
The Next-to-Shortest Path in Undirected Graphs

with Nonnegative Weights

Cong Zhang†1 and Hiroshi Nagamochi†1

Given an edge-weighted undirected graph and two vertices s and t, the next-
to-shortest path problem is to find an st-path whose length is minimum among
all st-paths of lengths strictly larger than the shortest path length. The problem
is shown to be polynomially solvable if all edge weights are positive, while the
complexity status for the nonnegative weight case was open. In this paper we
show that the problem in undirected graphs admits a polynomial-time algorithm
even if all edge weights are nonnegative, solving the open problem. To solve
the problem, we introduce a common generalization of the undirected graph
version and the acyclic digraph version of the k vertex-disjoint paths problem.

1. Introduction

Let G = (V,E,w) be an undirected/directed graph, in which w is an edge

weight. Let n and m denote the number of vertices and edges in a graph G given

as an input, respectively. For two vertices u, v ∈ V , a uv-path is a path from u

to v (a path has no repeated vertices, otherwise it is called a walk). The length

w(P) of a path P is defined to be the total weight of the edges in P . For a given

pair (s, t) of vertices, an st-path is a shortest st-path if its length is minimum

among all st-paths in G. The shortest path problem asks to find a shortest

st-path. The problem is one of the most fundamental and important network

optimization problems, and has been well-studied, bringing numerous variations

of it. For example, the k shortest path problem asks to generate the k shortest

st-paths, which is a well-studied graph optimization problem that is encountered

in numerous applications in operations research, telecommunications and VLSI

design. For the k shortest path problem, Yen and Katoh et al. gave O(kn(m +

n log n)) time and O(k(m+n log n)) time algorithms in digraphs and undirected

†1 Graduate School of Informatics, Kyoto University

graphs, respectively. Faster algorithms are known for finding k shortest walks.

Finding the kth smallest st-path in a strict sense that requires to have k st-paths

P1, P2, . . . , Pk with distinct lengths w(P1) < w(P2) < · · · < w(Pk) seems much

more challenging. A next-to-shortest st-path is the second smallest st-path in this

sense, i.e., an st-path whose length is minimum among st-paths whose lengths are

strictly larger than that of a shortest st-path. The next-to-shortest path problem

is to find a next-to-shortest st-path for given G, s and t, which has applications

in VLSI design and in optimizing compilers for embedded systems. The problem

was first studied by Lalgudi and Papaefthymiou in digraphs. They proved that

the problem with nonnegative edge weights is NP-complete, and showed that

when repeated vertices are allowed there is an efficient algorithm. Polynomial-

time algorithms for the problem on special undirected graphs were obtained. The

first polynomial algorithm for undirected graphs with positive edge weights was

found by Afterwards, algorithms with improved time bounds were obtained.

However, the complexity status of the next-to-shortest path problem in undi-

rected graphs with nonnegative edge weights remains open. In this paper, we

prove that the next-to-shortest path problem is polynomially solvable even for

this case. Our approach is to derive a kind of decomposition of a given graph.

However, to solve the resulting subproblem, we need to rely on an algorithm

for finding 3 vertex-disjoint paths in a mixed graph (a graph with directed and

undirected edges). In general digraphs, finding k vertex-disjoint paths problem

is NP-hard even for k = 2. Since the mixed graphs in our reduction induces a

DAG (directed acyclic graph) by its directed edges, we only need to find a com-

mon generalization of the result by Fortune et al. on the k vertex-disjoint paths

problem in DAGs and that by can be found by solving a polynomial number of

the 3 vertex-disjoint paths problem in a mixed graph.

The paper is organized as follows. Section 2 discusses our disjoint path problem

in mixed graphs. Section 3 first reviews the known result on the positive weight

case, and then derives the structural properties on non-shortest st-paths to design

a polynomial-time algorithm for the nonnegative weight case. Section 4 makes

some concluding remarks.

1

IPSJ SIG Technical Report

ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.5
2011/11/18

2. Disjoint Paths in Mixed Graphs

For two vertices u and v, an undirected edge joining them is denoted by {u, v},
and an arc (directed edge) that leaves u and enters v is denoted by (u, v). A

graph with arcs and edges is called a mixed graph, denoted by G = (V,A ∪ E)

with a set V of vertices, a set A of arcs and a set E of edges. We use V (G) and

E(G) to denote the set of vertices and the set of arcs/edges in G, respectively.

A walk P in G from u to v means a subgraph of G whose vertices are given by

v1 (= u), v2, . . . , vp (= v) such that, for each i = 1, . . . , p − 1, P has either an

arc (vi, vi+1) ∈ A or an edge {vi, vi+1} ∈ E, and P has no other arc/edge, where

v1 and vp are called the start and end vertices of P . Such walk P is denoted by

(v1, v2, . . . , vp). A walk in G is called a path if there are no repeated vertices, and

is called a cycle if the start vertex is equal to the end vertex. A path from u to

v is called a uv-path.

We say that a mixed graph is acyclic if there is no cycle which contains an

arc in A. Given k pairs (s1, t1), . . . , (sk, tk) of vertices in a mixed graph, the k

vertex-disjoint paths problem is to find k vertex-disjoint siti-paths, i = 1, . . . , k.

We show that the problem is polynomially solvable for a fixed k in acyclic mixed

graphs.

Theorem 1. For each fixed k, there exists a polynomial-time algorithm for the

k vertex-disjoint paths problem for acyclic mixed graphs.

We can prove Theorem 1 by a technical extension of the proofs for the vertex-

disjoint paths problem in DAGs due to Fortune et al. and Schrijver so that it can

include the result on the undirected graph version by Robertson and Seymour.

See [15] for the detail of the proof.

3. Next-To-Shortest Paths

Let G = (V,E,w) be an undirected graph with a vertex set V , an edge set

E and a nonnegative edge weight function w. An edge of weight 0 is called a

zero-edge, and an edge of a positive weight is called a positive-edge.

For a path P in G, let w(P) denote the total weight of edges in P . Let

d(u, v;G) denote the length of a shortest uv-path in a graph G, where d(u, v;G) =

∞ if G has no uv-path. Let s and t be designated vertices in G. Since the

edge weights are nonnegative, we have d(s, u;G) + w({u, v}) ≥ d(s, v;G) and

d(u, t;G) + w({u, v}) ≥ d(v, t;G) for all u, v ∈ V . In particular, d(s, u;G) =

d(s, v;G) and d(u, t;G) = d(v, t;G) for each zero-edge {u, v} ∈ E. For notational

convenience in describing st-paths, we assume without loss of generality that s

and t have only one incident edge (we add extra edges to s and t if necessary). A

positive-edge is called inner if it is in a shortest st-path in G, and is called outer

otherwise. Let E0 be the set of zero-edges, E1 be the set of inner edges e ∈ E−E0,

i.e., E1 = {{u, v} ∈ E − E0 | d(s, u;G) + w({u, v}) = d(s, v;G), d(u, t;G) =

w({u, v}) + d(v, t;G)}, and E2 denote the set E − E0 − E1 of outer edges.

A path P with E(P) ⊆ E0 ∪E1 is called pure. Clearly every impure st-path is

not a shortest st-path.

3.1 Finding Shortest Impure st-Paths

This subsection reviews the result by Krasikov and Noble to find a shortest

impure st-path containing a specified outer edge. They use the next result.

Lemma 2. Given an undirected graph G = (V,E,w) with nonnegative edge

weights, and specified vertices s, t and a, there is a polynomial time algorithm to

find a shortest st-path passing through a.

The problem in the lemma can be regarded as a minimum cost flow problem

with flow value 2 in G with a vertex capacity 1, where a source a has demand

2 and sinks s and t have demand −1, respectively. The graph is then converted

into a digraph D, where the vertex capacity is realized as an edge capacity 1.

The problem can be solved by the standard method for the minimum cost flow

algorithm, since any cycle in D has a nonnegative length and the cost of an

optimal flow is equal to the shortest length of an st-path passing through a.

By Lemma 2, we can find a shortest st-path passing through a specified outer

edge {u, v} ∈ E2 by subdividing the edge with a new vertex a. Hence by solving

|E2| such problems, we can find a shortest impure st-path (if any).

In what follows, we only consider how to find a shortest pure st-path of length

larger than the shortest one.Lemma 3 Hence we ignore all the outer edges unless

stated otherwise.

2

IPSJ SIG Technical Report

ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.5
2011/11/18

3.2 Finding Shortest Pure st-Paths with Reversing Components

For an ordered pair (u, v) of the end vertices of an inner edge {u, v} ∈ E1 is

called an forward edge if d(s, u;G) < d(s, v;G), and is called a backward edge

otherwise. Note that a zero-edge is neither forward nor backward. Let A be the

set of forward edges (u, v), {u, v} ∈ E1. For a pure v1vk-path P = (v1, . . . , vk),

an ordered pair (vi, vi+1) with {vi, vi+1} ∈ E1 is called a forward edge of P

if (vi, vi+1) ∈ A, and is called a backward edge of P otherwise. A connected

component in the graph (V,E0) with only zero-edges is called a zero-component

of G if it contains at least one zero-edge. Let Z denote the set of all zero-

components of G.

Lemma 3. Let P = (u1, u2, . . . , uk) be a pure path in which there is no backward

edge. Then P is a shortest u1uk-path in G. In particular, if P contains a positive

edge, then u1 and uk do not belong to the same zero-component Z.

Proof. The second statement follows from the first one, since Z contains a u1uk-

path Q with w(Q) = 0, implying that a u1uk-path P with w(P) > 0 cannot be

a shortest one.

To show the first statement, we can assume that G has no zero-edges, since

the distance of two vertices remains unchanged after contracting each zero-

component into a single vertex and any path in the resulting graph corresponds

a path with the same length in G.

We first observe that, for a shortest st-path P ∗ = (v1, v2, . . . , vp), any subpath

from vi to vj is a shortest vivj-path in G, because if G has a shorter vivj-path Q

then we see that the union of Q and P ∗ contains an st-path with length shorter

than P ∗ due to nonnegativeness of edge weights.

Hence, it suffices to prove by induction that, for each ui, i = 2, . . . , k in the

path P , some shortest sui-path Pi contains (u1, u2, . . . , ui) as its subpath (for

i = k, P is a subpath of Pk, which will be shown to be shortest). For i = 2,

there exists such a shortest su2-path P2 since (u1, u2) is a forward edge in P . For

i = j (2 ≤ j < k), assume that there is a shortest suj-path Pj which contains

(u1, u2, . . . , uj) as its subpath. Let P
′
j+1 = [Pj , (uj , uj+1)] be the walk from s to

uj+1 obtained from Pj by adding edge {uj , uj+1}. There is a shortest st-path Q

containing the edge {uj , uj+1}, and let Qj (resp., Qj+1) denote its subpath from

s to uj (resp., uj+1). Since Pj is a shortest suj-path by the induction hypothesis

and it holds w(Pj) ≤ w(Qj), we have w(P ′
j+1) = w(Pj) + w({uj , uj+1}) ≤

w(Qj) + w({uj , uj+1}) = w(Qj+1). Since there is no suj+1-path shorter than

Qj+1, uj+1 cannot be a repeated vertex in P ′
j+1 (otherwise P ′

j+1 would contain

such a shorter path). Hence P ′
j+1 is a desired shortest suj+1-path. This completes

the induction.

By the lemma, a pure st-path is not a shortest st-path if and only if it has a

backward edge. Hence we only need to investigate pure st-paths containing at

least one backward edge.

Let P = (v1, . . . , vk) be a pure st-path in G. A vertex vi with 2 ≤ i ≤ k − 1 is

called a reversing vertex of P if (vi−1, vi), (vi+1, vi) ∈ A or (vi, vi−1), (vi, vi+1) ∈
A (i.e., (vi−1, vi) and (vi, vi+1) have different directions in the sense of for-

ward/backward edges).

Krasikov and Noble also showed how to find a shortest pure st-path which

contains a reversing vertex by using Lemma 2. We choose a pair of forward

edges (u, a) and (v, a) for a vertex a, and then remove all other edges incident

to a except for (u, a) and (v, a) to obtain a new graph in which vertex a has

only two edges. By Lemma 2, we can find a shortest st-path P passing through

a in which exactly of (u, a) and (v, a) appears as a backward edge, and vertex

a is a reversing vertex. Similarly for a pair of forward edges (a, u) and (a, v),

we can find a shortest st-path P passing through exactly of (a, u) and (a, v) as

a backward edge. By applying the procedure for all the above pairs of forward

edges, we can find a shortest pure st-path which contains a reversing vertex (if

any). In fact, if a given graph G has no zero-edge, then no other case happens

and this completes a proof for the fact that the next-to-shortest path problem

in undirected graphs with only positive edge weights is polynomially solvable.

On the other hand, if G has zero-edges, then the above method may find only a

shortest st-path, since a zero-edge {u, a} may appear as (u, a) and (a, u) in two

shortest st-paths in G, respectively.

Let P = (v1, . . . , vk) be a pure st-path. A subpath Q of P is called a zero-

subpath if Q consists of vertices and zero-edges in a zero-component Z and is

maximal subject to this property (Q may contain only one vertex in Z). For

3

IPSJ SIG Technical Report

ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.5
2011/11/18

each Z ∈ Z, let ρ(Z) denote the number of zero-subpaths Q of P such that

Q is contained in Z. A zero-component Z with ρ(Z) = 1 is called reversing if

its zero-subpath Q = (vi, vi+1, . . . , vj−1, vj) satisfies (vi−1, vi), (vj+1, vj) ∈ A or

(vi, vi−1), (vj , vj+1) ∈ A, and is called trivial otherwise. The zero-subpath of a

trivial zero-component is also called trivial.

Finding a shortest pure st-path P which has a reversing zero-component Z ∈ Z
can be computed in a similar manner with the case of reversing vertices after we

contract Z into a single vertex a, which can be treated as a reversing vertex.

By definiton so far, we can classify non-shortest st-paths as follows.

Lemma 4. Any st-path P which is not a shortest st-path in G satisfies one of

the following conditions (i)-(iv).

(i) P is an impure path;

(ii) P is a pure path in which there is a reversing vertex;

(iii) P is a pure path in which there is a reversing zero-component; and

(iv) P is a pure path in which there is a backward edge, but no reversing

vertex/zero-component.

Therefore, the remaining task is to find an st-path with minimum length which

satisfies condition (iv) in the lemma. We call such a path which satisfies condition

(iv) folding. In the next subsection, we only consider folding st-paths.

3.3 Finding Shortest Folding st-Paths

In this subsection, we first examine structure of folding st-paths before we

finally design an algorithm for computing a shortest folding st-path.

By definition, any folding st-path P has a zero-component Z with ρ(Z) ≥
2, which is called arching. We denote the zero-subpaths of an arching zero-

component Z by Q1(Z), Q2(Z), . . . , Qr(Z), r = ρ(Z) in the order from s to t

along P . We say that an arching zero-component Z surrounds a subpath P ′ of P

if Qi(Z)P ′Qi+1(Z) is a subpath of P (where P ′ may contain a zero-edge which

belongs to another zero-component Z ′).

Lemma 5. Let P be a folding st-path that has the minimum length among all

folding st-paths, and Z be an arching zero-component Z for P . Denote P by an

alternating sequence of subpaths, P = [P1Q1P2 . . . QrPr+1], where Qi = Qi(Z),

i = 1, 2, . . . , r = ρ(Z) (each Pj may contain a zero-edge in another zero-

component Z ′). See Fig.1. Then

(i) If Z contains a path Q connecting two zero-subpaths Qa and Qb (1 ≤ a <

b ≤ r) such that Q is vertex-disjoint with any Qi with i < a or b < i, then

all the backward edges of P appear between Qa and Qb along P .

(ii) ρ(Z) = 2.

Z
Cr

s t

P1 Q1 Qr Pr+1P2 PrQr-2 Qr-1

Cr-1

Pr-1

Fig. 1 Illustration of a zero-component Z for a pure st-path P = [P1Q1P2 · · ·QrPr+1],
where each Qi is a zero-subpath of Z.

Proof. (i) By short-cutting with Q, we can obtain another folding st-path P ′.

Note that w(P ′) < w(P) since the short-cutting skips at least one positive-edge

in the subpath between Qa and Qb. Therefore, if P has a backward edge which

does not appear between Qa and Qb, then P ′ still contains a backward edge, and

hence it is a folding st-path which has shorter length than P , a contradiction.

Therefore all the backward edges of P must appear between Qa and Qb along P .

(ii) To derive a contradiction, assume that r ≥ 3. By applying (i) with a = 1

and b = r, we see that there is a subpath Pj with 2 ≤ j ≤ r which contains a

backward edge. Assume without loss of generality that j ≤ r−1 (the case of j ≥ 3

can be treated symmetrically). To see that Qr−1 remains connected to some Qh

within Z − V (Qr), we consider the graph Z ′ obtained from Z by removing the

vertices in zero-subpaths Qi with 1 ≤ i ≤ r − 2, i.e., Z ′ = Z − ∪1≤i≤r−2V (Qi).

In Z ′, let Ci, i = r− 1, r be the component containing Qi (see Fig.1). Note that

Cr−1 6= Cr since otherwise applying (i) to a = r − 1 and b = r would not allow

Pj to contain a backward edge.

Now the graph Z − V (Cr) contains a path Q′ connecting Qr−1 and Qh for

some h = 1, 2, . . . , r − 2. Hence by applying (i) with a = h and b = r − 1, we

see that Pr contains no backward edge. Since Pr contain only forward edges or

4

IPSJ SIG Technical Report

ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.5
2011/11/18

zero-edges and connects two vertices in Z, this contradicts Lemma 3. Therefore

r = 2 holds.

For an st-path P , we say that two arching zero-components Z1, Z2 ∈ Z with

ρ(Z1) = ρ(Z2) = 2 cross each other if for each i = 1, 2, the subpath between

Q1(Zi) and Q2(Zi) contains a zero-subpath of Zj , j ∈ {1, 2}−{i} (see Fig.2(a)).

s tP1 Q1 P2

P3 Q3

P4

Q2

P5Q4

Z1

Z2

s tP1 Q1 P2

P3

Q3

P4Q2

P5

Q4

Z1

Z2

(a)

(b)

Fig. 2 Illustration of two zero-components Z1 and Z2: (a) crossing Z1 and Z2; (b) non-
crossing Z1 and Z2.

Lemma 6. Let P be a folding st-path that has the shortest length among all

folding st-paths. Then

(i) If P has an arching zero-component, then it has another arching zero-

component, and they cross each other.

(ii) Assume that P has q ≥ 3 arching zero-components, then they can be indexed

as Zi, i = 1, 2, . . . , q so that their zero-subpaths appear in the order Q1(Z1),

Q1(Z3), Q
1(Z4), . . . , Q

1(Zq), Q
1(Z2), Q

2(Z1), Q
2(Z3), Q

2(Z4), . . . , Q
2(Zq),

Q2(Z2) along P (see Fig.3(a)).

Proof. (i) Let Z be an arching zero-component, which has exactly two zero-

subpaths by Lemma 5(ii). If the path P ′ surrounded by Z has no zero-subpath

of another arching zero-component, then all the positive-edges in P ′ are backward

edges, and P ′ connects two vertices in the same zero-component, contradicting

Lemma 3. Hence P has another arching zero-component.

Next assume that there are two arching zero-components which do not cross

each other. Hence P is denoted by P = [P1Q1P2Q2P3Q3P4Q4P5] such that Q1

and Q4 are the zero-subpaths of an arching zero-component Z1 and Q2 and Q3

are those of another Z2 (see Fig.2(b)). By Lemma 5 applied to Z2, there is

no backward edge in the subpaths P2 and P4 along P from s to t. Hence the

subgraph consisting of P2, Z2 and P4 contains a pure path P ′ from the last vertex

in Q1 to the first vertex of Q4 such that no backward edge appears along P ′.

Since P ′ connects two vertices in the same zero-component Z1, this contradicts

Lemma 3. Therefore any two arching zero-components cross each other.

(ii) By definition, a folding st-path P is given as an alternating sequence

P1Q1 · · ·Q2qP2q+1 of subpaths Pi and nontrivial zero-subpaths Qi such that all

positive edges in each Pi have the same direction, either forward or backward (Pi

may contain trivial zero-subpaths). By definition there is at least one subpath

Pj which consists of only backward edges and trivial zero-subpaths. Assume

that P has three arching zero-components. Then zero-subpaths Qj−1 and Qj

must be contained in distinct arching zero-components, say Z1 and Z2, since

otherwise the one containing both zero-subpaths cannot cross any other one,

contradicting (i). Again by (i), Z1 and Z2 cross each other. The third zero-

component Z3 needs to surround Pj and cross both Z1 and Z2 by (i) of this

lemma and Lemma 2 (i). For simplicity, we here consider the case of r = 3

first. Hence the zero-subpaths of Z1, Z2 and Z3 must appear in the order of

Q1(Z1), Q
1(Z3), Q

1(Z2), Q
2(Z1), Q

2(Z3), Q
2(Z2) along P , as shown in Fig.3(b).

For other zero-components, we can assume without loss of generality that their

first zero-subpaths appear in the order of Q1(Z3), Q
1(Z4), . . . , Q

1(Zq) along P .

Since each Zi crosses all Z1, Z2, . . . , Zj−1, we see that all the zero-subpaths of

arching zero-components satisfy the ordering in (i).

Let us call the zero-components Z1 and Z2 in the lemma the source and sink

5

IPSJ SIG Technical Report

ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.5
2011/11/18

components of the folding st-path P . See Fig.3(c), which illustrates the same

configuration of all arching zero-components Z1, . . . , Zr in Fig.3(a).

P4

s t

P1

Q1(Z1)

(a)

(c)

s t

Z=Z1 Z’=Z2

G’

Q2(Z1) Q2(Z2)Q1(Z2)

Q1(Z3) Q1(Z4) Q
1(Zq) Q2(Z3)Q2(Z4) Q

2(Zq)

P2 P3 P4 Pq Pq+2 P2qPq+3 P2q-1

Z4 ZqZ3

P1

P2
P3

P2q+1

Pq+2 P2qPq+3 P2q-1

(b)

s2 t2

s1 t1

s3 t3

Q1(Z1) Q2(Z1) Q2(Z2)Q1(Z2)

Q1(Z3) Q2(Z3)

Gs Gt

Z1
Z2

Z3

Z4

Zq

.
.
.

. . .

Pq

s t

Z1 Z2

Z3

Pq+1 P2q+1

Pq+1

Fig. 3 (a) Crossing r arching zero-components; (b) crossing three zero-components; (c)
disjoint-path problem instances (Gs, {(s, s1), (s2, s3)}), (Gt, {(t1, t2), (t3, t)}), and
(G′, {(s1, t1), (s2, t2), (s3, t3)}).

We now show how to find a shortest folding st-path with specified source and

sink components Z,Z ′ ∈ Z. Given a shortest folding st-path P , which admits

the structure in Lemma 6(ii), we let s1, s2 and s3 be the initial end points of

P2, Pq+2 and Pq+1 and t1, t2 and t3 be the last end points of Pq, Pq+1 and

P2q, as shown in Fig.3(b). Then these six vertices s1, . . . , t3 satisfy the following

conditions:

(i) In the subgraph Gs of (V,E0 ∪ E1) induced by the vertices v with

d(s, v;G) ≤ d(s, s1;G), there are two vertex-disjoint path, ss1-path Pss1

and s2s3-path Ps2s3 ;

(ii) In the subgraph Gt of (V,E0 ∪ E1) induced by the vertices v with

d(s, t1;G) ≤ d(s, v;G), there are two vertex-disjoint paths, t1t2-path Pt1t2

and t3t-path Pt3t; and

(iii) In the subgraph G′ of (V,E0 ∪E1) induced by the vertex set {s1, s2, s3} ∪
{v ∈ V | d(s, s1;G) < d(s, v;G) < d(s, t1;G)} ∪ {t1, t2, t3}, there are three

vertex-disjoint paths, siti-paths Psiti , i = 1, 2, 3

(we treat Gs, Gt and G′ as mixed graphs by regarding each positive edge {u, v}
with d(s, u;G) < d(s, v;G) as an arc (u, v)). Note that the three graphs Gs,

Gt and G′ are vertex-disjoint except for the six vertices. We call any set of

six vertices s1, s2, s3 ∈ V (Z) (possibly s2 = s3) and t1, t2, t3 ∈ V (Z ′) (possibly

t1 = t3) satisfying the above conditions (i)-(iii) feasible to (Z,Z ′).

Lemma 7. There is a folding st-path with source and sink components Z,Z ′ ∈ Z
if and only if there is a feasible set of vertices s1, s2, s3 ∈ V (Z) and t1, t2, t3 ∈
V (Z ′).

Proof. We have observed the “only if” part. We show the “if” part. Given a

feasible set of six vertices and disjoint paths in (i)-(iii), a folding st-path P can

be obtained as the concatenation

Pss1Ps1t1Pt1t2Ps2t2Ps2s3Ps3t3Pt3t,

where Ps2t2 denotes the t2s2-path obtained from Ps2t2 by reversing the direc-

tion. Note that the length of P (if any) is always given by w(P) = d(s, t;G) +

2d(s, t1;G) − 2d(s, s1;G), indicating that P is a shortest one with the specified

source and sink components Z and Z ′. The resulting path P may pass though

arching zero-components in a different way from the configuration in Lemma 5(ii)

(for example, an arching zero-component may have one of its zero-subpaths in

Ps2t2). However, it is always a folding st-path with the source and sink compo-

nents Z and Z ′.

For each choice of such six vertices, we can determine whether such disjoint

paths in (i)-(iii) exist or not in polynomial time by using Theorem 1 with k ≤ 3.

Since the total number of all possible choices of source and sink components and

6

IPSJ SIG Technical Report

ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.5
2011/11/18

six vertices in them is O(n6), we can find a shortest folding st-path (if any) in

polynomial time. The algorithm based on the proof of Lemma 7 is described as

follows.

Algorithm Shortest-Folding-Paths

Input: The graph (V,E0 ∪E1) for an undirected graph G = (V,E) with a

nonnegative edge weight w, and two vertices s, t ∈ V .

Output: A shortest folding st-path in G (if exists).

for each ordered pair of zero-components Z,Z ′ ∈ Z do

if there is a feasible set of six vertices s1, s2, s3 ∈ V (Z) and t1, t2, t3 ∈ V (Z ′)

then

µ(Z,Z ′) := d(s, t;G) + 2d(s, t1;G)− 2d(s, s1;G);

Let Pss1 and Ps2s3 be vertex-disjoint ss1-path and s2s3-path in Gs in (i);

Let Pt1t2 and Pt3t be vertex-disjoint t1t2-path and t3t-path in Gt in (ii);

Let Psiti , i = 1, 2, 3 be vertex-disjoint siti-paths in G′ in (iii);

Let P(Z,Z′) := [Pss1Ps1t1Pt1t2Ps2t2Ps2s3Ps3t3Pt3t];

else

µ(Z,Z ′) := ∞
endif

endfor;

(Z∗, Z∗∗) := argmin{µ(Z,Z ′) | Z,Z ′ ∈ Z};
Output P(Z∗,Z∗∗) if µ(Z

∗, Z∗∗) < ∞, or report that G has no folding st-path

otherwise.

From the arguments in this and previous subsections, we finally obtain the next

result.

Theorem 8. The next-to-shortest path problem in undirected graphs with non-

negative edge weights can be solved in polynomial time.

4. Concluding Remarks

In this paper, we showed that the next-to-shortest path problem in undirected

graphs with nonnegative edge weights can be solved by reducing the problem to

the k vertex-disjoint paths problem in acyclic mixed graphs with a fixed k ≤ 3.

A natural question in this line would be whether finding an st-path with the

strictly third shortest length can be again reduced to the k vertex-disjoint paths

problem with a fixed k.

References

1) Barman, S.C., Mondal, S., and Pal, M.: An efficient algorithm to find next-

to-shortest path on trapezoid graphs, Adv. Appl. Math. Anal. 2, 97–107

(2007).

2) Eppstein, D.: Finding the k shortest paths, SIAM J. Comput. 28, 652–673

(1998).

3) Fortune, S., Hopcroft J. E., and Wyllie, J.: The directed subgraph homeo-

morphism problem, Theoret. Comput. Sci. 10, 111–121 (1980).

4) Katoh, N., Ibaraki, T., and Mine, H.: An efficient algorithm for K shortest

simple paths, Vol. 10, No. 2, pp. 287–302 (1982).

5) Kao, K.-H., Chang, J.-M., Wang, Y.-L., and Juan, J. S.-T.: A quadratic

algorithm for finding next-to-shortest paths in graphs, Algorithmica 61, 402–

418 (2010).

6) Krasikov, I., and Noble, S. D.: Finding next-to-shortest paths in a graph,

Inf. Process. Lett. 92, 117–119 (2004).

7) Lalgudi, K. N., and Papaefthymiou, M. C.: Computing strictly-second short-

est paths, Inf. Process. Lett. 63, 177–181 (1997).

8) Lalgudi, K. N., Papaefthymiou, M. C., and Potkonjak, M.: Optimizing

systems for effective block-processing, ACM Trans. on Design Automation

of Electronic Systems 5, 604–630 (2000).

9) Li, S., Sun, G., and Chen, G.: Improved algorithm for finding next-to-

shortest paths, Inf. Process. Lett. 99, 192–194 (2006).

10) Mondal, S., and Pal, M.: A sequential algorithm to solve next-to-shortest

path problem on circular-arc graphs, J. Phys. Sci. 10, 201–217 (2006).

11) Robertson, N., and Seymour, P. D.: Graph minors. XIII. the disjoint paths

problem, J. Combinatorial Theory, Series B 63, 65–110 (1995).

12) Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency,

Springer-Verlag, Berlin (2003).

13) Wu, B.-Y.: A simpler and more efficient algorithm for the next-to-shortest

7

IPSJ SIG Technical Report

ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.5
2011/11/18

path problem, W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS

6509, 219–227 (2010).

14) Yen, J.-Y.: Finding the K shortest loopless paths in a network, Manag. Sci.

17, 712–716 (1971).

15) Zhang, C., Nagamochi. H.: A polynomial-time algorithm for the next-to-

shortest path in undirected graphs with nonnegative weights, Technical re-

port 2011-12, Graduate School of Informatics, Kyoto-university (2011).

8

IPSJ SIG Technical Report

ⓒ 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.5
2011/11/18

