The Next-to-Shortest Path in Undirected Graphs with Nonnegative Weights

Cong Zhang ${ }^{\dagger 1}$ and Hiroshi Nagamochi ${ }^{\dagger 1}$

Given an edge-weighted undirected graph and two vertices s and t, the next-to-shortest path problem is to find an st-path whose length is minimum among all st-paths of lengths strictly larger than the shortest path length. The problem is shown to be polynomially solvable if all edge weights are positive, while the complexity status for the nonnegative weight case was open. In this paper we show that the problem in undirected graphs admits a polynomial-time algorithm even if all edge weights are nonnegative, solving the open problem. To solve the problem, we introduce a common generalization of the undirected graph version and the acyclic digraph version of the k vertex-disjoint paths problem.

1. Introduction

Let $G=(V, E, w)$ be an undirected/directed graph, in which w is an edge weight. Let n and m denote the number of vertices and edges in a graph G given as an input, respectively. For two vertices $u, v \in V$, a $u v$-path is a path from u to v (a path has no repeated vertices, otherwise it is called a walk). The length $w(P)$ of a path P is defined to be the total weight of the edges in P. For a given pair (s, t) of vertices, an st-path is a shortest $s t$-path if its length is minimum among all st-paths in G. The shortest path problem asks to find a shortest $s t$-path. The problem is one of the most fundamental and important network optimization problems, and has been well-studied, bringing numerous variations of it. For example, the k shortest path problem asks to generate the k shortest $s t$-paths, which is a well-studied graph optimization problem that is encountered in numerous applications in operations research, telecommunications and VLSI design. For the k shortest path problem, Yen and Katoh et al. gave $O(k n(m+$ $n \log n)$) time and $O(k(m+n \log n))$ time algorithms in digraphs and undirected
graphs, respectively. Faster algorithms are known for finding k shortest walks. Finding the k th smallest st-path in a strict sense that requires to have $k s t$-paths $P_{1}, P_{2}, \ldots, P_{k}$ with distinct lengths $w\left(P_{1}\right)<w\left(P_{2}\right)<\cdots<w\left(P_{k}\right)$ seems much more challenging. A next-to-shortest st-path is the second smallest st-path in this sense, i.e., an st-path whose length is minimum among st-paths whose lengths are strictly larger than that of a shortest st-path. The next-to-shortest path problem is to find a next-to-shortest st-path for given G, s and t, which has applications in VLSI design and in optimizing compilers for embedded systems. The problem was first studied by Lalgudi and Papaefthymiou in digraphs. They proved that the problem with nonnegative edge weights is NP-complete, and showed that when repeated vertices are allowed there is an efficient algorithm. Polynomialtime algorithms for the problem on special undirected graphs were obtained. The first polynomial algorithm for undirected graphs with positive edge weights was found by Afterwards, algorithms with improved time bounds were obtained.

However, the complexity status of the next-to-shortest path problem in undirected graphs with nonnegative edge weights remains open. In this paper, we prove that the next-to-shortest path problem is polynomially solvable even for this case. Our approach is to derive a kind of decomposition of a given graph. However, to solve the resulting subproblem, we need to rely on an algorithm for finding 3 vertex-disjoint paths in a mixed graph (a graph with directed and undirected edges). In general digraphs, finding k vertex-disjoint paths problem is NP-hard even for $k=2$. Since the mixed graphs in our reduction induces a DAG (directed acyclic graph) by its directed edges, we only need to find a common generalization of the result by Fortune et al. on the k vertex-disjoint paths problem in DAGs and that by can be found by solving a polynomial number of the 3 vertex-disjoint paths problem in a mixed graph.
The paper is organized as follows. Section 2 discusses our disjoint path problem in mixed graphs. Section 3 first reviews the known result on the positive weight case, and then derives the structural properties on non-shortest st-paths to design a polynomial-time algorithm for the nonnegative weight case. Section 4 makes
some concluding remarks.

[^0]
2. Disjoint Paths in Mixed Graphs

For two vertices u and v, an undirected edge joining them is denoted by $\{u, v\}$, and an arc (directed edge) that leaves u and enters v is denoted by (u, v). A graph with arcs and edges is called a mixed graph, denoted by $G=(V, A \cup E)$ with a set V of vertices, a set A of arcs and a set E of edges. We use $V(G)$ and $E(G)$ to denote the set of vertices and the set of arcs/edges in G, respectively. A walk P in G from u to v means a subgraph of G whose vertices are given by $v_{1}(=u), v_{2}, \ldots, v_{p}(=v)$ such that, for each $i=1, \ldots, p-1, P$ has either an $\operatorname{arc}\left(v_{i}, v_{i+1}\right) \in A$ or an edge $\left\{v_{i}, v_{i+1}\right\} \in E$, and P has no other arc/edge, where v_{1} and v_{p} are called the start and end vertices of P. Such walk P is denoted by $\left(v_{1}, v_{2}, \ldots, v_{p}\right)$. A walk in G is called a path if there are no repeated vertices, and is called a cycle if the start vertex is equal to the end vertex. A path from u to v is called a $u v$-path.

We say that a mixed graph is acyclic if there is no cycle which contains an arc in A. Given k pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ of vertices in a mixed graph, the k vertex-disjoint paths problem is to find k vertex-disjoint $s_{i} t_{i}$-paths, $i=1, \ldots, k$. We show that the problem is polynomially solvable for a fixed k in acyclic mixed graphs.

Theorem 1. For each fixed k, there exists a polynomial-time algorithm for the k vertex-disjoint paths problem for acyclic mixed graphs.

We can prove Theorem 1 by a technical extension of the proofs for the vertexdisjoint paths problem in DAGs due to Fortune et al. and Schrijver so that it can include the result on the undirected graph version by Robertson and Seymour. See [15] for the detail of the proof.

3. Next-To-Shortest Paths

Let $G=(V, E, w)$ be an undirected graph with a vertex set V, an edge set E and a nonnegative edge weight function w. An edge of weight 0 is called a zero-edge, and an edge of a positive weight is called a positive-edge.
For a path P in G, let $w(P)$ denote the total weight of edges in P. Let $d(u, v ; G)$ denote the length of a shortest $u v$-path in a graph G, where $d(u, v ; G)=$
∞ if G has no $u v$-path. Let s and t be designated vertices in G. Since the edge weights are nonnegative, we have $d(s, u ; G)+w(\{u, v\}) \geq d(s, v ; G)$ and $d(u, t ; G)+w(\{u, v\}) \geq d(v, t ; G)$ for all $u, v \in V$. In particular, $d(s, u ; G)=$ $d(s, v ; G)$ and $d(u, t ; G)=d(v, t ; G)$ for each zero-edge $\{u, v\} \in E$. For notational convenience in describing $s t$-paths, we assume without loss of generality that s and t have only one incident edge (we add extra edges to s and t if necessary). A positive-edge is called inner if it is in a shortest st-path in G, and is called outer otherwise. Let E_{0} be the set of zero-edges, E_{1} be the set of inner edges $e \in E-E_{0}$, i.e., $E_{1}=\left\{\{u, v\} \in E-E_{0} \mid d(s, u ; G)+w(\{u, v\})=d(s, v ; G), d(u, t ; G)=\right.$ $w(\{u, v\})+d(v, t ; G)\}$, and E_{2} denote the set $E-E_{0}-E_{1}$ of outer edges.
A path P with $E(P) \subseteq E_{0} \cup E_{1}$ is called pure. Clearly every impure st-path is not a shortest st-path.

3.1 Finding Shortest Impure st-Paths

This subsection reviews the result by Krasikov and Noble to find a shortest impure $s t$-path containing a specified outer edge. They use the next result.

Lemma 2. Given an undirected graph $G=(V, E, w)$ with nonnegative edge weights, and specified vertices s, t and a, there is a polynomial time algorithm to find a shortest st-path passing through a.
The problem in the lemma can be regarded as a minimum cost flow problem with flow value 2 in G with a vertex capacity 1 , where a source a has demand 2 and sinks s and t have demand -1 , respectively. The graph is then converted into a digraph D, where the vertex capacity is realized as an edge capacity 1 . The problem can be solved by the standard method for the minimum cost flow algorithm, since any cycle in D has a nonnegative length and the cost of an optimal flow is equal to the shortest length of an st-path passing through a.
By Lemma 2, we can find a shortest st-path passing through a specified outer edge $\{u, v\} \in E_{2}$ by subdividing the edge with a new vertex a. Hence by solving $\left|E_{2}\right|$ such problems, we can find a shortest impure st-path (if any).

In what follows, we only consider how to find a shortest pure st-path of length larger than the shortest one.Lemma 3 Hence we ignore all the outer edges unless stated otherwise.

3.2 Finding Shortest Pure st-Paths with Reversing Components

For an ordered pair (u, v) of the end vertices of an inner edge $\{u, v\} \in E_{1}$ is called an forward edge if $d(s, u ; G)<d(s, v ; G)$, and is called a backward edge otherwise. Note that a zero-edge is neither forward nor backward. Let A be the set of forward edges $(u, v),\{u, v\} \in E_{1}$. For a pure $v_{1} v_{k}$-path $P=\left(v_{1}, \ldots, v_{k}\right)$, an ordered pair $\left(v_{i}, v_{i+1}\right)$ with $\left\{v_{i}, v_{i+1}\right\} \in E_{1}$ is called a forward edge of P if $\left(v_{i}, v_{i+1}\right) \in A$, and is called a backward edge of P otherwise. A connected component in the graph $\left(V, E_{0}\right)$ with only zero-edges is called a zero-component of G if it contains at least one zero-edge. Let \mathcal{Z} denote the set of all zerocomponents of G.
Lemma 3. Let $P=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ be a pure path in which there is no backward edge. Then P is a shortest $u_{1} u_{k}$-path in G. In particular, if P contains a positive edge, then u_{1} and u_{k} do not belong to the same zero-component Z.

Proof. The second statement follows from the first one, since Z contains a $u_{1} u_{k^{-}}$ path Q with $w(Q)=0$, implying that a $u_{1} u_{k}$-path P with $w(P)>0$ cannot be a shortest one.
To show the first statement, we can assume that G has no zero-edges, since the distance of two vertices remains unchanged after contracting each zerocomponent into a single vertex and any path in the resulting graph corresponds a path with the same length in G.
We first observe that, for a shortest st-path $P^{*}=\left(v_{1}, v_{2}, \ldots, v_{p}\right)$, any subpath from v_{i} to v_{j} is a shortest $v_{i} v_{j}$-path in G, because if G has a shorter $v_{i} v_{j}$-path Q then we see that the union of Q and P^{*} contains an $s t$-path with length shorter than P^{*} due to nonnegativeness of edge weights.

Hence, it suffices to prove by induction that, for each $u_{i}, i=2, \ldots, k$ in the path P, some shortest $s u_{i}$-path P_{i} contains $\left(u_{1}, u_{2}, \ldots, u_{i}\right)$ as its subpath (for $i=k, P$ is a subpath of P_{k}, which will be shown to be shortest). For $i=2$, there exists such a shortest $s u_{2}$-path P_{2} since $\left(u_{1}, u_{2}\right)$ is a forward edge in P. For $i=j(2 \leq j<k)$, assume that there is a shortest $s u_{j}$-path P_{j} which contains $\left(u_{1}, u_{2}, \ldots, u_{j}\right)$ as its subpath. Let $P_{j+1}^{\prime}=\left[P_{j},\left(u_{j}, u_{j+1}\right)\right]$ be the walk from s to u_{j+1} obtained from P_{j} by adding edge $\left\{u_{j}, u_{j+1}\right\}$. There is a shortest st-path Q containing the edge $\left\{u_{j}, u_{j+1}\right\}$, and let Q_{j} (resp., Q_{j+1}) denote its subpath from
s to u_{j} (resp., u_{j+1}). Since P_{j} is a shortest $s u_{j}$-path by the induction hypothesis and it holds $w\left(P_{j}\right) \leq w\left(Q_{j}\right)$, we have $w\left(P_{j+1}^{\prime}\right)=w\left(P_{j}\right)+w\left(\left\{u_{j}, u_{j+1}\right\}\right) \leq$ $w\left(Q_{j}\right)+w\left(\left\{u_{j}, u_{j+1}\right\}\right)=w\left(Q_{j+1}\right)$. Since there is no $s u_{j+1}$-path shorter than Q_{j+1}, u_{j+1} cannot be a repeated vertex in P_{j+1}^{\prime} (otherwise P_{j+1}^{\prime} would contain such a shorter path). Hence P_{j+1}^{\prime} is a desired shortest $s u_{j+1}$-path. This completes the induction. 【

By the lemma, a pure st-path is not a shortest st-path if and only if it has a backward edge. Hence we only need to investigate pure st-paths containing at least one backward edge.
Let $P=\left(v_{1}, \ldots, v_{k}\right)$ be a pure st-path in G. A vertex v_{i} with $2 \leq i \leq k-1$ is called a reversing vertex of P if $\left(v_{i-1}, v_{i}\right),\left(v_{i+1}, v_{i}\right) \in A$ or $\left(v_{i}, v_{i-1}\right),\left(v_{i}, v_{i+1}\right) \in$ A (i.e., $\left(v_{i-1}, v_{i}\right)$ and $\left(v_{i}, v_{i+1}\right)$ have different directions in the sense of forward/backward edges).
Krasikov and Noble also showed how to find a shortest pure st-path which contains a reversing vertex by using Lemma 2. We choose a pair of forward edges (u, a) and (v, a) for a vertex a, and then remove all other edges incident to a except for (u, a) and (v, a) to obtain a new graph in which vertex a has only two edges. By Lemma 2, we can find a shortest $s t$-path P passing through a in which exactly of (u, a) and (v, a) appears as a backward edge, and vertex a is a reversing vertex. Similarly for a pair of forward edges (a, u) and (a, v), we can find a shortest st-path P passing through exactly of (a, u) and (a, v) as a backward edge. By applying the procedure for all the above pairs of forward edges, we can find a shortest pure st-path which contains a reversing vertex (if any). In fact, if a given graph G has no zero-edge, then no other case happens and this completes a proof for the fact that the next-to-shortest path problem in undirected graphs with only positive edge weights is polynomially solvable. On the other hand, if G has zero-edges, then the above method may find only a shortest st-path, since a zero-edge $\{u, a\}$ may appear as (u, a) and (a, u) in two shortest st-paths in G, respectively.
Let $P=\left(v_{1}, \ldots, v_{k}\right)$ be a pure st-path. A subpath Q of P is called a zerosubpath if Q consists of vertices and zero-edges in a zero-component Z and is maximal subject to this property (Q may contain only one vertex in Z). For
each $Z \in \mathcal{Z}$, let $\rho(Z)$ denote the number of zero-subpaths Q of P such that Q is contained in Z. A zero-component Z with $\rho(Z)=1$ is called reversing if its zero-subpath $Q=\left(v_{i}, v_{i+1}, \ldots, v_{j-1}, v_{j}\right)$ satisfies $\left(v_{i-1}, v_{i}\right),\left(v_{j+1}, v_{j}\right) \in A$ or $\left(v_{i}, v_{i-1}\right),\left(v_{j}, v_{j+1}\right) \in A$, and is called trivial otherwise. The zero-subpath of a trivial zero-component is also called trivial.
Finding a shortest pure st-path P which has a reversing zero-component $Z \in \mathcal{Z}$ can be computed in a similar manner with the case of reversing vertices after we contract Z into a single vertex a, which can be treated as a reversing vertex.
By definiton so far, we can classify non-shortest $s t$-paths as follows.
Lemma 4. Any st-path P which is not a shortest st-path in G satisfies one of the following conditions (i)-(iv).
(i) $\quad P$ is an impure path;
(ii) P is a pure path in which there is a reversing vertex;
(iii) P is a pure path in which there is a reversing zero-component; and
(iv) P is a pure path in which there is a backward edge, but no reversing vertex/zero-component.
Therefore, the remaining task is to find an st-path with minimum length which satisfies condition (iv) in the lemma. We call such a path which satisfies condition (iv) folding. In the next subsection, we only consider folding st-paths.

3.3 Finding Shortest Folding st-Paths

In this subsection, we first examine structure of folding st-paths before we finally design an algorithm for computing a shortest folding st-path.

By definition, any folding st-path P has a zero-component Z with $\rho(Z) \geq$ 2, which is called arching. We denote the zero-subpaths of an arching zerocomponent Z by $Q^{1}(Z), Q^{2}(Z), \ldots, Q^{r}(Z), r=\rho(Z)$ in the order from s to t along P. We say that an arching zero-component Z surrounds a subpath P^{\prime} of P if $Q^{i}(Z) P^{\prime} Q^{i+1}(Z)$ is a subpath of P (where P^{\prime} may contain a zero-edge which belongs to another zero-component Z^{\prime}).
Lemma 5. Let P be a folding st-path that has the minimum length among all folding st-paths, and Z be an arching zero-component Z for P. Denote P by an alternating sequence of subpaths, $P=\left[P_{1} Q_{1} P_{2} \ldots Q_{r} P_{r+1}\right]$, where $Q_{i}=Q^{i}(Z)$,
$i=1,2, \ldots, r=\rho(Z)$ (each P_{j} may contain a zero-edge in another zerocomponent Z^{\prime}). See Fig.1. Then
(i) If Z contains a path Q connecting two zero-subpaths Q_{a} and $Q_{b}(1 \leq a<$ $b \leq r)$ such that Q is vertex-disjoint with any Q_{i} with $i<a$ or $b<i$, then all the backward edges of P appear between Q_{a} and Q_{b} along P.
(ii) $\rho(Z)=2$.

Fig. 1 Illustration of a zero-component Z for a pure st-path $P=\left[P_{1} Q_{1} P_{2} \cdots Q_{r} P_{r+1}\right]$, where each Q_{i} is a zero-subpath of Z.

Proof. (i) By short-cutting with Q, we can obtain another folding st-path P^{\prime}. Note that $w\left(P^{\prime}\right)<w(P)$ since the short-cutting skips at least one positive-edge in the subpath between Q_{a} and Q_{b}. Therefore, if P has a backward edge which does not appear between Q_{a} and Q_{b}, then P^{\prime} still contains a backward edge, and hence it is a folding st-path which has shorter length than P, a contradiction. Therefore all the backward edges of P must appear between Q_{a} and Q_{b} along P.
(ii) To derive a contradiction, assume that $r \geq 3$. By applying (i) with $a=1$ and $b=r$, we see that there is a subpath P_{j} with $2 \leq j \leq r$ which contains a backward edge. Assume without loss of generality that $j \leq r-1$ (the case of $j \geq 3$ can be treated symmetrically). To see that Q_{r-1} remains connected to some Q_{h} within $Z-V\left(Q_{r}\right)$, we consider the graph Z^{\prime} obtained from Z by removing the vertices in zero-subpaths Q_{i} with $1 \leq i \leq r-2$, i.e., $Z^{\prime}=Z-\cup_{1 \leq i \leq r-2} V\left(Q_{i}\right)$. In Z^{\prime}, let $C_{i}, i=r-1, r$ be the component containing Q_{i} (see Fig.1). Note that $C_{r-1} \neq C_{r}$ since otherwise applying (i) to $a=r-1$ and $b=r$ would not allow P_{j} to contain a backward edge.
Now the graph $Z-V\left(C_{r}\right)$ contains a path Q^{\prime} connecting Q_{r-1} and Q_{h} for some $h=1,2, \ldots, r-2$. Hence by applying (i) with $a=h$ and $b=r-1$, we see that P_{r} contains no backward edge. Since P_{r} contain only forward edges or
zero-edges and connects two vertices in Z, this contradicts Lemma 3. Therefore $r=2$ holds.

For an st-path P, we say that two arching zero-components $Z_{1}, Z_{2} \in \mathcal{Z}$ with $\rho\left(Z_{1}\right)=\rho\left(Z_{2}\right)=2$ cross each other if for each $i=1,2$, the subpath between $Q^{1}\left(Z_{i}\right)$ and $Q^{2}\left(Z_{i}\right)$ contains a zero-subpath of $Z_{j}, j \in\{1,2\}-\{i\}$ (see Fig.2(a)).

(a)

(b)

Fig. 2 Illustration of two zero-components Z_{1} and Z_{2} : (a) crossing Z_{1} and Z_{2}; (b) noncrossing Z_{1} and Z_{2}

Lemma 6. Let P be a folding st-path that has the shortest length among all folding st-paths. Then
(i) If P has an arching zero-component, then it has another arching zerocomponent, and they cross each other.
(ii) Assume that P has $q \geq 3$ arching zero-components, then they can be indexed as $Z_{i}, i=1,2, \ldots, q$ so that their zero-subpaths appear in the order $Q^{1}\left(Z_{1}\right)$, $Q^{1}\left(Z_{3}\right), Q^{1}\left(Z_{4}\right), \ldots, Q^{1}\left(Z_{q}\right), Q^{1}\left(Z_{2}\right), Q^{2}\left(Z_{1}\right), Q^{2}\left(Z_{3}\right), Q^{2}\left(Z_{4}\right), \ldots, Q^{2}\left(Z_{q}\right)$, $Q^{2}\left(Z_{2}\right)$ along P (see Fig.3(a)).

Proof. (i) Let Z be an arching zero-component, which has exactly two zerosubpaths by Lemma 5 (ii). If the path P^{\prime} surrounded by Z has no zero-subpath of another arching zero-component, then all the positive-edges in P^{\prime} are backward edges, and P^{\prime} connects two vertices in the same zero-component, contradicting Lemma 3. Hence P has another arching zero-component.
Next assume that there are two arching zero-components which do not cross each other. Hence P is denoted by $P=\left[P_{1} Q_{1} P_{2} Q_{2} P_{3} Q_{3} P_{4} Q_{4} P_{5}\right]$ such that Q_{1} and Q_{4} are the zero-subpaths of an arching zero-component Z_{1} and Q_{2} and Q_{3} are those of another Z_{2} (see Fig.2(b)). By Lemma 5 applied to Z_{2}, there is no backward edge in the subpaths P_{2} and P_{4} along P from s to t. Hence the subgraph consisting of P_{2}, Z_{2} and P_{4} contains a pure path P^{\prime} from the last vertex in Q_{1} to the first vertex of Q_{4} such that no backward edge appears along P^{\prime}. Since P^{\prime} connects two vertices in the same zero-component Z_{1}, this contradicts Lemma 3. Therefore any two arching zero-components cross each other.
(ii) By definition, a folding st-path P is given as an alternating sequence $P_{1} Q_{1} \cdots Q_{2 q} P_{2 q+1}$ of subpaths P_{i} and nontrivial zero-subpaths Q_{i} such that all positive edges in each P_{i} have the same direction, either forward or backward (P_{i} may contain trivial zero-subpaths). By definition there is at least one subpath P_{j} which consists of only backward edges and trivial zero-subpaths. Assume that P has three arching zero-components. Then zero-subpaths Q_{j-1} and Q_{j} must be contained in distinct arching zero-components, say Z_{1} and Z_{2}, since otherwise the one containing both zero-subpaths cannot cross any other one, contradicting (i). Again by (i), Z_{1} and Z_{2} cross each other. The third zerocomponent Z_{3} needs to surround P_{j} and cross both Z_{1} and Z_{2} by (i) of this lemma and Lemma 2 (i). For simplicity, we here consider the case of $r=3$ first. Hence the zero-subpaths of Z_{1}, Z_{2} and Z_{3} must appear in the order of $Q^{1}\left(Z_{1}\right), Q^{1}\left(Z_{3}\right), Q^{1}\left(Z_{2}\right), Q^{2}\left(Z_{1}\right), Q^{2}\left(Z_{3}\right), Q^{2}\left(Z_{2}\right)$ along P, as shown in Fig.3(b). For other zero-components, we can assume without loss of generality that their first zero-subpaths appear in the order of $Q^{1}\left(Z_{3}\right), Q^{1}\left(Z_{4}\right), \ldots, Q^{1}\left(Z_{q}\right)$ along P. Since each Z_{i} crosses all $Z_{1}, Z_{2}, \ldots, Z_{j-1}$, we see that all the zero-subpaths of arching zero-components satisfy the ordering in (i).

Let us call the zero-components Z_{1} and Z_{2} in the lemma the source and sink
and $s_{2} s_{3}$-path $P_{s_{2} s_{3}}$;
(ii) In the subgraph G_{t} of $\left(V, E_{0} \cup E_{1}\right)$ induced by the vertices v with $d\left(s, t_{1} ; G\right) \leq d(s, v ; G)$, there are two vertex-disjoint paths, $t_{1} t_{2}$-path $P_{t_{1} t_{2}}$ and $t_{3} t$-path $P_{t_{3}}$; and
(iii) In the subgraph G^{\prime} of $\left(V, E_{0} \cup E_{1}\right)$ induced by the vertex set $\left\{s_{1}, s_{2}, s_{3}\right\} \cup$ $\left\{v \in V \mid d\left(s, s_{1} ; G\right)<d(s, v ; G)<d\left(s, t_{1} ; G\right)\right\} \cup\left\{t_{1}, t_{2}, t_{3}\right\}$, there are three vertex-disjoint paths, $s_{i} t_{i}$-paths $P_{s_{i} t_{i}}, i=1,2,3$
(we treat G_{s}, G_{t} and G^{\prime} as mixed graphs by regarding each positive edge $\{u, v\}$ with $d(s, u ; G)<d(s, v ; G)$ as an $\operatorname{arc}(u, v))$. Note that the three graphs G_{s}, G_{t} and G^{\prime} are vertex-disjoint except for the six vertices. We call any set of six vertices $s_{1}, s_{2}, s_{3} \in V(Z)$ (possibly $s_{2}=s_{3}$) and $t_{1}, t_{2}, t_{3} \in V\left(Z^{\prime}\right)$ (possibly $t_{1}=t_{3}$) satisfying the above conditions (i)-(iii) feasible to (Z, Z^{\prime}).
Lemma 7. There is a folding st-path with source and sink components $Z, Z^{\prime} \in \mathcal{Z}$ if and only if there is a feasible set of vertices $s_{1}, s_{2}, s_{3} \in V(Z)$ and $t_{1}, t_{2}, t_{3} \in$ $V\left(Z^{\prime}\right)$.

Proof. We have observed the "only if" part. We show the "if" part. Given a feasible set of six vertices and disjoint paths in (i)-(iii), a folding st-path P can be obtained as the concatenation

$$
P_{s s_{1}} P_{s_{1} t_{1}} P_{t_{1} t_{2}} \overline{P_{s_{2} t_{2}}} P_{s_{2} s_{3}} P_{s_{3} t_{3}} P_{t_{3} t},
$$

where $\overline{P_{s_{2} t_{2}}}$ denotes the $t_{2} s_{2}$-path obtained from $P_{s_{2} t_{2}}$ by reversing the direction. Note that the length of P (if any) is always given by $w(P)=d(s, t ; G)+$ $2 d\left(s, t_{1} ; G\right)-2 d\left(s, s_{1} ; G\right)$, indicating that P is a shortest one with the specified source and sink components Z and Z^{\prime}. The resulting path P may pass though arching zero-components in a different way from the configuration in Lemma 5(ii) (for example, an arching zero-component may have one of its zero-subpaths in $P_{s_{2} t_{2}}$). However, it is always a folding st-path with the source and sink components Z and Z^{\prime}.

For each choice of such six vertices, we can determine whether such disjoint paths in (i)-(iii) exist or not in polynomial time by using Theorem 1 with $k \leq 3$. Since the total number of all possible choices of source and sink components and
six vertices in them is $O\left(n^{6}\right)$, we can find a shortest folding st-path (if any) in polynomial time. The algorithm based on the proof of Lemma 7 is described as follows.

Algorithm Shortest-Folding-Paths

Input: The graph $\left(V, E_{0} \cup E_{1}\right)$ for an undirected graph $G=(V, E)$ with a nonnegative edge weight w, and two vertices $s, t \in V$.
Output: A shortest folding st-path in G (if exists).
for each ordered pair of zero-components $Z, Z^{\prime} \in \mathcal{Z}$ do
if there is a feasible set of six vertices $s_{1}, s_{2}, s_{3} \in V(Z)$ and $t_{1}, t_{2}, t_{3} \in V\left(Z^{\prime}\right)$ then

$$
\mu\left(Z, Z^{\prime}\right):=d(s, t ; G)+2 d\left(s, t_{1} ; G\right)-2 d\left(s, s_{1} ; G\right) ;
$$

Let $P_{s s_{1}}$ and $P_{s_{2} s_{3}}$ be vertex-disjoint $s s_{1}$-path and $s_{2} s_{3}$-path in G_{s} in (i);
Let $P_{t_{1} t_{2}}$ and $P_{t_{3} t}$ be vertex-disjoint $t_{1} t_{2}$-path and $t_{3} t$-path in G_{t} in (ii);
Let $P_{s_{i} t_{i}}, i=1,2,3$ be vertex-disjoint $s_{i} t_{i}$-paths in G^{\prime} in (iii);
Let $P_{\left(Z, Z^{\prime}\right)}:=\left[P_{s s_{1}} P_{s_{1} t_{1}} P_{t_{1} t_{2}} \overline{P_{s_{2} t_{2}}} P_{s_{2} s_{3}} P_{s_{3} t_{3}} P_{t_{3} t}\right]$;
else
$\mu\left(Z, Z^{\prime}\right):=\infty$
endif
endfor;
$\left(Z^{*}, Z^{* *}\right):=\operatorname{argmin}\left\{\mu\left(Z, Z^{\prime}\right) \mid Z, Z^{\prime} \in \mathcal{Z}\right\} ;$
Output $P_{\left(Z^{*}, Z^{* *}\right)}$ if $\mu\left(Z^{*}, Z^{* *}\right)<\infty$, or report that G has no folding st-path otherwise.

From the arguments in this and previous subsections, we finally obtain the next result.

Theorem 8. The next-to-shortest path problem in undirected graphs with nonnegative edge weights can be solved in polynomial time.

4. Concluding Remarks

In this paper, we showed that the next-to-shortest path problem in undirected graphs with nonnegative edge weights can be solved by reducing the problem to the k vertex-disjoint paths problem in acyclic mixed graphs with a fixed $k \leq 3$.

A natural question in this line would be whether finding an st-path with the strictly third shortest length can be again reduced to the k vertex-disjoint paths problem with a fixed k.

References

1) Barman, S.C., Mondal, S., and Pal, M.: An efficient algorithm to find next-to-shortest path on trapezoid graphs, Adv. Appl. Math. Anal. 2, 97-107 (2007).
2) Eppstein, D.: Finding the k shortest paths, SIAM J. Comput. 28, 652-673 (1998).
3) Fortune, S., Hopcroft J. E., and Wyllie, J.: The directed subgraph homeomorphism problem, Theoret. Comput. Sci. 10, 111-121 (1980).
4) Katoh, N., Ibaraki, T., and Mine, H.: An efficient algorithm for K shortest simple paths, Vol. 10, No. 2, pp. 287-302 (1982).
5) Kao, K.-H., Chang, J.-M., Wang, Y.-L., and Juan, J. S.-T.: A quadratic algorithm for finding next-to-shortest paths in graphs, Algorithmica 61, 402418 (2010).
6) Krasikov, I., and Noble, S. D.: Finding next-to-shortest paths in a graph, Inf. Process. Lett. 92, 117-119 (2004).
7) Lalgudi, K. N., and Papaefthymiou, M. C.: Computing strictly-second shortest paths, Inf. Process. Lett. 63, 177-181 (1997).
8) Lalgudi, K. N., Papaefthymiou, M. C., and Potkonjak, M.: Optimizing systems for effective block-processing, ACM Trans. on Design Automation of Electronic Systems 5, 604-630 (2000).
9) Li, S., Sun, G., and Chen, G.: Improved algorithm for finding next-toshortest paths, Inf. Process. Lett. 99, 192-194 (2006).
10) Mondal, S., and Pal, M.: A sequential algorithm to solve next-to-shortest path problem on circular-arc graphs, J. Phys. Sci. 10, 201-217 (2006).
11) Robertson, N., and Seymour, P. D.: Graph minors. XIII. the disjoint paths problem, J. Combinatorial Theory, Series B 63, 65-110 (1995).
12) Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency, Springer-Verlag, Berlin (2003).
13) Wu, B.-Y.: A simpler and more efficient algorithm for the next-to-shortest
path problem, W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, 219-227 (2010).
14) Yen, J.-Y.: Finding the K shortest loopless paths in a network, Manag. Sci. 17, 712-716 (1971).
15) Zhang, C., Nagamochi. H.: A polynomial-time algorithm for the next-toshortest path in undirected graphs with nonnegative weights, Technical report 2011-12, Graduate School of Informatics, Kyoto-university (2011).

[^0]: $\dagger 1$ Graduate School of Informatics, Kyoto University

