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We give the first weakly polynomial time algorithm for computing an ϵ-
approximate equilibrium for a simple case of piecewise-linear utilities case of
Fisher’s market model. Assume that set B of buyers and a set G of goods are
given. Each buyer has an initial integral ei of money. The integral utility and
budget for buyer i of good j are Uij and tij , respectively. Each buyer i is not
allowed to spend more than budget tij for good j. For finding ϵ-approximate
equilibrium, the algorithm runs in O(((m + n) logn/ϵ)(m + n logn)), where
n = |B|+ |G| and m is the number of pairs (i, j) for which Uij > 0. The algo-
rithm is based on the previous best running time of O((n logn/ϵ)(m+n logn))
for linear utilities case without constraining condition for budgets, due to Or-
lin5).

1. Introduction

Fisher’s market model (see1)), one of major market models, has been studied for

over a century. It is a simple model of an economic market in which buyers with

specific amount of money want to buy their favourite goods among a collection

of diverse goods. Each buyer has different utility for each good. In general case,

utility of each buyer for each good is described by a concave function. For given

prices, each buyer finds an optimal bundle of goods to maximize her utility. The

problem is to find equilibrium prices so that the market clears, that is after each

buyer is assigned her optimal bundle, there is no surplus or deficiency of the

goods.

Last century, there were a few isolated results and some of them were excel-

lent, e.g. Eisenberg and Gale2), Scarf3). The first polynomial time algorithm

for the model was developed by Devanur, Papadimitriou, Saberi and Vazirani4).

†1 Department of Computer Science, The University of Tokyo

For a problem with a total of n buyers and goods, their algorithm runs in

O(n8 logUmax + n7 log emax) time, where Umax is the largest utility and emax

is the largest initial amount of money of a buyer, and where all data are assumed

to be integral. After that, Orlin5) provided a weakly polynomial time algorithm

and the first strongly polynomial time algorithm which improved upon the De-

vanur’s one. The weakly polynomial time algorithm and the strongly polinomial

time algorithm run in O(n4 logUmax + n3 log emax) time and O(n4 log n) time,

respectively. Moreover, the algorithm can be used to provide and ϵ-approximate

solution in O((n log n/ϵ)(m + n log n)), where ϵ is a positive number close to 0,

n = |B|+ |G| and m is the number of pairs (i, j) for which Uij > 0.

Although those algorithms are good, they only solved the simplest case of

Fisher’s market model, that is utility of each buyer for each good is described by

a linear function. Since the simple case is very far apart from the real market, the

algorithms can hardly be applied to find equilibrium prices in the real market. To

get closer to the real market, researchers are challenging with more complicated

case of Fisher’s market model, e.g. utility of each buyer for each good is described

by a piecewise-linear, concave function. However, although the problem has been

researched for many years and some good results were obtained, e.g. Vazirani

and Yannakakis6), there is still no algorithm for this open problem.

Here we provide a weakly polynomial time for computing Fisher’s market equi-

librium under a simple case of piecewise-linear, concave utilities. That is, for each

good a buyer is given a budget. If the buyer spends less than or equal to given

budget for one good, her utility is described by a linear function. Otherwise, she

cannot increase her utility. The algorithm provides an ϵ-approximate solution in

O(((m+ n) log n/ϵ)(m+ n logn)) time.

This is the first algorithm for computing an equilibrium for the non-linear

utilities case of Fisher’s market model. Moreover, it allows us to get closer to

solving the general piecewise-linear, concave utilities case.

1.1 Description of the model under linear utilities

Before describing our model, we first recall the description of the model under

linear utilities, which is the most simple case of Fisher’s market model. This

model has been well-studied, and the best algorithm for computing its equilibrium

prices was proposed by Orlin5).
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The market consists of a set B of buyers and a set G of divisible goods. For

each buyer i, the integral amount ei of money and for each good j the amount

of this good are given. Since every good is divisible, for each good j, its amount

can be assumed w.l.o.g. as unit. Moreover, the utility functions of the buyers are

given. In the linear Fisher’s market model, these functions are linear. Let Uij

where Uij is integral, denote the utility derived by buyer i on obtaining a unit

amount of good j. Therefore if the buyer i spends xij amount of money on good

j whose price is pj , then the utility she derives on good j is

uij =
Uijxij

pj
.

The total utility she derives is ∑
j∈G

uij .

p = (p1, p2, ...) are said to be equilibrium prices if, after each buyer is assigned

an optimal bundle of goods, i.e. bundle that maximize her utility, there is no

surplus or deficiency of any good.

1.2 Description of the model under a simple piecewise-linear, con-

cave utilities

In this paper, we propose an approximate algorithm for the following Fisher’s

market model with budgets. Similar to the model under linear utilities, we are

given a set B of buyers, a set G of goods, the initial integral amount ei of money,

utility coefficient Uij . Moreover, in this model, we are given integral budget

amount tij of buyer i on good j. Let x is an allocation of money to goods, where

xij is the amount of money that buyer i uses to buy good j. Our assumption is

that, a buyer i cannot increase her utility by spending more than given budget

tij on good j. In other words, if xij ≥ tij , the utility she derives is exactly the

same as the utility when she spends tij for good j. Let p is a vector of prices, in

which pj is the price of good j. Thus the utility buyer i derives is on good j is

uij =

{
Uijxij

pj
if xij < tij

Uijtij
pj

if xij ≥ tij .
The total utility she derives is ∑

j∈G

uij .

We now define some technical terms:

• The surplus cash of buyer i is ci(x) = ei −
∑

j∈G xij

• The backorder amount of good j is bj(p, x) = −pj +
∑

i∈B xij

• The bang-per-buck of (i, j) is the ratio Uij/pj
We suppose that for each buyer i, there is a good j such that Uij > 0, otherwise,

we eliminate the buyer from the problem. Similarly, we suppose that for each

good j there is a buyer i such that Uij > 0. In addition, for each buyer i, we

assume that
∑

j∈G,Uij>0 tij ≥ ei, otherwise buyer i will not spend all her money.

For buyer i, we sort all goods by decreasing bang-per-buck, and partition by

equality into classes: Q1, Q2, .... At prices p, goods in Ql make i equally happy,

and those in Ql make i strictly happier than those in Ql+1. Therefore, buyer i

first buys goods in class Q1. If she still has some money left after the amount of

money spending for those goods reach her budgets, she buys goods in class Q2,

and so on.

Let l be the minimum value such that ∀j ∈ Ql+1∪Ql+2∪ ..., j is i’s undesirable

good. A pair (i, j) is called flexible edge if j belong to class Ql.

A pair (i, j) is called forced edge if good j belongs to one class in Q1, ..., Ql−1.

Let D(p) and F (p) denote the set of forced edges and the set of flexible edges

with respect to p, respectively.

A pair (p, x) is an optimal solution if the following constraints are all satisfied:

( 1 ) Cash constraints: For each i ∈ B, ci(x) = 0.

( 2 ) Allocation of goods constraints: For each j ∈ G, bj(p, x) = 0.

( 3 ) Bang-per-buck constraints: For each i ∈ B and j ∈ G, if xij > 0, then

(i, j) ∈ D(p) or (i, j) ∈ F (p).

( 4 ) Budget constraints: For each i ∈ B and j ∈ G, if (i, j) ∈ D(p), then

xij = tij . And xij ≤ tij for all i ∈ B and j ∈ G.

( 5 ) Non-negativity constraints: xij ≥ 0, pj ≥ 0 for all i ∈ B and j ∈ G.

2. The algorithm

2.1 Overview of the algorithm

The algorithm is based on the ∆-scaling algorithm proposed by Orlin5) for

computing equilibrium prices of Fisher’s market model under linear utilities.

Similar to Orlin’s algorithm, our algorithm first decides an initial vector p0 of
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prices. Then the algorithm modifies prices of goods and their allocation until

an approximation solution is found. Different to Orlin’s algorithm which only

increases the prices of goods, our algorithm sometimes decreases those prices.

Our algorithm also uses ∆ as the scaling parameter. Here we modify the definition

of ∆-feasible and ∆-optimal which were proposed by Orlin, as follows:

A solution (p, x) is said to be ∆-feasible if it satisfies the following conditions:

( 1 ) ∀j ∈ G, 0 ≤ bj(p, x) ≤ ∆;

( 2 ) ∀i ∈ B and ∀j ∈ G, if xij > 0, then (i, j) ∈ D(p) or (i, j) ∈ F (p), and xij

is a multiple of ∆;

( 3 ) ∀i ∈ B and ∀j ∈ G, if (i, j) ∈ D, then xij ≥ tij ;

( 4 ) ∀i ∈ B and ∀j ∈ G, 0 ≤ xij ≤ tij +∆ and pj ≥ 0.

A solution (p, x) is said to be ∆-optimal if it is ∆-feasible and satisfies the

following condition:

( 5 ) ∀i ∈ B, 0 ≤ ci(x) < ∆.

During the algorithm, the ∆-feasibility conditions are preserved. Thus the

following conditions are preserved. Buyers may spend more or less than their

initial money. At any time, more than 100% of a good may be sold. Allocations

are required to be multiples of ∆.

The algorithm starts with ∆ = emax and then runs a sequence of scaling

phases. It changes prices and allocation so that a ∆-feasible solution changes to

a ∆-optimal solution. Next, it transforms the ∆-optimal solution into a ∆/2-

feasible solution. Then ∆ is replaced by ∆/2, and the algorithm goes to the next

scaling phases.

2.2 The initial solution

We set the initial solution as follows. Let ∆0 = emax; ∀i ∈ B, let UiG =∑
j∈G Uij ; ∀i ∈ B and ∀j ∈ G, let ρij =

Uijei
nUiG

; ∀j ∈ G, let p0j = max{ρij :

i ∈ B}; ∀i ∈ B and ∀j ∈ G. Let F (p0) be a set consists of edges (i, j) s.t.
Uij

p0
j

= max{Uij

p0
j

: j ∈ G}.
Clearly, by setting these initial prices, every good has potential buyer(s). For

each good j, we choose a buyer i such that (i, j) ∈ F (p0) and set x0
ij = ∆, and we

change the type of arc (i, j) into backward arc or double directed arc acoordingly.

∀k ∈ B, k ̸= i let x0
kj = 0.

We note that the initial solution (p0, x0) is ∆-feasible.

2.3 The residual network

Assume that (p, x) is a ∆-feasible solution. We define the residual network

N(p, x) as follows: the node set is B ∪G. We define four types of arcs as follows:

• Forward arc (i, j) satisfies xij = 0 and (i, j) ∈ F (p).

• Backward arc (i, j) satisfies xij ≥ tij and (i, j) ∈ F (p).

• Double directed arc (i, j) satisfies 0 < xij < tij and (i, j) ∈ F (p).

• Dash arc (i, j) satisfies xij ≥ tij and (i, j) ∈ D(p).

During the ∆-scaling phase, prices and allocation change, so the type of arcs

might also be changed. A dash arc is not considered as a forward arc nor backward

arc. A double directed arc is considered as both forward arc or backward arc.

2.4 Modify a ∆-feasible solution to ∆-optimal solution

We next describe how the algorithm transforms a ∆-feasible solution (p, x) into

a ∆-optimal solution. First, we will show how to modify the prices. Then, we will

demonstrate method to change allocation. Finally, we will describe algorithm of

procedure PriceAndAugment whose input and output are a ∆-feasible solution

and a ∆-optimal solution, respectively.

2.4.1 Price changes

Similar to Orlin’s algorithm, our algorithm modifies the prices proportionally.

However, here we consider two cases: the first is there exist node r ∈ B with

cr(x) ≥ ∆, the second is there exist node r ∈ B with cr(x) < 0.

In the first case, let ForwardActiveSet(p, x, r) be the set of nodes k ∈ B ∪ G

such that there is a directed path in N(p, x) from r to k. k is said to be forward

active with respect to p, x, r if k ∈ ForwardActiveSet(p, x, r).

In the second case, let BackwardActiveSet (p, x, r) be the set of nodes k ∈ B∪G
such that there is a directed path in N(p, x) from k to r. k is said to be backward

active with respect to p, x, r if k ∈ BackwardActiveSet(p, x, r).

The algorithm replaces the price pj of each forward active good j by q× pj for

some q > 1. Let f(q) = PriceIncrease(p, x, r, q), where:

fj(q) =

{
qpj if j ∈ ForwardActiveSet (p, x, r)

pj otherwise.
It replaces the price pj of each backward active good j by q × pj for some q
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(0 < q < 1). Let f(q) = PriceDown(p, x, r, q), where:

fj(q) =

{
qpj if j ∈BackwardActiveSet(p, x, r)

pj otherwise.

To update new prices, we also consider two cases: cr(x) ≥ ∆ and cr(x) <

0. ForwardUpdatePrice(p, x, r) is the vector p′ of prices obtained by setting

p′ = Price(p, x, r, q′), where q′ is the maximum value of q such that (p′, x) is

∆-feasible. At least one of three following conditions will be satisfied by p′:
( 1 ) There is an edge (i, j) ∈ F (p′) \ F (p), at which point node j becomes

forward active.

( 2 ) There is a dash arc (i, j) becomes a backward arc.

( 3 ) There is a forward active node j with bj(p′, x) ≤ 0.

In the first two cases, PriceAndAugment will continue to update the prices.

In the last case, it will carry out an augmentation from node r to node j.

BackwardUpdatePrice(p, x, r) is the vector p′ of prices obtained by setting

p′ = Price(p, x, r, q′), where q′ is the minimum positive value of q such that (p′, x)
is ∆-feasible. At least one of three following conditions will be satisfied by p′:
( 1 ) There is an edge (i, j) ∈ F (p′) \ F (p), at which point node j becomes

forward active.

( 2 ) There is a dash arc (i, j) becomes a backward arc.

( 3 ) There is a forward active node j with bj(p′, x) ≥ ∆.

In the first two cases, PriceAndAugment will continue to update the prices.

In the last case, it will carry out an augmentation from node j to node r.

Lemma 1. If (p, x) is ∆-feasible and p′ is the vector of prices obtained by

ForwardUpdatePrice(p, x, r) or BackwardUpdatePrice(p, x, r), then (p′, x) is ∆-

feasible.

2.4.2 Augmenting paths and changes of allocation

Suppose that (p, x) is a ∆-feasible solution. Any path P ⊆ N(p, x) from a node

in B to a node in G or from a node G to a node in B is called a augmenting

path. Similar to Orlin’s algorithm, a ∆-augmentation along the path P consists

of replacing x by a vector x′, where:

x′ij =


xij +∆ if (i, j) ∈ P is a forward arc of N(p, x)

xij −∆ if (i, j) ∈ P is a backward arc of N(p, x)

xij otherwise.
Two following lemmas are easy to verify:

Lemma 2. Suppose that (p, x) is a ∆-feasible, cr ≥ ∆ and that P is an aug-

menting path from node r to a node k ∈ G for which bj(p, x) ≤ 0. If x′ is

obtained by a ∆-augmentation along path P, then (p, x′) is ∆-feasible. In addi-

tion, cr(x′) = cr −∆, and ci(x′) = ci(x) for i ̸= r.

Lemma 3. Suppose that (p, x) is a ∆-feasible, cr < 0 and that P is an aug-

menting path from a node k ∈ G where bj(p, x) ≥ ∆, to node r. If x′ is ob-

tained by a ∆-augmentation along path P, then (p, x′) is ∆-feasible. In addition,

cr(x′) = cr +∆, and ci(x′) = ci(x) for i ̸= r.

2.4.3 Algorithm1. Procedure PriceAndAugment

Input: A ∆-feasible solution (p, x).

Output: A ∆-optimal solution (p, x).

for all r such that cr(x) ≥ ∆ do

if there is no forward arc or double directed arc incident to r then

find all goods k ∈ G and (r, k) ̸∈ D(p) ∪ F (p) such that Urk/pk =

max{Urj : j ∈ G and (r, j) ̸∈ D(p) ∪ F (p)}. Let (r, k) be in F (p) and

change all backward arcs incident to r into dash arcs.

end if

compute ForwardActiveSet(p, x, r);

repeat

replace p by ForwardUpdatePrice;

recompute N(p, x), and ForwardActiveSet(p, x, r) ;

until there is an active node j with bj(p, x) ≤ 0

let P be a path in N(p, x) from r to j ;

replace x by carrying out a ∆-augmentation along P ;

recompute c(x) and b(p, x) ;

end for

for all r such that cr(x) ≥ ∆ do

compute BackwardActiveSet(p, x, r);
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repeat

replace p by BackwardUpdatePrice ;

recompute N(p, x), and BackwardActiveSet(p, x, r) ;

until there is an active node j with bj(p, x) ≥ ∆

let P be a path in N(p, x) from j to r ;

replace x by carrying out a ∆-augmentation along P ;

recompute c(x) and b(p, x) ;

end for

2.5 Modify a ∆-optimal solution to a ∆/2-feasible solution

We now describe how to modify a ∆-optimal solution (p, x) to a ∆/2-feasible

solution. In Orlin’s algorithm, it is easy to modify a ∆-optimal solution (p, x) to

a ∆/2-feasible solution by decrease some xij by ∆/2. In our algorithm, because

of the condition of budgets and the existence of dash arcs and backward arcs

xij cannot be changed freely. This problem is solved by a procedure Allocatio-

nAndPrice. The procedure first decrease some xij by ∆/2 where xij > tij+∆/2.

Thus, some bs(x) may become smaller than 0. It then modifies bs which bs > ∆/2

or bs < 0 by changing the allocation or price of good s.

In the case of bs > ∆/2, if there is a backward arc or a double directed

arc xis incident to s, the procedure substitutes xis with xis − ∆/2. Other-

wise, since bs is positive, there is at least one dash arc incident to s. Then the

procedure calls a procedure SinglePriceIncrease(p, x, s) to modify price of s.

The procedure SinglePriceIncrease(p, x, s) substitutes ps(x) with p′s, where p′s
is the value at which point one of two following conditions will be satisfied by

(p′, x) = ((.., ps−1, p′s, ps+1, ..), x):

( 1 ) There is a dash arc (i, s) becomes a backward arc.

( 2 ) bs(p′, x) ≤ ∆/2.

In the former case, the procedure decreases xis by ∆/2.

Similarly, in the case of bs < 0, if there is a forward arc or a double di-

rected arc xis incident to s, AllocationAndPrice substitutes xis with xis +∆/2.

Otherwise, it calls a procedure SinglePriceDown(p, x, s) to modify price of

s. The procedure SinglePriceDown(p, x, s) substitutes ps(x) with p′s, where p′s
is the value at which point one of two following conditions will be satisfied by

(p′, x) = ((.., ps−1, p′s, ps+1, ..), x):

( 1 ) There is an edge (i, s) becomes a forward arc.

( 2 ) bs(p′, x) ≥ 0.

In the former case, the procedure increases xis by ∆/2.

The following lemma is straightforward.

Lemma 4. Suppose that (p, x) is ∆-feasible and p′ is the vector of prices obtained
by SinglePriceIncrease(p, x, s) or SinglePriceDown(p, x, s). Then (p′, x) is ∆-

feasible.

We now present procedure AllocationAndPrice.

Algorithm2. AllocationAndPrice(p, x)

Input: A ∆-optimal solution (p, x)

Output: A ∆/2-feasible solution (p, x)

∆ := ∆/2

for all xij such that xij > tij +∆ do

xij := xij −∆;

end for

recompute c(x) and b(p, x);

for all s such that bs(x) > ∆ do

if there is a node i with (i, s) is backward arc or double directed arc then

xis = xij −∆;

else

replace (p, x) by SinglePriceIncrease(p, x, s);

if bs(p, x) > ∆ then

find a backward arc (i, s) incident to s, xis := xis −∆

end if

end if

recompute c(x) and b(p, x);

end for

for all s such that bs(x) < 0 do

if there is a node i with (i, s) is forward arc or double directed arc then

xis = xij +∆;

else
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replace (p, x) by SinglePriceDown(p, x, s);

if bs(p, x) < 0 then

find a forward arc (i, s) incident to s, xis := xis +∆

end if

end if

recompute c(x) and b(p, x);

end for

2.6 Algorithm3. Scaling Algorithm

Input: ϵ, money e, utilities U , budgets t.

Output: A ϵ-approximate solution (p, x).

∆ := ∆0; p := p0;x := 0 (as per Section 2.2)

for k = 1 to PhaseNumber do

replace (p, x) by PriceAndAugment(p, x);

replace (p, x) by AllocationAndPrice(p, x);

end for

We now analyze the number of scaling phases PhaseNumber. We first give

the definition of ϵ-approximate solution. A solution (p, x) is consider to be ϵ-

approximate if it is ∆-optimal for ∆ < ϵΣj∈Gpj , where ϵ > 0.

We have the following theorem. Since the proof is similar to proof of Theorem

3.2 in5), we state the theorem without proof.

Theorem 5. ScalingAlgorithm determines an ϵ-approximate solution after

O(log(n/ϵ)) scaling phases.

Therefore, PhaseNumber = O(log(n/ϵ)).

2.7 Running time and proof

Theorem 6. During the ∆-scaling phase, ScalingAlgorithm transform a ∆-

optimal solution into a ∆/2-optimal solution with 1 call of PriceAndAugment

and 1 call of AllocationAndPrice. Procedures PriceAndAugment and Allo-

cationAndPrice can be implemented to run in O((m + n)(m + log n)) time

and O(m + n)n time, respectively. For finding a ϵ-approximate solution, the

number of scaling phases is O(log(n/ϵ)). Therefore, the algorithm runs in

O((m+ n)(m+ log n) log(n/ϵ)) times.

The proof is divided into three parts. First, we will prove that the number

that PriceAndAugment calls for each cr(x) ≥ ∆ or cr(x) < 0 is O(m + n), and

the number that AllocationAndPrice calls for each bs(p, x) > ∆ or bs(p, x) < 0

is also O(m+n). Then, we will demonstrate how to increase or decrease each bs
in O(n) time. Finally, we will show how to increase or decrease each cr by ∆ in

(O(m+ n log n)) time.

Proof of number of iterations in PriceAndAugment and AllocationAndPrice. The

bound on the number of iterations in AllocationAndPrice relies on the

number Θ(p, x,∆) where Θ(p, x,∆) = Σj∈G,bj(p,x)>∆(⌈bj(p, x)/∆⌉ − 1) −
Σj∈G,bj(p,x)<0(⌊bj(p, x)/∆⌋). After one iteration, if bj(p, x) > ∆ then it will

be decreased by ∆, if bj(p, x) < 0 then it will be increased by ∆ or until

0 ≤ bj(p, x) ≤ ∆. Therefore, Θ will be decreased at least by one after each

iteration. The procedure AllocationAndPrice will halt when Θ becomes 0. We

now prove that at the beginning of AllocationAndPrice, Θ < (m+n). At the be-

ginning of AllocationAndPrice, since (p, x) is 2∆-optimal, ∀j ∈ G, bj(p, x) ≤ 2∆,

therefore Σj∈G,bj(p,x)>∆(⌈bj(p, x)/∆⌉ − 1) ≤ |G|. Moreover since ∀i ∈ B and

∀j ∈ G, xij ≤ 2∆, the number of xij will be decreased by ∆ is at most m.

Thus, after decreasing some xij , −Σj∈G,bj(p,x)<0(⌊bj(p, x)/∆⌋) ≤ m. Therefore

Θ(p, x,∆) ≤ (m+ |G|) < (m+ n).

The bound on the number of iterations in PriceAndAugment relies on the num-

ber θ(x,∆) where θ(x,∆) = Σi∈B | ⌊ci(x)/∆⌋ |. After one iteration, if ci(x) ≥ ∆

then it will be decreased by ∆, if ci(x) < 0 then it will be increased by ∆.

Therefore, θ will be decreased by one after each iteration. The procedure Price-

AndAugment will halt when θ becomes 0. We now prove that at the beginning

of PriceAndAugment, θ ≤ (2m + n). To prove that, we take a look at the pro-

cess transforming a 2∆-optimal solution into a ∆-feasible solution. When (p, x)

is 2∆-optimal solution, ∀i ∈ B, 0 ≤ ci(x) < 2∆, thus at this point θ(x,∆) ≤ |B|.
During AllocationAndPrice, after at most m numbers of xij is decreased by ∆,

Σi∈Bci(x, p) will be increase at most m∆. Moreover during the procedure, since

there are at most m + |G| number of bj(p, x) is decreased or increased by ∆,∑
i∈B | ⌊ci(x)/∆⌋ | is increased by at most m+ |G|. In the result, at the begin-

ning of procedure AllocationAndPrice, θ(x,∆) is at most 2m+ n.

Before going to the last two proofs, we define the ratio αi(p) = Uij/pj where
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j ∈ G and (i, j) ∈ F (p).

Proof of time bound in one iteration in AllocationAndPrice. We first take a look

at procedure that decreases bs(p, x) by ∆, where bs(p, x) > ∆. If there is a

backward arc or double directed arc incident to s, then the procedure finishes

in O(1) time. Otherwise, ps will be set as min{Σi∈Bxij −∆, Uis/αi(p) : (i, s) ∈
D(p)}. Price ps = Σi∈Bxij − ∆ is the price at which bs become ∆. Price

ps = min{Uis/αi(p) : (i, s) ∈ D(p)} is the price at which a dash arc becomes

backward arc. Minimum of these values can be calculated in O(n) time.

Similarly, in the procedure that increases bs(p, x) where bs(p, x) < 0, if there

is a forward arc or double directed arc incident to s, then the procedure finishes

in O(1) time. Otherwise, ps will be set as max{Σi∈Bxij , Uis/αi(p) : (i, s) ̸∈
(D(p) ∪ F (p))}. Price ps = Σi∈Bxij is the price at which bs become 0. Price

ps = max{Uis/αi(p) : (i, x) ̸∈ (D(p) ∪ F (p))} is the price at which a dash arc

becomes backward arc. Maximum of these values can be calculated in O(n) time.

Therefore, time bound in one iteration in AllocationAndPrice is O(n).

Proof of time bound in one iteration in PriceAndAugment. We now demonstrate

that one iteration in PriceAndAugment can be implemented in O(m + n log n)

time. The time for identifying an augmenting path and modifying the allocation

x is O(n). So we need only consider the total time for ForwardUpdatePrice

and BackwardUpdatePrice.

Our implementation relies on the implementation mentioned in the proof of

Theorem 3.1 in5). Here we also store price implicitly and use a Fibonacci heap

to store some data. The main difference between two implementations is that in

ours we have to consider when a dash arc becomes backward arc.

Let r be the root node of one iteration in PriceAndAugment where cr(p) ≥
∆, and choose a node v so that (r, v) ∈ F (p). Here p is the vector of prices at the

beginning of the iteration. Let p′ be the vector of prices at some point during the

iteration. We store the vector p, the price p′v, and the vector α(p). Moreover,

for each forward active node k (k ∈ B ∪ G), we store γk, which is the price of

node v when node k become forward active. If node j ∈ G is not active with

respect to p′, then p′j = pj . Otherwise, p′j = pj × p′v/γj .

We divide our proof into two cases: cr(p) ≥ ∆ and cr(p) < 0.

We begin with the first case. An edge (i, j) will join F (p) at the next price

update only if i is forward active and j is not forward active. (i, j) will become

forward active if the updated price vector p̂ satisfies Uij/p̂j = αi(p̂) = αi(p)γi/p̂v.

So, if node i ∈ B is forward active and node j ∈ G is not forward active then the

price βij of node when (i, j) belongs to F (p̂) is βij = γiαi(p)pj/Uij .

And dash arc (i, j) will become backward arc at the next price update only if

j is forward active and i is not forward active. (i, j) will become backward arc if

the updated price vector p̂ satisfies Uij/p̂j = αi(p̂). So, if node j ∈ G is forward

active and node i ∈ B is not forward active and (i, j) is dash arc then the price

βij of node when (i, j) becomes backward arc is δij = Uijγj/αi(p)pj .

For all forward inactive nodes j ∈ G, let βj = min{βij : i is forward active

}, for all forward inactive nodes i ∈ B, let δi = min{δij : j is forward active

}, and we store the β’s and δ’s in a Fibonacci heap, a data structure developed

by Fredmand and Tarjan7). The Fibonacci heap supports ”FindMin”, ”Insert”,

”Delete”, and ”Decrease Key”. The FindMin and Decrease Key operations can

each be implemented to run in O(1) time. The Delete and Insert operation each

take O(n) time when operating on n elements.

We delete a node from the Fibonacci heap whenever the node becomes forward

active. We carry out a Decrease Key whenever βj is decreased for some j or δi is

decreased for some i. This event may occur when node i becomes forward active

and edge (i, j) is scanned, and β(ij) is determined, or when node j becomes

forward active and edge (i, j) is scanned, and δ(ij) is determined. Therefore,

the time needed to compute when edges join F (p) or dash arcs join D(p) in one

iteration in PriceAndAugment is O(m+ n log n) time.

Moreover, we have to observe the price of v when bj will equal 0. Let q′ be
the minimum value ≥ 1 such that bj(q′p, x) = 0. So, bj = 0 when the price of

node v is q′γj . We store, βj = q′γj into the same Fibonacci Heap as the forward

inactive node of G. Therefore the total time to determine all price update in one

iteration is O(m+ n logn).

In the second case, cr(p) < 0. An edge (i, j) will join F (p) at the next price

update only if j is backward active and i is not backward active. (i, j) will become

backward active if the updated price vector p̂ satisfies Uij/p̂j = αi(p). So, if node
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j ∈ G is backward active and node i ∈ B is not backward active then the price

βij of node when (i, j) belongs to F (p̂) is βij = Uijγj/αi(p)pj .

And dash arc (i, j) will become backward arc at the next price update only if

i is backward active and j is not backward active. (i, j) will become backward

arc if the updated price vector p̂ satisfies Uij/p̂j = αi(p̂) = αi(p)γi/p̂v. So, if

node j ∈ G is backward active and node i ∈ B is not backward active and

(i, j) is dash arc then the price δij of node when (i, j) becomes backward arc is

δij = αi(p)pjγj/Uij .

For all backward inactive nodes i ∈ G, let βi = max{βij : j is backward active

}, for all backward inactive nodes j ∈ G, let δj = max{δij : i is backward active

}, and we store the β’s and δ’s in a Fibonacci heap. We delete a node from the

Fibonacci heap whenever the node becomes backward active. We carry out a

Decrease Key whenever βi is increased for some i or δj is increased for some j.

Similar to the case of cr(p) ≥ ∆, the time needed to compute when edges join

F (p) or dash arcs joinD(p) in one iteration in PriceAndAugment is O(m+n log n)

time.

Moreover, we have to observe the price of v when bj will equal ∆. Let q′ be
the maximum value ≤ 1 such that bj(q′p, x) = ∆. So, bj = ∆ when the price of

node v is q′γj . We store, βj = q′γj into the same Fibonacci Heap as the forward

inactive node of G. Therefore the total time to determine all price update in one

iteration is O(m+ n logn).

3. Conclusion and Open Problems

We have proposed an approximate algorithm for computing the market equi-

librium prices of Fisher’s market model under a simple case of piecewise-linear,

concave utilities. One immediate question is to find an optimal solution for this

problem. This question can be solved if we can find the bound of ϵ where a

ϵ-approximate solution becomes an optimal solution.

Another question is that can we extend the algorithm to solve a more general

case of Fisher’s piecewise-linear, concave utilities. That is, the utility functions

is the following. For buyer i and good j, given some budgets 0 = t0ij < t1ij <

t2ij < t3ij < ... and corresponding utility coefficients U1ij > U2ij > U3ij >

... ≥ 0. Then the utility buyer i derived on good j when she spends xij (where

tlij ≤ xij < t(l+1)ij , l is a non negative integer) amount of money for good j

whose price is pj is:

uij =
U(l+1)ij(xij − tlij) +

∑
1≤k≤l Ukij(tkij − t(k−1)ij)

pj
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