gooooooood
IPSJ SIG Technical Report

Jubobouobuoboboobn

0 0 Otl

000000000000000000000 G = (V,E)0000 DOOO
50,71,.-.,7, €V 000000 (ds;_yry +D-ds;,_,s,) 000000000
00 s1,...,5, € VOODODOO0O0000000dy, 00 w00 00 GODOO
00D00D00000000000000000(|V|=30000000000000
00DP=1,200000000000000000000000000000000
0000000000 3000000000000000000000000000
0000000000 PODOO 346(1/P)000000000

Optimal Online Page Migration on Three Points

AKIRA MATSUBAYASHIT!

The page migration problem is as follows: given a sequence of requests from
nodes on a network to access a page stored in a node, to compute a sequence of
migrations of the page so that the total sum of service costs and the migration
costs is minimized, where a service cost is the distance of the request node and
the page, and a migration cost is the distance of the migration multiplied by the
page size D > 1. No tight competitive ratio of a deterministic online algorithm
has been known even for an extreme case of three nodes, except for D = 1,2. In
this report, we prove that the tight competitive ratio of a deterministic online
algorithm for the page migration problem on three nodes is 3 + ©(1/D).

1. Introduction

The problem of computing an efficient dynamic allocation of data objects stored in

nodes of a network so that the cost to serve requests for the data objects and to re-

t10000000000000DOO0O0DO0OO0OOO0

Division of Electrical Engineering and Computer Science, Kanazawa University

Vol.2011-AL-137 No.8
2011/11/18

allocate the data objects is minimized commonly arises in network applications such
as memory management in a shared memory multiprocessor system and Peer-to-Peer
applications on the Internet. In this paper, we study one of the classical variations of
the problem, called the page migration problem, in which requests are to be served using
unicast communication, and we are allowed to migrate data objects, i.e, no replication
is allowed. Serving a request costs the distance of communication, and migrating a
data object costs the distance of migration multiplied by the data size D > 1. The
objective function to be minimized is the total sum of the service costs and the migra-
tion costs. The page migration problem has been generalized to several settings such

as k-page migrati0n3), file allocation problem2)’4)’9),

and data management on dynamic
networks"?).

We consider deterministic online page migration algorithms. Black and Sleator® first
studied competitive analysis of the page migration problem and presented optimal 3-
competitive deterministic online algorithms on trees, uniform networks, and products of
those networks, including grids and hypercubes. Currently best deterministic algorithm
on general networks that achieves a competitive ratio of 4.086 was proposed by Bartal,
Charikar, and Indyk®. This upper bound was improved in 10) to 2++/2 for the specific
case that D = 1. Moreover, an optimal 3-competitive deterministic algorithm on three
nodes for D = 1 was presented in 8). In 11), a 3-competitive deterministic algorithm
on three nodes for D = 2 and a lower bound of 34 Q(1/D?) for D > 3. were presented.
The lower bound greater than 3, specifically 85/27 a2 3.148, for deterministic algorithms
was first presented by Chrobak, Larmore, Reingold, and Westbrook® . This bound was
proved for D = 1 on an arbitrarily large tree-of-rings network, i.e., a network whose
blocks are rings, and was improved in 10) to 3.1639 by refining this technique. It was
also mentioned in® that the lower bound is greater than 3 even on four nodes, although
neither explicit value nor proof was given. An explicit lower bound of 3.1213 on five
nodes was proved in 10).

Randomized algorithms have been investigated in e.g., 4)0 8)09)0 12). The best-
known randomized algorithms on general networks were presented by Westbrook!'?.
The algorithms achieve an asymptotic competitive ratio of (3 4+ v/5)/2 ~ 2.6180 as

D — oo and a tight competitive ratio of 3 against oblivious and adaptive online adver-

(© 2011 Information Processing Society of Japan

gooooooood
IPSJ SIG Technical Report

saries, respectively.

In this report, we provide a tight deterministic competitive ratio on three nodes.
Specifically, we first prove that a typical work function algorithm achieves a competi-
tive ratio of 3+ 1/D on three nodes. We then provide a lower bound of 3 + Q(1/D),

which is greater than 3 for any D > 3, for three node networks.
2. Preliminaries

The page migration problem can be formulated as follows: given an undirected graph
G = (V, E) with edge weights, so,r1,...,7: € V, and a positive integer D, to compute
S1,...,8k € V so that the cost function Zf:l(dsi—l"‘i + Dds,_,s;) is minimized, where
duo is the distance between nodes u and v on G. The terms ds,_,r, and Dd, s,
represent the cost to serve the request from r; by the node s;—1 holding the page and
the cost to migrate the page from s;—1 to s;, respectively. We call s; and r; a server
and a client, respectively. An online page migration algorithm determines s; without
information of 7i41, ..., 7x. We denote by A(o) the cost of a page migration algorithm
A for a sequence o = r1 - - r¢. A deterministic online page migration algorithm ALG is
p-competitive if there exists a constant value a such that ALc(o) < p- OpT(0) + a for
any o, where OPT is an optimal offline algorithm. We denote by OPT,(¢) the minimum
(offline) cost to process o so that s = u. For a node u and k > 1, we write a sequence
consisting of k repetitions of u as u*.

We suppose that graphs considered here have a node set V = {a,b,c} and edge
weights = dap, Y = dac, and z = ds. for edges (a,b), (a,c), and (b, ¢), respectively. We
denote L := z 4+ y + z and assume that max{z,y, 2} < L/2.

3. 3+ 1/D-Competitive Algorithm

An online algorithm that determines the output after processing o using the infor-
mation of OpT, (o) for all possible outputs u is called a work function algorithm and
has extensively been studied for related online problems™ . OpTy(0) is called a work

function in this context. A work function algorithm is well-defined because OPT, (o)

Vol.2011-AL-137 No.8
2011/11/18

can be computed by dynamic programming® | i.e., for a request issued from r after o,
OPTy(or) = f)nei‘r/l{OPTv (0) + dro + Ddyy }, and OPT,(0) = Ddsyu,

where () denotes an empty sequence. We consider a quite common work function al-

gorithm denoted by WFA, which moves the server s to a nearest node among nodes

v minimizing OPTy(0) + dry + Dds, after servicing the request from r. We prove the

following theorem:

Theorem 1 WFA is 3 + 1/D-competitive on 3-node networks.

We suppose that WFA locates the server on s after processing o, and that a request
is issued from r € V after o. In the rest of this section, for a function f of o, we use the
notation f = f(o) and f' = f(or) for simplicity. For u € V, let @ be a nearest node to
u among nodes v minimizing OPTy + dry + Ddyy. Then,

OPT, = OPT; + drs + Dd,; > OPT, + dys, and (1)

OPT., < OPT; + Dd,;. (2)
These follow from |OPT, — OPT,| < Ddy, for any u,v € V¥, Tt follows from (1) and (2)
that d,; < OPT'§ — OPTs + Ddss. Therefore, we have

WFA’' — WFA = d,s + Ddss < dps + (D 4 1)dss < OPT; — OPT, + (2D + 1)dss. (3)
By summing up (3) overall requests in or, we obtain WFA’ < OpT; + (2 + 1/D)M’,
where M’ = M(or) is D times the total sum of migration distances of WFA in process-
ing or. Hence, if

Dds, + M' < OpT), for any u € V, (4)
then by choosing u minimizing OPT/,, we have WFA’ < OpT; + (2+1/D)OpPT’ — (2D +
1)dsu < (34 1/D)OpPT’ — (D + 1)dsy, which completes the proof of Theorem 1.

The rest of this section is devoted to prove (4). For this purpose, we accurately ana-
lyze the potential function, and therefore, generalize the network to a continuous ring
R of length L containing a, b, and ¢ with the preserved distances. Specifically, we define
R as an interval {p | 0 < p < L} modulo L, i.e., any real number p is equivalent to
p— |p/L| - L. We define an extended work function at a point p € R as

l = i d, Dd d
Wp qerélb?p}{wq +drq + Ddpq}, an

wp = Ddg,p if 0 = 0.
It should be noted that w, = OpT,, for any u € V. For a point p € R, p is a nearest

(© 2011 Information Processing Society of Japan

gooooooood
IPSJ SIG Technical Report

|
T \ | 1 R
P p p p
01 ROOD ¢OOD0D0D0D000000000 dygg <dgp 0 dpp < dpg 000D
Fig.1 Range in which ¢ exists on R. Upper and lower arrows represent dqg < dgp and dpp < dpg,
respectively.

point to p among points ¢ € V' U {p} minimizing wq + drq + Ddpg. The farthest point
of p on R is denoted by p. For p,q € R, we define [p, g] as the closed interval of length
dpq between p and g on R if dpq < L/2, R otherwise. Notations (p, q], [p,q), and (p, q)
are used to denote the intervals obtained from [p, q] by excluding p, ¢, and both p and
q, respectively. Lemmas 1-3 below state basic properties of w,.
Lemma 1 For any p,q € R, it follows that w, — wq < Ddpg.
Proof The lemma clearly holds if o = (). Otherwise, it follows from the minimality of
wyy that w), < wp + drp + Ddgp = wj, — Ddpp + Ddgp < w)y, + Ddpg. O
Lemma 2 For any p € R and q € (p, p], it follows that § = p.

Proof 1t follows from the minimality of w;,, that

Wy = wp + drp + Ddpp < wg + drg + Dipg. (5)
Applying dpp = dpq + dgp to the inequality, we obtain
wp + drp + Ddgp < wg + drg + D(dpq — dpq) <wg+drg + Ddgg = w; (6)

By the minimality of wj, (6) holds with equality. This means that (5) also holds with
equality. Therefore, p minimizes wp + drp + Ddgp, and § minimizes wg + drg + Ddpg.
By the minimalities of dqq and dpp, it follows that dgq < dgp and dpp < dpg. Because
q € (p,pl, q exists only at p (Fig 1). O
Lemma 3 For any p € R and ¢ € [p, p), it follows that wg — wp > (D — 1)dpq.
Proof Because ¢ is nearer to p than p is, it follows that wp + drp + Ddpp < wq + drg +
Ddpq. Thus, because dpp = dpg + dgp, we have wg — wp > drp — drg + D(dpp — dpg) >
(D —1)dpq. O

To prove (4), we utilize connection between the increased amount of the work func-

tion and its one-sided derivatives, which are defined as mp—o := limg—p—o wqd;;up and
Mp4o = limg—pto w‘f;;”p for any p € R. The following lemma guarantees that these
P

derivatives exist and are integers.

Vol.2011-AL-137 No.8
2011/11/18

Lemma 4 For any p € R, mp_o and mpyo are integers with —D < mp1+0 < D.
Proof We prove the lemma by induction on 0. If o = 0, then {my_o, mpto} C {—D, D}
by the definition of w,. Assume that the lemma holds for a sequence o. By Lemma 2, if
p # P, then any point ¢ € (p,p) has § with ¢ # ¢ = p. Therefore, I := {q € R | q # ¢} is
a union of disjoint intervals (i, i) such that any point ¢ € (i, i) has ¢ = 2. This means that
wy = w;+d,;+Dd ;. Moreover, w; = w;+d,; because i=i by Lemma 2. Therefore, for
any p € [i,1] and ¢ # p in (4,1), it follows that (w} — w})/dpg = D(dy; —d,;)/dpg = £D.

The set R\ I is a union of disjoint intervals [¢, j] (with not necessarily distinct end-
points ¢ and j) such that any p € [i, j] has p = p. Therefore, for ¢ # p in (4,), it follows
that

I !
g — Wp _ (wq +drq) — (wp + dv'p) _ Wq — Wp drq — drp
A d =4, 4. (M

rq raq rq P
This approaches an integer as ¢ — p because the first term approac(iﬂes an integer by

w

induction hypothesis, and because the second term approaches +1. By Lemma 1, the
absolute value of (7) is at most D. Because ¢ € V for any ¢ € R, I consists of finite
disjoint intervals. Therefore, an end-point of an interval of I is an end-point of an
interval of R\ I, and vice versa. Thus, we have the lemma. O

Lemma 5 For any p € R\ V, it follows that mpy—o + mpro < 0, i.e., wp is convex

only in the region containing a node in V.
Proof We prove the lemma by induction on o. If o = 0, then mp_o = mpio = —D
for p = 50, and {mp—_o,mpt0} = {—D, D} for p € R\ {so,50}. Assume that the lemma
holds for a sequence o. If mj,_o < mp_o and mj, g < mpyo, then the lemma holds by
the hypothesis. We assume without loss of generality that mj,_o > mp_o. There are
two such cases from the proof of Lemma 4.

One case is that mj,_o becomes D, i.e., for some interval (i, 2) in I with i < 5, pE (3, i)
and D(d; — d,;)/dpg = D for any g with @ < ¢ < p. It should be noted that p # :
because p ¢ V. Then, for any q € (p,1), it follows that D(d; — d;)/dpq = —D, and
hence my, o = —D.

The other case is that mj,_q = mp_o+1, i.e., for some interval [¢, j] in R\ with i < j,
p is contained in (4, j] and (drq; —drp)/dpg, — lasqr — pwithi < g1 <p <r < p+L/2.
Because p # r by p ¢ V, it follows that p < r, and hence, we have (dyq, —drp)/dpg, — —1

(© 2011 Information Processing Society of Japan

gooooooood
IPSJ SIG Technical Report

as g2 — p with p < g2 < min{j,r}. This means that my,o = mp4+o — 1. Thus, we have

the lemma. 0O

Wq—Way
dugq

V \ {s}}. We prove (4) together with two other claims in the following lemma:

For u € V' \ {s}, let ms_. 1= limg_.y, ge[s,0) and ms := min{ms—., | u €

Lemma 6 The following claims hold.

(1) For {p,q} == V\{s}, wp > D(L —dsp) + M, or wqg > D(L — dsq) + M, or
Wp + Wwq > Medpg + DL + 2M.

(2) Forany u €V, wy +wy > ws + 25+ M.

(3) Forany u €V, wy > Ddsy + M.

Proof Claim 3 follows from Claim 2. This is because ws — wgz > —Ddsz by Lemma 1,

and therefore, for any v € V, w, > ws — wg + % + M > —Ddsz + % + M =

—D(% —do) + B + M = Ddow + M.

We prove Claims 1 and 2 by induction on events of service and migration of WFA
for requests in 0. We suppose that w and m are updated to w’ and m’ in the event
of WFA'’s service, respectively, and that M is updated to M’ in the event of WFA’s
migration. If o = (), then the claims hold. This is because wy + wqg — Msdpg — 2M =
D(dsp + dsq) + Ddpg = DL, and because wy, + wg — ws — M = D(dsy + dsa) = 2= for
any u € V. Assume that the claims hold for all events in o, and that a request is issued
from r after o.

We first prove Claim 1 for the event of WFA’s service for r. If w, > D(L —dsp) + M
or wg > D(L—dsq)+M, then wy, > wp > D(L—dsp)+M or wy > wg > D(L—dsq)+M
follows, and hence, Claim 1 holds for the event. Therefore, we assume that w, + wq >
Msdpg + DL + 2M.

Case 1.1: p =s. Then, m;_,, = —D, and hence m; = —D < m,. This means that
wy, +wy — Midpg > Wy + W — Msdpg > DL+ 2M by induction hypothesis.

Case 1.2: p = q. Then, it follows from Claim 3 of induction hypothesis that
wy, > wq + Ddpg > Ddsq + M + Ddpg = D(L — dsp) + M.

Case 1.3: § € {s,p}. Similar to the case p € {s,q}.

Case1.4: p = pand ¢ = g If m, < m, + 1, then w, + wy, — midpy >
wp + drp + Wq + drg — (Ms + 1)dpg > wp + wg — Mmsdpg > DL + 2M by induction

hypothesis. If mj > ms + 1, then ms_,, or ms_.q, say, ms_, increases by more than

Vol.2011-AL-137 No.8
2011/11/18

1. By (the proof of) Lemma 4, this means that ms_., < D — 1, and that there exists

i € (s,p) with p € (i,7]. It follows from Lemma 2 that p = p = 2. Therefore, it fol-
2

7.
lows from Lemma 3 that w; — w, > (D — 1)d,; for any j € (i,p), which contradicts

ms—p < D —1.
Second, we prove Claim 2 for the event of WFA’s service for r. Because ws = ws +

ws—ws > 2L+ M by induction hypothesis, it follows that w} +w}—w} > ws > BE+ M.

Therefore, without loss of generality, it suffices to prove that wj, + wj > wi + % + M.

Case 2.1: p = s. Then, § = p = s by Lemma 2. Therefore, it follows that

wy = ws + drs. Moreover, w, = ws + drs + Ddsp > wp + drs by Lemma 1. Thus,

we have wj, + wj — w§ > wp + drs + w5 — (Ws + dps) > % -+ M by induction hypothesis.

Case 2.2: p = q. Then, w, > D(L — dsp) + M as shown in Case 1.2. Moreover,
wy > wy — Ddsy = wy — D(% — dsp) by Lemma 1. Thus, we have w;, + wj >
D(L —dsp) + M +wl, — D(%£ — dsp) = wl + 2 + M.

Case 2.3: p = p. The proof for the case p = s is similar to that for the case

p = s.
wj = wp + drp + Ddpy > Ddsp + M + ZE. Moreover, w;, > w; — Dds, by Lemma 3.
Thus, we have wj, + wj, > wj + M + £E. Assume the remaining case p = ¢g. Then,

If p = p, then it follows from Claim 3 of induction hypothesis that

wp —wq > (D —1)dpg by Lemma 3. This means ms—, = D because ms_4 is an integer

at most D by Lemma 4, and because there is no node of V between p and ¢, and

therefore, no convex point in (p,q) by Lemma 5.

Case 2.3.1: ms_, = D. Then, it follows from Claim 1 of induction hypothesis that
wp > D(L —dsp) + M, or wqg > D(L — dsq) + M, or wp +wq > Ddpq + DL + 2M.
The third inequality implies the first or second inequality. Therefore, it follows that
wyp > wp > D(L — dsp) + M, or that wj = wq + drg + Ddgs > D(L — dsq) + M +
drq+ Ddgs > M + D(L — dsp). Both cases can be proved using similar arguments for
Case 2.2.

Case 2.3.2: ms—p, < D—1. This means wg—wp < (D—1)dpg because there is no node
of V between g and p, and therefore, no convex point in (g, p) by Lemma 5. Therefore,
it follows that wy, + wy = wp + drp + Wqg + drq + Ddgs > wq + wg + dpg + drp + drg >
We + % + M + % by induction hypothesis. Because wh < ws +drs < ws + % by the

minimality of w}, we have wj, + wj > wj + 5 + M.

(© 2011 Information Processing Society of Japan

gooooooood
IPSJ SIG Technical Report

Finally, we prove Claims 1 and 2 for the event of WFA’s migration from s to another
node, say, p after WFA services the request issued from r. After the service, it follows
that

wy — wy, = Ddsp. (8)
Therefore, it follows that m; = —D. Moreover, it follows from Claims 2 and 3 (for the
event of WFA’s service) that
wy, + wy > wi + 2L+ M for any u € V, and (9)
wy, > Ddg, + M. (10)
Furthermore, because G € (s,p), it follows that
w; — w; = Ddsg = D(£ — day). (11)

We obtain w; > 2Ddsp, + M from (8) and (10), and w}, > D(L —dsq) + M from (9) with
u = g and (11). Thus, we have w} +w;, —my,dsq > 2Ddsp+ M+ D(L—dsq)+ M+ Ddsq =
DL + 2(Dds, + M) = DL + 2M’'. Moreover, it follows from (8) and (9) that
wl, +wy — wy, > wh + 2L+ M+ Ddp — wl = ZE + M’ for any u € V. O

Therefore, the proof of (4) is completed, and hence we have Theorem 1.
4. Lower Bound

In this section we prove the following theorem:

Theorem 2 There exists no deterministic p-competitive page migration algorithm
on 3-node networks if p = 3 + 0(1/D). In particular, there exists no deterministic
3-competitive page migration algorithm on 3-node networks if D > 3.

In this section we assume without loss of generality that y > = > z. Let ALG be a
deterministic online page migration algorithm. We denote o also by o, if ALG leaves
the last server on a node v after processing o.

Lemma 7 Let PCV,Q:=V\P,andlet p€ P and q € Q be joined by an edge
with the minimum weight w overall edges joining P and Q. If there exist p > 3 and a
sequence o4 of clients such that (p—1)OPT,(0q)+OPTy(0q) —ALG(0q)+ (p—5)Dw < 0,
then there exists a sequence o’ = o, with ALG(040") > p- OPT,(0q0’) or a sequence
o' = o) with ALG(o40”) > p- OPTq(o40").
ki1 gli-1p
sequence for some i. Here, k; (resp. l;) (1 < j <) is the minimum positive integer

k

Proof We prove that ¢’ := p*ig't ... p ioro” :=pFight ... p*igli is a desired

Vol.2011-AL-137 No.8
2011/11/18

such that ALG moves the server from a node of @ (resp. P) to a node P (resp. Q) after
processing o4p*1q't - p*i=1qi=1p"i (resp. ogp™q't - ptigli).
Assume for contradiction that ALG(cq0’) < p - OPT,(0q0’) and ALG(og0”) <
p - OPTq(040"). Because ALG incurs a cost at least w to serve a request in ¢’ or
o” and a cost at least Dw to migrate between P and Q, it follows that
Arc(opo,) > ALG(og) + (K + Di+ Li—1 + D(i — 1))w, and
Avc(opo)) > Arc(og) + (Ki + Di+ L; + Di)w,
where K; := Zi:l kp and L; := 21:1 I, for 1 < j < i. Moreover, an offline algorithm
that locates and keeps the server on p (resp. q) after processing o, can process o,0’
(resp. 040”) with a cost of OPT, + Li—qw (resp. OPT, + K;w). Therefore, it follows
that OPTy(cq0;,) < OPTp(0q) + Li—1w, and OPTy(o40;) < OPTq(0q) + K;w. By the
inequalities above, we have
ALG(oq) + (Ki+ Di+ Li—1 + D(i — 1))w < p(OPT,(0q) + Li—1w), and
ALG(0q) + (K + Di+ L; + Di)w < p(OPTy(0q) + Kiw),
which yield the recurrences
K;<(p—1)Li-1 —D(2i—1)+ A, and
Li<(p—1)K;—1 —2Di+ B,
where A := (p- OPT,(0q) — ALG(0g))/w and B := (p- OPT4(04) — ALG(0g))/w. From

the recurrences, we have
Ki<(p—1>2Ki-1 —2pDi+ (2p—1)D+ A+ (p—1)B
(p—1) (p—1)%i—1 2Di —L_D-A—(p—1)B
< (79;121 D+ (p— DAJFB) pp(pf2) J;'P*Q + = p(p—2)
— (~£250D + (p— DA+ B) - 6((p — 1)*) + O(0).
The factor of ©((p — 1)?%) can be estimated as follows:

DD+ (p— 1A+ B = £ ((p—1)OPTy(0y) + OPTy(0y) — ALG(0g) — £=5 Dw)

which is negative by —Z—:; < p—>5 for p > 3 and by the assumption of the lemma.
Therefore, K; decreases as i grows sufficiently large, but it is impossible by definition.
O

Lemma 8 Let p:=a and q := b, or p:= b and q := c. Let w be the weight of
the edge (p,q). If there exist p > 3, 8 > 0, and a sequence o4 of clients such that
Avc(og) > p- OPT¢(0q) and OPT4(0q) > BDw, then there exists a sequence ¢’ such

that o’ = o, and ALG(0q0") > p'- OPT,(0q0”), or that ¢’ is an arbitrarily long sequence

(© 2011 Information Processing Society of Japan

gooooooood
IPSJ SIG Technical Report

with ALG(c40") > p' - OPT(0q0”), where p’ := ﬁ(p —3)+3.

Proof We define ¢’ as follows:

(1) Let 7° be an empty sequence and j := 1.

(2) Avrc have processed O'q’TO --- 7771 and locates the server on ¢. Then, we generate
requests from p repeatedly until ALG locates the server on p. Let i be the number of
the requests from p.

(3) Ifi> ((B+1)p —Bp—1)D, then set ¢’ :=7°--- 797 p’ and quit the procedure.

(4) Otherwise, we consider costs of ALG and OPT for the clients p’ with the initial
server q. Wherever ALG moves the server between ¢ and u ¢ {p, ¢} during the re-
quests, ALG incurs a cost at least (i + D)w. This is because w is at most the weight
of (p,u) by y > x > z. An offline algorithm that keeps the server on ¢ can process P
with a cost of iw. Moreover, an offline algorithm that moves the server from g to p
first and keeps the server on p can process _pi with a cost of Dw. Thus, we have

(p' = 1)OPT4(p") + OPT,H(p") — ALG(p) + (p' = 5) Dw
< (p' = Diw+ Dw — (i + D)w + (o' — 5)Dw
<{(' =2((B+1)p" = Bp—1)+p =5} Dw (12)
={(B+1)p” = (Bp+2(8+1))p' +26p — 3} Dw
= (B+1)(¢" — A(p))(p' — B(p))Dw < 0,

where
= 1 4 BetV/B202 4B+ D) (Bp—p—4)
Alp) =1+ 3(311) , and
_ 2,2 __ 2
B(p) =1+ Bo—+/B2p2—4(B+1)(Bp—8 4).

2(B+1)
The last inequality of (12) holds because B(p) < p’ < A(p) for p > 3, which can be

verified by A”(p) > 0, p' = A'(3) - (p — 3) + A(3) > 3, and B(p) < 2. Therefore,
by applying Lemma 7 with P := {p} and Q := {q,u}, we can obtain a sequence 7’
beginning with p’ such that 7/ = 7J and ALG(7?) > p'OPT,(77), or that 77 = 7] and
ALG(77) > p'OPT4(T7).

(5) If 77 = 7], then set o/ = 7°--

j:=j+ 1, and repeat the process from Step 2.

.79, and quit the procedure. Otherwise, set

By definition, ¢’ is o}, or arbitrarily long. If the procedure ends in Step 3, then it

Vol.2011-AL-137 No.8
2011/11/18

follows that
ALG(aq0’) — p'OPT(040")

> ALG(og) + Z Avrc(r?) + ALa(p’) — ¢/ {OPTq(Uq) + Z ort, () + OPTp(pi)}

Jj=0 Jj=0
> (p— p)OPT(0q) + (B + 1)p" — Bp)Dw — p' Dw
= (p = p')(OPT4(0q) — BDw) > 0.
Otherwise, we can prove similarly that ALG(0q0') —p"-OPT(c40") > (p—p')OPT,(0g) >
0. a

Lemma 9 Let {p, ¢} := {a,b} and w be the weight of the edge (p, q). If there exist
p >3, >0, and a sequence o4 of clients such that (p — 1)OPT,(0q) + OPTy(0q) —
Arc(og) + (p — 5)Dw < 0 and OPT4(04) > BDw, then there exists a sequence ¢’ such
that ' = o, and ALG(040”) > p’'-OPT4(040”), or that o’ is an arbitrarily long sequence
with ALG(o40") > p' - OPT(040”), where p’ = ﬁ(p —-3)+3.

Proof Let P := {a} and Q := {b,c} if p=a, P := {b,c} and Q := {a} otherwise. By
applying Lemma 7 with such P and @), we can obtain a sequence 7 such that 7 = 7,
and ALG(0q7) > p - OPT.(0q7), or that 7 = 7, and ALG(0qT) > p - OPTy(oq7). If
T = T4, then we have obtained a desired sequence. Otherwise, by Lemma 8, there exists
a sequence 7' such that 7 = 7, and ALG(0qTs7') > p’ - OPTo(0qTp7’), or that 7' is
an arbitrarily long sequence with ALG(0q7p7') > p' - OPT(04q7s7’"). Therefore, 77’ is a
desired sequence. 0

Now we prove Theorem 2. Suppose that y = x + 0 and z = v with 3 < v < z/6.
We carefully choose v and §, and design a strategy to generate an arbitrarily long
sequence ¢ with ALG(g) > p- OpT(0) for some p = 3 + Q(1/D). This proves that
ALG(0) > p- OpPT(0) + « for any « independent of the number of clients.

We locate the initial server for o on a. The strategy is defined using a state machine
as shown in Fig. 2. In the state machine, a transition represents a server selected by
ALq, together with optional conditions on the number of requests generated in the
source state. A state with the form of u® (i.e., b, a7, and ci) represents a sequence
of requests from u until one of the outgoing arcs from the state meets the server of
ALG and the conditions on the number k of the requests. A state with the form of

ut (i.e., a™ and c') represents a sequence of requests from u until ALG locates the

(© 2011 Information Processing Society of Japan

gooooooood
IPSJ SIG Technical Report

02 00000000
Fig.2 Strategy to generate o.

server on u. The states Lm8b and Lm8a represent sequences of requests obtained by
applying Lemma 8 with p := b and ¢ := ¢, and with p := a and ¢ := b, respectively.
The state Lm9 represents a sequence of requests obtained by applying Lemma 9 with
p € {a,b}\ {s} and q := s, where s € {a, b} is the server of ALG at the beginning of the
state.

We divide o into phases so that entering the state b" begins a new phase. ALG locates
the server on a at the beginning of each phase. Therefore, Theorem 2 is proved if for
each phase ¢ = ¢q, ALG(¢p) > p- OPT4(¢p) with the initial server on a, and if for a phase
¢ # ¢q (i.e., an arbitrarily long sequence), ALG(¢) > p - OPT(¢) with the initial server
on a.

Case 1: ¢ = bl.a™ with h < \. It follows that ALG(¢) > (h+2D)z and OPT,(¢) < hx
(cost of keeping the server on a). Thus, we have (?r:%i((q:j) > # >1+ % > 4.
Case 2: ¢ =77, where 7 := béc,i, with i < 2D —X—1, and 7’ is the sequence of clients

generated in State Lm3. It follows that ALG(7T) = (A + D)z + iy, OPT4(T) = Ax + iy

(cost of keeping the server on a), and Dz < OPTy(7) < Dz + iz (cost of moving the
server to b first and keeping it on b). Thus, we have
(p — 1)OPT4(7) + OPTH(7) — ALG(T) + (p — 5)Dx

<(p-1)Az+iy)+ Dz +iz— (A + D)z +iy) + (p— 5)Dx

<p{BD—-1Dz+ (2D -X—-1)6} —{(9D — 2)x + (2D — XA —1)(2 — 7)4}.
Therefore, if (p — 1)OPTq(7) + OPTy(7) — ALG(7) + (p — 5)Dx > 0, then we obtain

x— 2D —-A—=1)(1+~v)0
>
P23t BD o+ (@D -r—1)5

Vol.2011-AL-137 No.8

2011/11/18
which is 3 + 557 with 0 <'e <1 by setting v = O(1) and
(1-e)z (x)
6 < = — . 1
S@p-a-ya+n 2\p (13)

This means that there exists p = 3 + Q(1/D) such that (p — 1)OPTa(7) + OPTH(7) —
Ava(r) 4+ (p — 5)Dz < 0. Therefore, by Lemma 9, there exists p’ = 3 4+ Q(1/D) such
that ¢ = ¢, and ALG(¢) > p' - OPT4(9), or that ¢ is an arbitrarily long sequence with
Ava(¢) > p' - OPT(9).

Case 3: ¢ = 77/, where 7 = bfl‘c};c+ with 4 > 2D — A, and 7’ is the sequence of clients
generated in States Lm2b and Lm?2a. It follows that ALG(T) > (A+ D)z +iy+(1+ D)z
and Dy < OpPT.(7) < Dy + Az (cost of moving the server to ¢ first and keeping it on

¢). Thus, we have
ALG(T) N (A D)x+iy+ (1+ D)z S 3Dz +{(2D — \) 4+ (1 4+ D)y}é
OPT.(T) — Dy + Az - Dz + (D + M\y)o
3,10 =)D 4y =A@y + 1)}
Dz + (D + My)d ’
which is 3 + ﬁ with 0 < € < 1 by setting

v:=443e=0(1), (14)
_|=1-egD+~v| _
A= \‘?W‘HJ} = 0(D), and (15)

d = O(5). It should be noted that 1 < A < % for D > 3. Therefore, by Lemma &,

there exists p’ = 3+ Q(1/D) such that ¢ = ¢ and ALG(¢) > p’ - OPT4 (), or that ¢ is
an arbitrarily long sequence with ALG(®) > p’ - OPT(¢).

Case 4: ¢ = bycta’ withi < D—\. Tt follows that ALG(¢) > Az + (i+D+1+ D)y =
Az + (142D + 1)y and OPTq(¢p) < Az + iy (cost of keeping the server on a). Thus, we

have
ALG(9) A+ (i+2D+ 1)y (2D + 1)y 2D +1 1
>1 1 = —.
OPT4(9) ~ Az + 1y = AT + iy it D S+ D

Case 5: ¢ = 77" where 7 = b)clal with D — XA < i < 2D — X and j < 2D — 1,

and 7’ is the sequence of clients generated in State Lm3. If ALG keeps the server on c

during a?, then the cost for a’ is (j + D)y. If ALG moves the server from c to b after
the j'th request of a’, then the cost for o is at least j'y + Dz + (j — j' + D)z =
jy + D(v§ +) — (j — j')5. Because v > 3 and j — j° < 2D, this is at least
Jjy + D36+ x) —2D6 = jy+ D(6 + x) = (j + D)y. Therefore, it follows that
ALG(T) > Az+(i+D+j+D)y = Ax+(i+j+2D)y. Moreover, Dx < OPTq(7) < Az+1iy

(© 2011 Information Processing Society of Japan

gooooooood
IPSJ SIG Technical Report

(cost of keeping the server on a), and OPTy(7) < Dz +iz+ jz = (j + D)z + iz (cost of

moving the server to b and keeping it on b). Thus, we have
(p — 1)OPTH(7) + OPT4(7) — ALG(T) + (p — 5)Dx
<(p=1)((F+D)x+iz)+ z+iy— Az + (i +j+2D)y)+ (p—5)Dzx
< p{4D — D)z + (2D — N)vé} — {(12D — 2)z + (4D — 1 4+ (2D — \)v)d}.
Therefore, if (p — 1)OPTy(7) + OPT4(7) — ALG(T) 4 (p — 5)Dx > 0, then we obtain
z+ (4D — 1) — 2(2D — \)y)6
P Z 3+ ’
(4D — 1)z + (2D — A\)vd
which is 3 + ﬁ with 0 < € < 1 by setting v = O(1) and
(1-ez _ (£
2(2D — \)y — (4D — 1) =9(p) (16)
Therefore, we can prove as in Case 2 that there exists p’ = 3 + Q(1/D) such that

6 <

¢ = do and ALG(p) > p' - OPT.(¢), or that ¢ is an arbitrarily long sequence with
Ara(p) > p' - OPT(9).

Case 6: ¢ = b)cial with D — X < i < 2D — X and j > 2D. If ALG keeps the
server on ¢ during a’, then the cost for a’ is (j + D)y > 3Dy. If ALG moves
the server from ¢ to b after the j'th request of a’, then the cost for a’ is at least
jy+Dz+(j—j + D)x > jo+ D(vd + x). Because v > 3 and j > 2D, this is at least
3D(d+=x) = 3Dy. Therefore, it follows that ALG(7T) > Az+(i+D+3D)y = Ax+(i+4D)y

and OPTq(7) < Az + 1y (cost of keeping the server on a). Thus, we have
ALG(T) S Ax+ (i+4D)y 1 4Dy
OPT.(T) — Az + iy N Az + iy
4D(x + 9) 2X6

> =
2 v @@= T 3De @D =N

which is 3 4+ Q(1/D) by setting A = ©(D) and 6§ = O(z/D).

Case T: ¢ = 77, where 7 = b)cl with ¢ > 2D — XA + 1, and 7’ is the sequence of
clients generated in States Lm2b and Lm2a. It follows that ALG(T) > Az + (i + D)y
and Dy < OpT.(7) < Dy + Az (cost of moving the server to c first and keeping it on

¢). Thus, we have
ALG(r) _ Az+(i+D)y _ (3D +1)a+ (3D — A+ 1)
Opre(t) = Dy+irz — Dz + (D + M\)d
_3,.%= (By+ 1A —-1)5
N Dx+(D+M)d
which is 3 + 557 with 0 <€ <1 by setting v = O(1) and

(1—ex x
< o1 =C(5) (an

Vol.2011-AL-137 No.8
2011/11/18

Therefore, by Lemma 8, there exists p’ = 3 + Q(1/D) such that ¢ = ¢, and ALG(¢) >
p' - OPT4(¢), or that ¢ is an arbitrarily long sequence with ALG(¢) > p' - OPT(®).

By setting v as in (14), A as in (15), and ¢ so that (13), (16), (17), and 6 < z/v
are satisfied, we can obtain a desired sequence ¢. Thus, the proof of Theorem 2 is

completed.

o o0 0O 0O

1) Awerbuch, B., Bartal, Y. and Fiat, A.: Distributed Paging for General Networks,
J. Algorithms, Vol.28, No.1, pp.67-104 (1998).

2) Awerbuch, B., Bartal, Y. and Fiat, A.: Competitive Distributed File Allocation,
Information and Computation, Vol.185, No.1, pp.1-40 (2003).

3) Bartal, Y., Charikar, M. and Indyk, P.: On Page Migration and Other Relaxed
Task Systems, Theoretical Computer Science, Vol.268, No.1, pp.43-66 (2001).

4) Bartal, Y., Fiat, A. and Rabani, Y.: Competitive Algorithms for Distributed Data
Management, J.Computer and System Sciences, Vol.51, No.3, pp.341-358 (1995).

5) Bienkowski, M., Byrka, J., Korzeniowski, M. and Meyer aufder Heide, F.: Optimal
Algorithms for Page Migration in Dynamic Networks, J.Discrete Algorithms, Vol.7,
No.4, pp.545-569 (2009).

6) Black, D.L. and Sleator, D.D.: Competitive Algorithms for Replication and Mi-
gration Problems, Technical Report CMU-CS-89-201, Department of Computer
Science, Carnegie Mellon University (1989).

7) Borodin, A. and El-Yaniv, R.: Online Computation and Competitive Analysis,
Cambridge University Press (1998).

8) Chrobak, M., Larmore, L.L., Reingold, N. and Westbrook, J.: Page Migration
Algorithms Using Work Functions, J.Algorithms, Vol.24, No.1, pp.124-157 (1997).

9) Lund, C., Reingold, N., Westbrook, J. and Yan, D.: Competitive On-Line Al-
gorithms for Distributed Data Management, SIAM J. Comput., Vol.28, No.3, pp.
1086-1111 (1999).

10) Matsubayashi, A.: Uniform Page Migration on General Networks, International
Journal of Pure and Applied Mathematics, Vol.42, No.2, pp.161-168 (2007).

11) Matsubayashi, A.: New Bounds for Online Page Migration on Three Points, Tech-
nical Report 2008-AL-120, IPSJ SIG (2008).

12) Westbrook, J.: Randomized Algorithms for Multiprocessor Page Migration,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.7,
pp.135-150 (1992).

(© 2011 Information Processing Society of Japan

