
IPSJ SIG Technical Report

On the number of reduced trees, cographs,

and series-parallel graphs by compression

Takeaki Uno ,†1 Ryuhei Uehara †2

and Shin-ichi Nakano †3

We give an efficient encoding and decoding scheme for computing a compact
representation of a graph in one of unordered reduced trees, cographs, and
series-parallel graphs. The unordered reduced trees are rooted trees in which
(i) the ordering of children of each vertex does not matter, and (ii) no vertex
has exactly one children. This is one of basic models frequently used in many
areas. Our algorithm computes a bit string of length 2`−1 for a given unordered
reduced tree with ` ≥ 1 leaves in O(`) time, whereas a known folklore algorithm
computes a bit string of length 2n− 2 for an ordered tree with n vertices. Note
that in an unordered reduced tree ` ≤ n < 2` holds. To the best of our
knowledge this is the first such a compact representation for unordered reduced
trees. From the theoretical point of view, the length of the representation gives
us an upper bound of the number of unordered reduced trees with ` leaves.
Precisely, the number of unordered reduced trees with ` leaves is at most 22`−2

for ` ≥ 2. Moreover, the encoding and decoding can be done in linear time.
Therefore, from the practical point of view, our representation is also useful
to store a lot of unordered reduced trees efficiently. We also apply the scheme
for computing a compact representation to cographs and series-parallel graphs.
We show that each of cographs with n vertices has a compact representation in
2n− 1 bits, and the number of cographs with n vertices is at most 22n−1. The
resulting number is close to the number of cographs with n vertices obtained by
the enumeration for small n that approximates Cdn/n3/2, where C = 0.4126 · · ·
and d = 3.5608 · · · . Series-parallel graphs are well investigated in the context
of the graphs of bounded treewidth. We give a method to represent a series-
parallel graph with m edges in d2.528m − 2e bits. Hence the number of series-
parallel graphs with m edges is at most 2d2.528m−2e. As far as the authors
know, this is the first non-trivial result about the number of series-parallel
graphs. The encoding and decoding of the cographs and series-parallel graphs
also can be done in linear time.

†1 国立情報学研究所 (National Institute of Informatics)
†2 北陸先端科学技術大学院大学 (Japan Advanced Institute of Science and Technology)
†3 群馬大学 (Gunma University)

1. Introduction

Tree is one of basic models frequently used in various areas including searching
for keys, modeling computation, and parsing a program. Since an explicit storage
of a tree of a large size needs huge amount of memory, a compact representation
is desired. A typical example is a trie structure that compresses a given huge
word dictionary by taking the prefixes of words 12) [Chapter 6.3]. In the area
of data mining, the other basic models are also used to represent a tons of data
having some specific structure. In this context, there are a lot of papers for
encoding trees, plane graphs, plane triangulations. For example, see 8), 10), 14)
for trees, 5), 11) for plane graphs, and 1), 16) for maximal plane graphs, and
referred papers.

In this paper, we first focus on the “unordered reduced” trees, in which the
children of each vertex has no ordering and no vertex has exactly one child.
The unordered reduced tree is one of important models from both theory and
practice. We first give an efficient representation of an unordered reduced tree.
The representation requires 2` − 2 bits to represent a given unordered reduced
tree with ` ≥ 2 leaves, whereas a known folklore representation uses a bit string
of length 2n − 2 which is a representation of an ordered tree with n vertices.
Note that ` ≤ n < 2` holds for any unordered reduced tree. Computation of the
representation can be done efficiently; both of encoding and decoding can be done
in O(`) time. To the best of our knowledge this is the first non-trivial compact
representation designed for unordered reduced trees. It is worth mentioning that
we do not use the big-O notation. Hence the length of the representation gives
us an upper bound of the number of unordered reduced trees with ` ≥ 2 leaves;
the number of unordered reduced trees with ` ≥ 2 leaves bounded by 22`−2.

We here compare our results with the notion of succinct representations of
trees7),8),10),13),14). A succinct representation for a class of some structure is a
way to map each member of the class to a sufficiently short bit string. The best
representation for trees needs only 2n+o(n) bits, and it also supports a rich set of
queries in O(1) time for each. On the other hand, since the information-theoretic
lower bound to represent an “ordered” tree having n node is 2n−O(log n)8), the
representation is optimal in a sense. However, such a framework has two flaws

c© 2011 Information Processing Society of Japan1

Vol.2011-AL-137 No.6
2011/11/18

IPSJ SIG Technical Report

from the practical point of view. First, the factor of o(n) is hard to determine a
priori. That is, when we execute the algorithm, we may have to perform memory
allocation process dynamically that spoils efficiency. Second, the hidden constant
factor in o(n) becomes huge in general. Hence, some succinct representation is
not practical for small n. Also, this framework is not applicable to estimate the
number of members in the class.

We next apply the compact representation of unordered reduced tree to the
other graph classes; cographs and series-parallel graphs.

For the last decade, many graph classes have been introduced3). Among them,
cographs form one of basic graph classes. Since they have a simple recursive
structure, the class is a subset of many important graph classes, and hence some
intractable problems on general graphs become tractable on cographs. The simple
recursive structure of a cograph can be represented by a canonical unordered
reduced tree. Hence we can estimate that the number of cographs with n vertices
is at most 22n−1. In the context of the implicit representation of the graph
class, it is mentioned that the number of cographs is 2O(n log n) 15) [Sect. 8.1].
We exponentially improve this upper bound, and we again mention that we do
not use the big-O notation. According to The On-Line Encyclopedia of Integer
Sequences (http://oeis.org/A000084), the number of cographs with n vertices
is estimated as Cdn/n3/2, where C = 0.4126 · · · and d = 3.5608 · · · . This value
is obtained by the enumeration for small n, and our upper bound is close to this
estimation. The encoding to a bit string from a given cograph and the decoding
of the bit string to the original cograph can be done in linear time.

The other graph class is series-parallel graphs. This is also one of basic graph
classes, and this class is well investigated in the context of the graphs of bounded
treewidth. However, recently, it is revealed that many data obtained from the
bioinformatics area can be modeled in this graph class. For example, the E.coli
metabolic network has treewidth 3 and more than 90% of pathways of several
organisms are series-parallel graphs4). Therefore, the importance of this class
increases more and more. As far as the authors know, there are no known non-
trivial results about the compact representation designed for the class and the
number of series-parallel graphs. We give a method to represent a series-parallel
graph with m edges in d0.528me bits. Hence the number of series-parallel graphs

with m edges is at most 2d0.528me. The encoding and decoding of the series-
parallel graphs also can be done in linear time.

2. Preliminaries

Let G be a graph. The degree of a vertex in G is the number of vertices adjacent
to the vertex. A tree is a connected graph with no cycle. A rooted tree is a tree
in which one vertex r is designated as the root. For each vertex v in a tree, let
P (v) be the unique path from v to r. The parent of v 6= r is the unique vertex in
P (v) adjacent to v, and the ancestors of v are the vertices in P (v). The parent
of r is not defined. The only ancestor of r is r itself. We say if v is the parent
of u then u is a child of v, and if v is an ancestor of u then u is a descendant of
v. Note that each vertex v is always a descendant of v. The height of a vertex v

is the number of edges on the longest path from v to a descendant of v. A leaf
is a vertex having no child. The height of a leaf is always 0, and the height of a
vertex is always larger than the height of its child. In particular, the height of a
vertex is the maximum height of its children plus one. A reduced tree is a rooted
tree in which no vertex has exactly one child. In2) a reduced rooted tree is called
a homeomorphically-irreducible rooted tree. Note that the root of a reduced tree
may have degree two, although no vertex has degree two in a similar graph called
a reduced non-rooted tree, which is a non-rooted tree with no vertex of degree
two. A rooted tree is an ordered tree if the children of each vertex are linearly
ordered, and an unordered tree otherwise.

A full-binary tree is an ordered (rooted) tree in which each vertex has zero or
two children. If vertex v has the ordered children (vL, vR), vL is called the left
child and vR is called the right child of v. A path (v1, v2, · · · , vj) in a full-binary
tree, satisfying that each vi is the left child of vi+1 for i = 1, 2, · · · , j−1, is called
a left-down path. A left-down path is maximal if it is not a proper subpath of
any other left-down path. A left-down path from a vertex v to its ancestor u is
denoted by the sequence of its vertices starting from v and ending with u.

3. Compact Representation of Unordered Reduced Trees

In this section, we assume that the input is an unordered reduced (rooted) tree
T with ` leaves. See an example in Fig. 1(a).

c© 2011 Information Processing Society of Japan2

Vol.2011-AL-137 No.6
2011/11/18

IPSJ SIG Technical Report

1

2

76 8

3

109 11

5

17

16

4

1312 14 15

1

5

16

1

4

154

14

19

4

13

17

12

1

3

3

10

11

9

2

82

76

18

(b) To

(c) B

4

2

31

1

0
0

(d)

18

19

1

2

1 1 1 1 1 1 1 1 1

2

2

22 4

5

2

1

1
3

76 8

3

109 11

5

17

16

4

1312 1415

(a) T

18

19

v1

v2

v3

v4

v5

v6

v7

Fig. 1 Outline of the algorithm

The outline of our algorithm is as follows. We first give a linear ordering of
children of each vertex of T by a simple rule. Now the unordered reduced tree T

is transformed into an “ordered” reduced tree TO (Fig. 1(b)). Then, by replacing
each non-leaf vertex of TO having k > 0 children by a left-down path of length

k − 1 (Fig. 2), the ordered reduced tree TO is transformed into a full-binary tree
B. See Fig. 1(c). Note that both TO and B still have ` leaves. Finally, B is
encoded into a bit string S of length 2` − 1. The encoding of B is done by a
depth first tree traversal, in which each edge is traversed exactly twice in opposite
direction. When an edge is traversed downward, a “0” is appended to bitstring
S, and when an edge is traversed upward, a “1” is appended to S. From the
bitstring S one can easily reconstruct BI and then B.

However, to reconstruct TO from B, we need to divide each maximal left-down
path of B into left-down subpaths so that each subpath corresponds to a vertex
in T . Thanks to the linear ordering of children, we can always uniquely divide
each left-down path of B into suitable left-down subpaths. By ignoring the linear
ordering of children, T is derived from TO.

3.1 Encoding an unordered reduced tree
Now we give an encoding algorithm for unordered reduced trees. We begin with

a linear ordering of children, which is the key to our compact representation.
Let T be an unordered reduced tree with ` leaves. Let (v1, v2, · · · , vk) be the

sequence of children of a vertex u. We assume the heights of the vertices are
increasing order in the sequence, i.e., v1 has the smallest height and vk has the
largest height. The linear ordering of children is the sequence obtained by remov-
ing v2 from the sequence and append v2 to the last, that is, (v1, v3, v4, · · · , vk, v2).
Note that each non-leaf vertex always has two or more children, thereby the se-
quence above is always defined. The linear orderings define an ordered reduced
tree TO obtained from T . See Fig. 1(b). Intuitively, among the children of
each vertex, the leftmost child has the minimum height, the rightmost child has
the second minimum height, and the rest of children appear between them with
increasing order of heights.

Our idea of a compact representation is to represent TO by a full-binary tree
with the same number of leaves. We replace each non-leaf vertex u of T having
k > 0 children by a left-down path of length k−1 as shown in Fig. 2. We call the
left-down path the expand path of u, and denote it by L(u). In the replacement,
we keep the linear ordering of the children. When the linear ordering of children
of u is (v1, . . . , vk) and L(u) = (u1, . . . , uk−1), we set v1 to the left child of u1,
v2 to the right child of u1, v3 to the right child of u2, . . ., vi to the right child

c© 2011 Information Processing Society of Japan3

Vol.2011-AL-137 No.6
2011/11/18

IPSJ SIG Technical Report

(a) (b)

v1

v1 v3

v2v3 v4

u

u

u

v

u

v

v4

v2

1

3

2

Fig. 2 Replace a vertex v by a left-down path

of ui−1, . . ., and vk to the right child of uk−1. For a rooted ordered tree T in
Fig. 1(a), the resulting full-binary tree B is drawn in Fig. 1(c). Essentially, our
compact representation is a bit string representing B. The algorithm to compute
the representation is as follows.

Algorithm (T : an unordered reduced tree)
1. compute the height of each vertex in T ;
2. sort the children of each vertex by their heights;
3. compute the linear ordering of the children of each vertex;
4. replace each node having more than two children by the left-down path with
keeping the linear ordering of children;
5. remove all leaves from the resulting tree B;
6. output the bit string representing B (by the depth first tree traversal).

The height of each vertex of T can be computed in O(`) time in a bottom up
way. The sorting of the children can be done in O(`) time, by processing all
sortings at once by bucket sort.

We here describe the details of step 6 that encodes the resulting tree B. We
put a label 0 to each leaf and 1 to inner nodes. We then compute the pre-order
of vertices by a depth-first search going left child first, and right child next. The
pre-order is the visiting order by the depth-first search; at the beginning of the
search, the sequence is empty, and when a new vertex is visited by the search,
the vertex is added to the end of the sequence. The bit string is the sequence of
vertex labels ordered by the pre-order. For example, the tree T in Fig. 1(a) is
encoded to

S = 111111001001001110010010011110010100101010010010100.

We can see that one can reconstruct B from the bit string S by simulating the
traverse. In the next section, we will show that the expand path of each vertex
can be extracted from the maximal left-down paths thanks to the linear ordering,
therefore the reconstruction of the original unordered reduced tree T from the
bit string S can be done uniquely and efficiently. We have the following theorem.

Theorem 1 One can compute in O(`) time a bit string of length 2` − 1 rep-
resenting an unordered reduced tree with ` leaves.

3.2 Decoding an unordered reduced tree
It is clear that the full-binary tree B can be obtained from the bit string S.

Since T is an unordered tree, it is enough to show that TO can be reconstructed
from B. The purpose of this section is to establish a way to extract expand paths
of all vertices in TO.

We choose a maximal left-down path and extract all the expand paths included
in the path. We start from the rightmost maximal left-down path, and iteratively
process maximal left-down paths from right to left. Therefore, when we process a
left-down path L, the extraction has been done in descendants of the right child
u of any vertex in L. See an example in Fig. 1(d). This implies that we have
constructed all the subtrees of TO rooted at the descendants of u, and hence we
can compute the height of any child x of a vertex vi in the left-down path L. Set
h(vi) be the height of the right child of vi.

The extraction of expand paths is done in a bottom up way. Suppose that
L = (v1, . . . , vk). We first observe that v1 itself corresponds to a leaf of TO, thus
the lowest expand path L(x) starts from v2. We find the other end vj of L(x) by
looking at the heights of right children of v2, . . . , vk one by one, so that cutting
L at the vertex will not result the violation of the linear ordering. In precise,
vj is the vertex in the ancestor of v2 whose right child has the smallest height
among the right children of all ancestors of v2. Then the next lowest expand path
starts from vj+1, and in the same way we can find the other end. In this way, we
iteratively extract the expand paths until we reach to the top of L. The upside
end vertex of an expand path is characterized by the following lemma. This is
the key to the extraction of expand paths.

Lemma 2 Suppose that an expand path L(u) in T) is (vi, . . . , vj) for some vj.

c© 2011 Information Processing Society of Japan4

Vol.2011-AL-137 No.6
2011/11/18

IPSJ SIG Technical Report

Then, vj is the uppermost vertex in the maximal left down path L including L(u)
such that h(vj) ≤ h(vi).
Proof.Let vl is the uppermost vertex in L such that h(vl) ≤ h(vi). We will prove
that vl = vj . Note that vl can be vi, and vj can be vi.

Suppose that vl is a proper descendant of vj , i.e., vl ∈ L(u) and vl 6= vj . Then,
u has at least three children, and the heights of children are h0, h(vj), . . . , h(vl),
where h0 is the height of the first child of u. From the definition of vl, h(vl) <

h(vj), however this contradicts to the linear ordering. Therefore, vl is not a
proper descendant of vj .

We next suppose that vl is a proper ancestor of vj , i.e., vl 6∈ L(u). Let L(u′) =
(vi′ , ..., vj′) be the expand path of u′ which includes vl. Observe that the height
of the left child w of u′ is no less than the height of u since w is an ancestor of
u. This implies that h(vl) is smaller than the height of w, since the height of u

is strictly larger than h(vi). This contradicts to the linear ordering. From these,
we conclude that vl = vj .

Lemma 2 claims that the highest vertex vl in L s.t. h(vl) ≤ h(vi) is the other
end vertex of L(u). Such a vertex vl can be found by looking the heights of all
vertices in L, thus we obtain the following algorithm to reconstruct T from S.

Algorithm Decode (S: bit string)
1. B := the full-binary tree obtained from S

2. V := ∅
3. for each maximal left down path L from right to left
4. remove the leaf v from L, and V := V ∪ {v}
5. compute the height of each vertex in L

6. while L is not empty
7. vi := the lowest vertex in L

8. vl := the highest vertex such that h(vl) ≤ h(vi)
9. remove the subpath from vi to vl, and insert it to V

10. end while
11. end for
12. E := edge set induced by the parent-child relation of expand paths and leaves
in B

A naive implementation makes this algorithm run in O(|S|2) time, where |S|
is the length of the bit string S. We explain how to compute it in O(|S|) time.

Let L = (v1, . . . , vk) be a left-down path and L(u) = (vi, . . . , vl) be an expand
path included in L. We suppose that vi 6= vk, otherwise vl = vi. Let vj , j > i be
the lowest vertex satisfying h(vj−1) > h(vj). If there is no such vertex, vj is not
defined. vj′ is the highest vertex satisfying h(vj′) = h(vi). Note that vi can be
vj′ , and vj′ is always defined. The key observation is that in the linear ordering,
children on the middle are sorted in the increasing order of their heights. From
the observation, we have the following lemma.

Lemma 3 (1) vl = vj holds if vj is defined and h(vj) < h(vi), and (2) vl = vj′

holds if h(vj) ≥ h(vi) or vj is not defined.
Proof.We first observe that vl never be a proper ancestor of vj , from the linear
ordering. Similarly, if vj is defined, no ancestor of vj has a height smaller than
or equal to vi; otherwise the linear ordering contains a decreasing point at the
middle. This together with the definition of vl implies that if vj is defined and
h(vj) < h(vi), vl = vj holds. If vj is defined but h(vj) ≥ h(vi), we have vl = vj′ .
In the case that vj is not defined, heights of the vertices in (vi, vi+1, · · · , vk) are
monotonically non-decreasing, thus the highest vertex having the height no more
than vi is vj′ . This implies vl = vj′ , and we conclude the lemma.

From Lemma 3, the task to find an expand path is to find both vj and vj′ .
This can be done in O(j − i) time as follows: If vl = vj , then we never access to
the vertices {vi, . . . , vj}. If vl = vj′ , we set vi to vj′+1, and find vj and vj′ again
to find the next expand path. However, in this case, we know that even for new
vi, the previous vj is still the lowest vertex satisfying h(vj−1) > h(vj). Thus, we
do not need to compute vj again. In summary, each vertex in a maximal left-
down path is accessed twice; once for finding vj and once for finding vj′ . Here,
the algorithm maintains two lists. The first list consists of the vertices vj with
h(vj−1) > h(vj) from descendants, and the second list consists of the vertices of
the same height. Both lists can be maintained in linear time, and they admit
us to find vj and vj′ in O(1) time. Thus, the extraction of expand paths from a
maximal left-down path L can be done in O(|L|) time.

Therefore, any bit string that represents an unordered reduced tree can be

c© 2011 Information Processing Society of Japan5

Vol.2011-AL-137 No.6
2011/11/18

IPSJ SIG Technical Report

decoded uniquely. Thus no two different unordered reduced trees are encoded
into the same bit string. Hence we have the following theorems.

Theorem 4 For any ` ≥ 1, there is a 1-to-1 mapping from the set of un-
ordered reduced trees of ` leaves to the set of bit strings of length at most 2`− 1.

Theorem 5 From a bit string of length 2` − 1 representing an unordered re-
duced tree with ` ≥ 1 leaves, the tree can be reconstructed in O(`) time.

Since the first bit of the bit string is always 1 when the original unordered tree
has at least two leaves, we obtain the following theorem.

Theorem 6 The number of unordered reduced trees with ` ≥ 1 leaves is at
most 22`−2.

4. Compact Representation of Cographs

Let G1 = (V1, E1) and G2 = (V2, E2) be two arbitrary disjoint graphs. A
graph G = (V, E) is the parallel composition of G1 and G2 if V = V1 ∪ V2 and
E = E1 ∪ E2. A graph G = (V, E) is the series composition of G1 and G2 if
V = V1 ∪ V2 and E = E1 ∪ E2 ∪ {(x1, x2)|x1 ∈ V1, x2 ∈ V2}. A cograph is
a graph composed of one vertex, or a graph obtained from two cographs with
these two operations. It is well known that any cograph has a canonical tree
representation6),9), in which (1) each leaf corresponds to each vertex of the graph,
(2) each internal vertex has a label corresponding to either a series or parallel
composition, and (3) on every path in the tree, the labels appear alternatively.
We note that (1) implies that the number of leaves of the tree is n for any cograph
of n vertices.

Each such canonical tree corresponds to a unique cograph up to isomorphism,
thus no two cographs are made from the same canonical tree and vice versa.
Fig. 3 shows an example of a cograph and its canonical tree representation.

Each non-leaf vertex has at least two children and the ordering of them does not
matter, so the tree structure is an unordered reduced tree. Thus an unordered
reduced tree corresponds to two cographs; one with the root label of the series
composition, and the other with the root label of the parallel composition. Hence
the number of cographs of n vertices is twice of the number of unordered reduced
trees of n leaves which is equal to 22n−2. Therefore, the following theorem holds:

Theorem 7 The number of cographs with n vertices is at most 22n−1.

(a) (b)

a Sb f

P

S

c

ed

P
a

b d

e

fc

Fig. 3 A cograph and its canonical tree representation

It is known that the canonical tree representation of a cograph can be obtained
in O(n+m) time, where n is the number of vertices and m is the number of edges
in the cograph. From the canonical tree representation one can reconstruct the
original cograph in O(n + m) time. We have the following theorem.

Theorem 8 One can compute in O(n + m) time a bit string of length 22n−1

representing a cograph with n vertices and m edges. One can also construct the
cograph from the bit string in O(n + m) time.

5. Compact Representation of Series-Parallel Graphs

Let G = (V, E, s, t) be a multi graph with two designated vertices s and t,
called the terminals. A multi graph is a graph that can contain two or more
identical edges having the same endpoints. A graph G = (V, E, s, t) is the parallel
composition of G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2) if V = V1 ∪ V2 and
E = E1 ∪ E2 and s = s1 = s2 and t = t1 = t2. A graph G = (V, E, s, t) is the
series composition of G1 = (V1, E1, s1, t1) and G2 = (V2, E2, s2, t2) if V = V1∪V2

and E = E1 ∪ E2 and s = s1, t1 = s2, t2 = t. The series and the parallel
composition can easily be generalized to more than two graphs.

A graph G = (V,E, s, t) is a series-parallel graph with terminals s and t if it
consists of only one edge {s, t} or it results from the applications of the series or
the parallel compositions to two or more series-parallel graphs.

It is well known that any series-parallel graph has a tree structure which de-
scribes how the graph is composed3), and no two series-parallel graphs with two
terminals are generated from the same tree structure. Similar to cographs, the
structure is a reduced tree with alternative labels, but the difference is that the

c© 2011 Information Processing Society of Japan6

Vol.2011-AL-137 No.6
2011/11/18

IPSJ SIG Technical Report

a

eb

a

ea

a

b
d

e

fg

h
i

j

a

d

e

fg

h

j

a

d

h

a

fg

bj

jd

multiply

h

h

d

multiply

path multiply

path path

Fig. 4 A two connected series-parallel graph and a way to construct the graph

order of children matters for series composition.
We give our linear ordering to parallel compositions in the same way and encode

the obtained full-binary tree B to a bit string. To enable us to extract the expand
paths, we put a length of the lowest expand path to each maximal left down path,
and the label of the corresponding vertex if necessary. We will show that it is
sufficient to reconstruct the original construction tree T .

Let L = (v1, . . . , vk) be a maximal left-down path, and L(z) = (v2, . . . , vj)
be the lowest expand path in L. Like for reduced trees, we assume that the
extraction has been done in descendants of the right child and the vertices in L.
In the following, we observe that several labels are automatically determined by
the structure of B. Let vi be a non-leaf vertex in L, and x be the vertex such that
vi ∈ L(x). Let u be the right child of vi, and y be the vertex such that u ∈ L(y).
We first consider the case that u is a non-leaf vertex. In this case, the label of
x is automatically determined by the label of y, since they are always different.
We next suppose that u is a leaf and v is not in L(z). From the linear ordering,
any child of x cannot be a leaf if x is a parallel composition. This together with

that u is a leaf implies that x is a series composition.
From the above observation, we can determine the label of x 6= z whose expand

path is included in L, by looking at the right children of the vertices in the path.
Thus, we cannot get the label of L(z) only when L(z) is the unique expand path
in L. In this case, we have to memory the label of z by using additional bits.
Let U(L) = (u1, . . . , uk′) be the vertices in L such that their right children are
leaves. We have to distinguish the following (k′ + 1) cases.

1 : u1, u2, . . . , uk′ ∈ L(z) and their labels are “Series”
2 : u1 ∈ L(z) and its label is “Parallel”
3 : u1, u2 ∈ L(z) and their labels are “Parallel”

. . .

k′ :u1, u2, . . . , uk′−1 ∈ L(z) and their labels are “Parallel”
k′ + 1 :u1, u2, . . . , uk′ ∈ L(z) and their labels are “Parallel”

Note that, in the case 2 to k′ + 1, we can determine that all labels of the other
vertices in U(L) are “Series.”

We put the index of the corresponding case to each left-down maximal path,
and this information is sufficient to reconstruct T and know the labels of the
vertices. The maximum bits to store the information is equal to

log2 max{
∏
S∈P

(|S| + 1) | P is a partition of {1, . . . , n}}.

By a simple calculation, we can observe that the maximum is attained by the
partition P = {S1, S2, . . . , Sh} such that |S1| = |S2| = · · · = |Sh−1| = 3 and
0 < |Sh| ≤ 3. In the case, the maximum length of the bit string is d(log2 3)n/3e <

0.5284n. We also need 2n−2 bits to store the full binary tree of size n. Therefore,
we obtain the following theorem:

Theorem 9 The number of series-parallel graphs with two terminals and n

edges is at most 2d2.528n−2e.
It is known that the construction tree of a series-parallel graph can be obtained

in O(n) time, thus encoding can be done in O(n) time. Decoding is also done in
O(n) time. Thus, we have the following theorem.

Theorem 10 There is a coding for the class of series-parallel graphs with two
terminals and n edges in at most d2.528n − 2e bits with encoding and decoding
algorithms running in O(n) time.

c© 2011 Information Processing Society of Japan7

Vol.2011-AL-137 No.6
2011/11/18

IPSJ SIG Technical Report

6. Conclusion

In this paper, we designed an algorithm to compute a compact representation
of an unordered reduced tree. Our algorithm computes in O(`) time a bit string
of length 2`−1 for an unordered reduced tree, and also reconstructs in O(`) time
the original tree from the bit string. We also showed the number of cographs
of n vertices is at most 22`−1, and the number of series-parallel graphs with
two terminals of n edges is at most 2d2.528n−2e. According to The On-Line
Encyclopedia of Integer Sequences (http://oeis.org/A000084), the numbers
of cographs of small n = 1, 2, · · · vertices are 1, 2, 4, 10, 24, 66, 180, 522, 1532, · · · ,
and it is estimated as Cdn/n3/2, where C = 0.4126 · · · and d = 3.5608 · · · . Hence
there may still exist a chance to improve the representation.

Acknowledgement

Part of this research is supported by the Funding Program for World-Leading
Innovative R&D on Science and Technology, Japan.

References

1) Aleardi, L.C., Devillers, O. and Schaeffer, G.: Succinct Representation of Triangu-
lations with a Boundary, WADS 2005, Lecture Notes in Computer Science Vol.3608,
Springer-Verlag, pp.134–145 (2005).

2) Bergeron, F., Labelle, G. and Leroux, P.: Combinatorial Species and Tree-Like
Structures, Cambridge University Press (1998).

3) Brandstädt, A., Le, V. and Spinrad, J.: Graph Classes: A Survey, SIAM (1999).
4) Cheng, Q., Berman, P., Harrison, R. and Zelikovsky, A.: Efficient Algorithms of

Metabolic Networks with Bounded Treewidth, IEEE International Conference on
Data Mining Workshops, IEEE, pp.687–694 (2010).

5) Chiang, Y.-T., Lin, C.-C. and Lu, H.-I.: Orderly Spanning Trees with Applications,
SIAM J. Comput., Vol.34, No.4, pp.924–945 (2005).

6) Corneil, D.G., Perl, Y. and Stewart, L.K.: A Linear Recognition Algorithm for
Cographs, SIAM Journal on Computing, Vol.14, No.4, pp.926–934 (1985).

7) Geary, R. F., Raman, R. and Raman, V.: Succinct Ordinal Trees with Level-
ancestor Queries, Proc. 15th Ann. ACM-SIAM Symp. on Discrete Algorithms,
ACM, pp.1–10 (2004).

8) Geary, R.F., Raman, R. and Raman, V.: Succinct ordinal trees with level-ancestor
queries, ACM Transactions on Algorithms, Vol.2, pp.510–534 (2006).

9) Habib, M. and Paul, C.: A simple linear time algorithm for cograph recognition,

Discrete Applied Mathematics, Vol.145, No.2, pp.183–197 (2005).
10) Jacobson, G.: Space-efficient Static Trees and Graphs, Proc. 30th Symp. on Foun-

dations of Computer Science, IEEE, pp.549–554 (1989).
11) Keeler, K. and Westbrook, J.: Short Encodings of Planar Graphs and Maps, Dis-

crete Applied Mathematics, Vol.58, No.3, pp.239–252 (1995).
12) Knuth, D.: Sorting and Searching, Vol.3 of The Art of Computer Programming,

Addison-Wesley Publishing Company, 2nd edition (1998).
13) Munro, J. I. and Raman, V.: Succinct Representation of Balanced Parentheses,

Static Trees and Planar graphs, Proc. 38th ACM Symp. on the Theory of Comput-
ing, ACM, pp.118–126 (1997).

14) Munro, J.I. and Raman, V.: Succinct Representation of Balanced Parentheses and
Static Trees, SIAM Journal on Computing, Vol.31, pp.762–776 (2001).

15) Spinrad, J.: Efficient Graph Representations, American Mathematical Society
(2003).

16) Yamanaka, K. and Nakano, S.-I.: A compact encoding of plane triangulations with
efficient query supports, Inf. Process. Lett., Vol.18-19, pp.803–809 (2010).

c© 2011 Information Processing Society of Japan8

Vol.2011-AL-137 No.6
2011/11/18

