Optp(σq) − Alg(σq))/w and B := (ρ · Optq(σq) − Alg(σq))/w. From

the recurrences, we have

Ki ≤ (ρ − 1)2Ki−1 − 2ρDi + (2ρ − 1)D + A + (ρ − 1)B

≤
(
− ρ(ρ−1)

ρ−2
D + (ρ − 1)A + B

)
(ρ−1)2i−1

ρ(ρ−2)
+ 2Di

ρ−2
+

ρ
ρ−2 D−A−(ρ−1)B

ρ(ρ−2)

=
(
− ρ(ρ−1)

ρ−2
D + (ρ − 1)A + B

)
· Θ((ρ − 1)2i) + O(i).

The factor of Θ((ρ − 1)2i) can be estimated as follows:

− ρ(ρ−1)
ρ−2

D + (ρ − 1)A + B = ρ
w

(
(ρ − 1)Optp(σq) + Optq(σq) − Alg(σq) − ρ−1

ρ−2
Dw

)
,

which is negative by − ρ−1
ρ−2

≤ ρ − 5 for ρ ≥ 3 and by the assumption of the lemma.

Therefore, Ki decreases as i grows sufficiently large, but it is impossible by definition.

�
Lemma 8 Let p := a and q := b, or p := b and q := c. Let w be the weight of

the edge (p, q). If there exist ρ > 3, β > 0, and a sequence σq of clients such that

Alg(σq) > ρ · Optq(σq) and Optq(σq) ≥ βDw, then there exists a sequence σ′ such

that σ′ = σ′
p and Alg(σqσ

′) > ρ′ ·Optp(σqσ
′), or that σ′ is an arbitrarily long sequence
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with Alg(σqσ
′) > ρ′ · Opt(σqσ

′), where ρ′ := β
β+4

(ρ − 3) + 3.

Proof We define σ′ as follows:

( 1 ) Let τ0 be an empty sequence and j := 1.

( 2 ) Alg have processed σqτ
0 · · · τ j−1 and locates the server on q. Then, we generate

requests from p repeatedly until Alg locates the server on p. Let i be the number of

the requests from p.

( 3 ) If i ≥ ((β + 1)ρ′ − βρ− 1)D, then set σ′ := τ0 · · · τ j−1pi, and quit the procedure.

( 4 ) Otherwise, we consider costs of Alg and Opt for the clients pi with the initial

server q. Wherever Alg moves the server between q and u /∈ {p, q} during the re-

quests, Alg incurs a cost at least (i + D)w. This is because w is at most the weight

of (p, u) by y ≥ x ≥ z. An offline algorithm that keeps the server on q can process pi

with a cost of iw. Moreover, an offline algorithm that moves the server from q to p

first and keeps the server on p can process pi with a cost of Dw. Thus, we have

(ρ′ − 1)Optq(p
i) + Optp(pi) − Alg(pi) + (ρ′ − 5)Dw

≤ (ρ′ − 1)iw + Dw − (i + D)w + (ρ′ − 5)Dw

< {(ρ′ − 2)((β + 1)ρ′ − βρ − 1) + ρ′ − 5}Dw

= {(β + 1)ρ′2 − (βρ + 2(β + 1))ρ′ + 2βρ − 3}Dw

= (β + 1)(ρ′ − A(ρ))(ρ′ − B(ρ))Dw < 0,

(12)

where

A(ρ) := 1 +
βρ+

√
β2ρ2−4(β+1)(βρ−β−4)

2(β+1)
, and

B(ρ) := 1 +
βρ−

√
β2ρ2−4(β+1)(βρ−β−4)

2(β+1)
.

The last inequality of (12) holds because B(ρ) < ρ′ < A(ρ) for ρ > 3, which can be

verified by A′′(ρ) > 0, ρ′ = A′(3) · (ρ − 3) + A(3) > 3, and B(ρ) < 2. Therefore,

by applying Lemma 7 with P := {p} and Q := {q, u}, we can obtain a sequence τ j

beginning with pi such that τ j = τ j
p and Alg(τ j) > ρ′Optp(τ j), or that τ j = τ j

q and

Alg(τ j) > ρ′Optq(τ
j).

( 5 ) If τ j = τ j
p , then set σ′ := τ0 · · · τ j , and quit the procedure. Otherwise, set

j := j + 1, and repeat the process from Step 2.

By definition, σ′ is σ′
p or arbitrarily long. If the procedure ends in Step 3, then it

follows that
Alg(σqσ

′) − ρ′Opt(σqσ
′)

≥ Alg(σq) +
∑
j≥0

Alg(τ j) + Alg(pi) − ρ′

{
Optq(σq) +

∑
j≥0

Optq(τ
j) + Optp(pi)

}
> (ρ − ρ′)Optq(σq) + ((β + 1)ρ′ − βρ)Dw − ρ′Dw

= (ρ − ρ′)(Optq(σq) − βDw) ≥ 0.

Otherwise, we can prove similarly that Alg(σqσ
′)−ρ′ ·Opt(σqσ

′) > (ρ−ρ′)Optq(σq) >

0. �
Lemma 9 Let {p, q} := {a, b} and w be the weight of the edge (p, q). If there exist

ρ > 3, β > 0, and a sequence σq of clients such that (ρ − 1)Optp(σq) + Optq(σq) −
Alg(σq) + (ρ − 5)Dw < 0 and Optq(σq) ≥ βDw, then there exists a sequence σ′ such

that σ′ = σ′
a and Alg(σqσ

′) > ρ′ ·Opta(σqσ
′), or that σ′ is an arbitrarily long sequence

with Alg(σqσ
′) > ρ′ · Opt(σqσ

′), where ρ′ = β
β+4

(ρ − 3) + 3.

Proof Let P := {a} and Q := {b, c} if p = a, P := {b, c} and Q := {a} otherwise. By

applying Lemma 7 with such P and Q, we can obtain a sequence τ such that τ = τa

and Alg(σqτ) > ρ · Opta(σqτ), or that τ = τb and Alg(σqτ) > ρ · Optb(σqτ). If

τ = τa, then we have obtained a desired sequence. Otherwise, by Lemma 8, there exists

a sequence τ ′ such that τ = τa and Alg(σqτbτ
′) > ρ′ · Opta(σqτbτ

′), or that τ ′ is

an arbitrarily long sequence with Alg(σqτbτ
′) > ρ′ · Opt(σqτbτ

′). Therefore, ττ ′ is a

desired sequence. �
Now we prove Theorem 2. Suppose that y = x + δ and z = γδ with 3 ≤ γ ≤ x/δ.

We carefully choose γ and δ, and design a strategy to generate an arbitrarily long

sequence σ with Alg(σ) > ρ · Opt(σ) for some ρ = 3 + Ω(1/D). This proves that

Alg(σ) ≥ ρ · Opt(σ) + α for any α independent of the number of clients.

We locate the initial server for σ on a. The strategy is defined using a state machine

as shown in Fig. 2. In the state machine, a transition represents a server selected by

Alg, together with optional conditions on the number of requests generated in the

source state. A state with the form of uk (i.e., bh, aj , and ci) represents a sequence

of requests from u until one of the outgoing arcs from the state meets the server of

Alg and the conditions on the number k of the requests. A state with the form of

u+ (i.e., a+ and c+) represents a sequence of requests from u until Alg locates the
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bc, h<λ

a, j>2D
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Lm9

a, h=λ

a

c, i<D-λ b, i>2D-λ

a

a
a, j<2D-1

c, D-λ<i<2D-λ

c, i>2D-λ+1

c
b

b, i<2D-λ−1

b

c

b

ic

aj

hb

a+ +c

図 2 σ を生成する戦略．
Fig. 2 Strategy to generate σ.

server on u. The states Lm8b and Lm8a represent sequences of requests obtained by

applying Lemma 8 with p := b and q := c, and with p := a and q := b, respectively.

The state Lm9 represents a sequence of requests obtained by applying Lemma 9 with

p ∈ {a, b} \ {s} and q := s, where s ∈ {a, b} is the server of Alg at the beginning of the

state.

We divide σ into phases so that entering the state bh begins a new phase. Alg locates

the server on a at the beginning of each phase. Therefore, Theorem 2 is proved if for

each phase φ = φa, Alg(φ) > ρ ·Opta(φ) with the initial server on a, and if for a phase

φ 6= φa (i.e., an arbitrarily long sequence), Alg(φ) > ρ · Opt(φ) with the initial server

on a.

Case 1: φ = bh
bca

+ with h ≤ λ. It follows that Alg(φ) > (h+2D)x and Opta(φ) ≤ hx

(cost of keeping the server on a). Thus, we have Alg(φ)
Opta(φ)

> h+2D
h

≥ 1 + 2D
λ

> 4.

Case 2: φ = ττ ′, where τ := bλ
aci

b with i ≤ 2D−λ−1, and τ ′ is the sequence of clients

generated in State Lm3. It follows that Alg(τ) = (λ + D)x + iy, Opta(τ) = λx + iy

(cost of keeping the server on a), and Dx ≤ Optb(τ) ≤ Dx + iz (cost of moving the

server to b first and keeping it on b). Thus, we have

(ρ − 1)Opta(τ) + Optb(τ) − Alg(τ) + (ρ − 5)Dx

≤ (ρ − 1)(λx + iy) + Dx + iz − ((λ + D)x + iy) + (ρ − 5)Dx

≤ ρ{(3D − 1)x + (2D − λ − 1)δ} − {(9D − 2)x + (2D − λ − 1)(2 − γ)δ}.
Therefore, if (ρ − 1)Opta(τ) + Optb(τ) − Alg(τ) + (ρ − 5)Dx ≥ 0, then we obtain

ρ ≥ 3 +
x − (2D − λ − 1)(1 + γ)δ

(3D − 1)x + (2D − λ − 1)δ
,

which is 3 + ε
O(D)

with 0 < ε < 1 by setting γ = O(1) and

δ ≤ (1 − ε)x

(2D − λ − 1)(γ + 1)
= O

(
x

D

)
. (13)

This means that there exists ρ = 3 + Ω(1/D) such that (ρ − 1)Opta(τ) + Optb(τ) −
Alg(τ) + (ρ − 5)Dx < 0. Therefore, by Lemma 9, there exists ρ′ = 3 + Ω(1/D) such

that φ = φa and Alg(φ) > ρ′ · Opta(φ), or that φ is an arbitrarily long sequence with

Alg(φ) > ρ′ · Opt(φ).

Case 3: φ = ττ ′, where τ = bλ
aci

bc
+ with i ≥ 2D − λ, and τ ′ is the sequence of clients

generated in States Lm2b and Lm2a. It follows that Alg(τ) ≥ (λ+D)x+ iy+(1+D)z

and Dy ≤ Optc(τ) ≤ Dy + λz (cost of moving the server to c first and keeping it on

c). Thus, we have
Alg(τ)

Optc(τ)
≥ (λ + D)x + iy + (1 + D)z

Dy + λz
≥ 3Dx + {(2D − λ) + (1 + D)γ}δ

Dx + (D + λγ)δ

= 3 +
{(γ − 1)D + γ − λ(3γ + 1)}δ

Dx + (D + λγ)δ
,

which is 3 + ε
O(D)

with 0 < ε < 1 by setting

γ := 4 + 3ε = O(1), (14)

λ :=

⌊
(γ − 1 − ε)D + γ

3γ + 1

⌋
= Θ(D), and (15)

δ = O( x
D

). It should be noted that 1 ≤ λ < 2D
3

for D ≥ 3. Therefore, by Lemma 8,

there exists ρ′ = 3 + Ω(1/D) such that φ = φa and Alg(φ) > ρ′ ·Opta(φ), or that φ is

an arbitrarily long sequence with Alg(φ) > ρ′ · Opt(φ).

Case 4: φ = bλ
aci

ca
+ with i < D−λ. It follows that Alg(φ) ≥ λx+(i+D+1+D)y =

λx + (i + 2D + 1)y and Opta(φ) ≤ λx + iy (cost of keeping the server on a). Thus, we

have
Alg(φ)

Opta(φ)
≥ λx + (i + 2D + 1)y

λx + iy
≥ 1 +

(2D + 1)y

λx + iy
> 1 +

2D + 1

D
= 3 +

1

D
.

Case 5: φ = ττ ′ where τ = bλ
aci

ca
j
a with D − λ ≤ i ≤ 2D − λ and j ≤ 2D − 1,

and τ ′ is the sequence of clients generated in State Lm3. If Alg keeps the server on c

during aj , then the cost for aj is (j + D)y. If Alg moves the server from c to b after

the j′th request of aj , then the cost for aj is at least j′y + Dz + (j − j′ + D)x =

jy + D(γδ + x) − (j − j′)δ. Because γ ≥ 3 and j − j′ < 2D, this is at least

jy + D(3δ + x) − 2Dδ = jy + D(δ + x) = (j + D)y. Therefore, it follows that

Alg(τ) ≥ λx+(i+D+j+D)y = λx+(i+j+2D)y. Moreover, Dx < Opta(τ) ≤ λx+iy
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(cost of keeping the server on a), and Optb(τ) ≤ Dx + iz + jx = (j + D)x + iz (cost of

moving the server to b and keeping it on b). Thus, we have

(ρ − 1)Optb(τ) + Opta(τ) − Alg(τ) + (ρ − 5)Dx

≤ (ρ − 1)((j + D)x + iz) + λx + iy − (λx + (i + j + 2D)y) + (ρ − 5)Dx

≤ ρ{(4D − 1)x + (2D − λ)γδ} − {(12D − 2)x + (4D − 1 + (2D − λ)γ)δ}.
Therefore, if (ρ − 1)Optb(τ) + Opta(τ) − Alg(τ) + (ρ − 5)Dx ≥ 0, then we obtain

ρ ≥ 3 +
x + ((4D − 1) − 2(2D − λ)γ)δ

(4D − 1)x + (2D − λ)γδ
,

which is 3 + ε
O(D)

with 0 < ε < 1 by setting γ = O(1) and

δ ≤ (1 − ε)x

2(2D − λ)γ − (4D − 1)
= O

(
x

D

)
. (16)

Therefore, we can prove as in Case 2 that there exists ρ′ = 3 + Ω(1/D) such that

φ = φa and Alg(φ) > ρ′ · Opta(φ), or that φ is an arbitrarily long sequence with

Alg(φ) > ρ′ · Opt(φ).

Case 6: φ = bλ
aci

ca
j
a with D − λ ≤ i ≤ 2D − λ and j ≥ 2D. If Alg keeps the

server on c during aj , then the cost for aj is (j + D)y ≥ 3Dy. If Alg moves

the server from c to b after the j′th request of aj , then the cost for aj is at least

j′y + Dz + (j − j′ + D)x ≥ jx + D(γδ + x). Because γ ≥ 3 and j ≥ 2D, this is at least

3D(δ+x) = 3Dy. Therefore, it follows that Alg(τ) ≥ λx+(i+D+3D)y = λx+(i+4D)y

and Opta(τ) ≤ λx + iy (cost of keeping the server on a). Thus, we have
Alg(τ)

Opta(τ)
≥ λx + (i + 4D)y

λx + iy
= 1 +

4Dy

λx + iy

≥ 1 +
4D(x + δ)

2Dx + (2D − λ)δ
= 3 +

2λδ

2Dx + (2D − λ)δ
,

which is 3 + Ω(1/D) by setting λ = Θ(D) and δ = Θ(x/D).

Case 7: φ = ττ ′, where τ = bλ
aci

c with i ≥ 2D − λ + 1, and τ ′ is the sequence of

clients generated in States Lm2b and Lm2a. It follows that Alg(τ) ≥ λx + (i + D)y

and Dy ≤ Optc(τ) ≤ Dy + λz (cost of moving the server to c first and keeping it on

c). Thus, we have
Alg(τ)

Optc(τ)
≥ λx + (i + D)y

Dy + λz
≥ (3D + 1)x + (3D − λ + 1)δ

Dx + (D + λγ)δ

= 3 +
x − ((3γ + 1)λ − 1)δ

Dx + (D + λγ)δ
,

which is 3 + ε
O(D)

with 0 < ε < 1 by setting γ = O(1) and

δ ≤ (1 − ε)x

(3γ + 1)λ − 1
= O

(
x

D

)
. (17)

Therefore, by Lemma 8, there exists ρ′ = 3 + Ω(1/D) such that φ = φa and Alg(φ) >

ρ′ · Opta(φ), or that φ is an arbitrarily long sequence with Alg(φ) > ρ′ · Opt(φ).

By setting γ as in (14), λ as in (15), and δ so that (13), (16), (17), and δ ≤ x/γ

are satisfied, we can obtain a desired sequence φ. Thus, the proof of Theorem 2 is

completed.
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