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A*アルゴリズムのための実用的高速化手法

高 明 姫†1 趙 亮†1

A*は，二点間の最短路を計算するアルゴリズムのフレームワークである．特に (Di-

jkstra法が有名な A*アルゴリズムの一つである．本論文は，A*アルゴリズムに対し
て，グラフの前処理を要しない節点の早期確定による高速化手法を提案する．

Some practical speed-up techniques for A* algorithms

Mingji Gao†1 and Liang Zhao†1

A* is an algorithm framework for solving the Peer-to-Peer Shortest Path
Problem. In particular, Dijkstra’s algorithm is a well-known A* algorithm.
This paper presents some practical speed-up techniques for A* algorithms based
on Node Early-Fixing which does not require graph preprocessing.

1. A* framework

Let G = (V,E, `) be a (directed or undirected) graph with a vertex set V , an edge

set E and a nonnegative edge length function ` : E → R+. Given a source s ∈ V and

a destination d ∈ V , the Peer-to-Peer Shortest Path Problem asks to find a shortest

s, d-path in G or its non-existence. For this problem, A* is a well-known framework

of algorithms including the Dijkstra’s algorithm, the ALT algorithm1) and others. The

following pseudo-code describes the framework, where h(v) denotes a pre-defined func-

tion for estimating the (shortest) distance from a vertex v to the destination d, and

g(v) denotes the shortest s, v-distance found so far in the algorithm.
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Input: Graph G = (V,E, `), source s and destination d.

Output: a shortest s, d-path in G with its length or the non-existence.

1 g(s) := 0; Q := {s}; F := ∅;
2 while Q 6= ∅ do

3 v := argmin{g(u) + h(u) | u ∈ Q}; Q := Q \ {v}; F := F ∪ {v};
4 if v = d break;

5 for all edges e = (v, w) ∈ E do

6 if w 6∈ F ∪ Q

7 g(w) := g(v) + `(e); p(w) := v; Q := Q ∪ {w}
8 else if w ∈ Q and g(w) > g(v) + `(e)

9 g(w) := g(v) + `(e); p(w) := v

10 end if

11 end for

12 end while

13 if d ∈ Q output path s → . . . → p(d) → d and g(d)

14 else output ”No s, d-path exits.”

図 1 Pseudo-code of the A* framework considered in this study.

In this paper, we assume that h satisfies the triangle inequality, i.e.,

h(v) ≤ h(w) + `(e), ∀e = (v, w) ∈ E. (1)

With this condition, it is easy to show that the above framework is correct (see, e.g.,

(1)). Notice that the Dijkstra’s algorithm is an A* algorithm with h ≡ 0.

The performance of an A* algorithm depends on h. Recently Goldberg et al gave

an elegant method for constructing a good h1) with graph preprocessing. For speed-up

without preprocessing, Zhao et al proposed a practical method called SmartUpdate2).

The idea is to update (or initialize) the distance label g(v) for the degree-1 and degree-2

vertices v without inserting them into Q. This can reduce the task for maintaining Q,

and for calculating h(v) which is sometimes heavy. This paper gives an extension of

SmartUpdate, called Node Early-Fixing.

1 c© 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.7
2011/11/18



情報処理学会研究報告
IPSJ SIG Technical Report

2. Node Early-Fixing for undirected graphs

Consider the framework in Fig. 1. Let us call a vertex in F a fixed vertex and the

vertex v chosen in Line 3 the active vertex. Suppose that we are checking an edge (v, w)

(Lines 6–10 in Fig. 1), where v is the active vertex and w 6∈ F . See Fig. 2.
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図 2 An illustration for Node Early-Fixing in undirected graph, where v is the active vertex.

We first update (or initialize) g(w) like a normal A* algorithm (see Lines 6–10 in

Fig. 1). Then we fix w (i.e., F := F ∪{w} and Q := Q \ {w}) if w has only one unfixed

neighbor x (i.e., x 6∈ F ), and continue to update (or initialize) g(x) as if w was the

active vertex. We stop this process until a vertex z 6∈ F with no or at least two unfixed

neighbors is found (notice that if z has no unfixed neighbor, then its degree must be

one). This finishes checking edge (v, w). Notice that SmartUpdate2) is a special case of

Node Early-Fixing. The correctness proof is easy but omitted in this abstract version.

3. Node Early-Fixing for directed graphs

The argument for undirected graph can be applied to directed graph too. We just give

an illustration to show that the situation is more complicated than undirected graphs.

In particular, Fig. 3 shows that the number of skipped edges (i.e., edges that are not

checked due to Node Early-Fixing) could be more than the case of undirected graph.

4. Experimental result

Node Early-Fixing cannot guarantee a speed-up for all kinds of graphs. Neverthe-

less, for sparse graphs with small average degrees, we can expect a good speed-up.

For experimental study, we use a road network BAY (http://www.dis.uniroma1.it/
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図 3 An illustration for Node Early-Fixing in directed graph, where v is the active vertex.

~challenge9/) with 321,270 vertices and (undirected) 400,086 edges, and a scale-free

router network ITDK with 190,914 vertices, (undirected) 607,610 edges and random

lengths in [1, 100] (see http://www.caida.org/ for the original unweighted graph).

We compare the performance of the normal Dijkstra’s algorithm, the Dijkstra’s algo-

rithm with SmartUpdate and the Dijkstra’s algorithm with Node Early-Fixing. All use

a 6-heap as the priority queue that supports operations deletemin, insert, update and

delete. For each instance, we randomly pick up 128 queries and for each query, we run

the algorithm for 10 times. The results are shown in the next table.

表 1 Comparison of the average running time (in ms).

instance Dijkstra Dijkstra+SmartUpdate Dijkstra+Node Early-Fixing

BAY 788 497 438

itdk 1100 817 770

From these results, we see that Node Early-Fixing is more efficient than SmartUpdate.
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