
情報処理学会研究報告
IPSJ SIG Technical Report

Spaced Seedの検索のための索引

小 野 寺 拓†1 渋 谷 哲 朗†1

本稿では特定の位置に”don’t care”を含むパターンの検索に対応した接尾辞配列の
一般化を導入し、また、その構築アルゴリズムを３つ提案する。このようなパターン
は計算生物学における spaced seed の検索において現れる。

An Index Structure for Spaced Seed Search

Taku Onodera†1 and Tetsuo Shibuya†1

In this paper, we generalize suffix array to support the search of patterns
with “don’t care”s in predetermined positions and introduce three algorithms
to construct it. Such patterns occur in the spaced seed search of computational
biology.

1. Introduction

String searching algorithms can be classified into online search and index search.

Though construction of indices is computationally expensive, it makes successive

searches much faster. Hence, it is a good idea to prepare an index for the text when

the text is large and static and many searches are likely to be performed later.

In this paper, we consider an index structure which supports search of patterns with

“don’t care”s. A “don’t care” is a special character that can match any single character

and it is also called a ”wild card”. Such queries occur, for example, in spaced seed

search. In the research of computational biology, search of homologous regions between

†1 東京大学医科学研究所ヒトゲノム解析センター
Human Genome Center, Institute of Medical Science, the University of Tokyo

two sequences is a common task and to do that the following three steps are widely

used: a)extract a short segment called a seed from one of the sequences; b)find the

occurrences of the seed in the other; c)examine the surrounding region of each hit by

alignment. A spaced seed is a seed including “don’t care”s. Ma et. al.10) found that

it is possible to optimize the arrangement of “don’t care”s in a spaced seed to make

homology search faster and more sensitive. Since then, many researches about spaced

seeds, both theoretical and practical, have been made2),9),14).

The gapped suffix array3) is a generalization of the suffix array. A (g0, g1)-gapped

suffix array of a text is the indices of the heads of suffixes, sorted ignoring i-th charac-

ters for i ∈ [g0, g0 + g1]. If the (g0, g1)-gapped suffix array is given, patterns whose i-th

characters are “don’t care”s for i ∈ [g0, g0+g1] can be searched in O((m−g1) log n)-time

where n and m are the length of the text and the pattern respectively. The gapped

suffix array can be constructed in O(n)-time.

Because the gapped suffix array is not applicable to the search of spaced seeds as

it is, we generalize it as follows. First, fix a binary string b = b1b2 . . . bw ∈ {0, 1}w.

Then, we consider an array containing the indices of the heads of suffixes sorted ignor-

ing i-th characters except i ∈ {1 ≤ j ≤ w|bj = 1}. For example, if b = 101 suffixes

are sorted according to their first and third characters while the second and those fol-

lowing the third are ignored. If this array is given, patterns whose i-th characters are

“don’t care”s for i ∈ {1 ≤ j ≤ w|bj = 0} can be searched in O(k log n)-time where

k := #{1 ≤ i ≤ w|bi = 1}.
The problems considered in the rest of the paper and our results for them are sum-

marized as follows.

Problem 1. Given a text T = T [1, 2, . . . , n] and a binary string b = b1b2 . . . bw, sort

the suffixes of T ignoring i-th characters for i ∈ {1 ≤ j ≤ w|bj = 0} and construct an

array b-SA[1, 2, . . . , n] s.t. b-SA[i] is the index of the head of the i-th suffix.

Problem 2. Given a text T = T [1, 2, . . . , n], b = b1b2 . . . bw, b-SA and the rank

corresponding to b-SA where b-SA is the same as that in Problem 1, sort the suffixes

of T ignoring i-th characters for i ∈ {1 ≤ j ≤ n|bj%w = 0} where j%w is the remainder

of j divided by w, and construct an array b∗-SA[1, 2, . . . , n] s.t. b∗-SA[i] is the index of

1 c© 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.2
2011/11/18

情報処理学会研究報告
IPSJ SIG Technical Report

the head of the i-th suffix.

Result for Problem 1. Given T and b, b-SA (and the corresponding rank) can be

obtained either in O(gn)-time and O(n)-space where g is the number of runs of 1 in b

or in O(wn
ε log w

)-time and O(wεn)-space where ε can be any constant s.t. 0 < ε < 1.

Result for Problem 2. Given T , b, b-SA and corresponding rank, b∗-SA can be

obtained in O(n)-time and O(n)-space.

Though it requires much memory, the second algorithm for Problem 1 can be faster

than the first when g is large (For example, when there is ∃c > 0 s.t. g > cn).

The algorithm for Problem 2 requires not only b-SA but also the rank. When the

rank is not given, one can compute it by checking i-th characters of suffixes for

i ∈ {1 ≤ j ≤ w|bj = 1}, but this naive method takes O(kn)-time. The result for

Problem 1 means one can provide both b-SA and the rank in O(gn)-time to the solver

of Problem 2.

There are other types of indices which aid the search of patterns with “don’t

care”s13),7),15). These are based on ordinary indices like the suffix tree. These in-

dices support more flexible search than ours because they do not assume positions in

patterns where “don’t care”s occur. On the other hand, these indices work as a filter

in general and, after referring to it, one needs to determine whether each candidate is

actually a match. Thus, in terms of search time, our index is better for inputs to which

these indices generate many false positive candidates.

In section 2, we set up basic definitions and notations. The usage of the index is also

explained here. In sections 3 and 4, we describe the results for the problems 1 and 2

respectively. We conclude in section 5.

2. Preliminaries

2.1 Definitions and Notations

Let Σ be a finite totally ordered set. A string T is either an element of ∪∞
n=1Σ

n or an

empty string. That is, the set of strings is equal to Σ∗ := ∪∞
n=0Σ

n where Σ0 is the set

consists only of the empty string. The length of T is n ≥ 0 s.t. T ∈ Σn, and is denoted

by |T |. We denote the i-th character of a string T by T [i]. For string T of length n and

i, j ∈ N s.t. 1 ≤ i ≤ j, let T [i, j] be T [i]T [i + 1] . . . T [j] if j ≤ n, T [i]T [i + 1] . . . T [n] if

i ≤ n < j and the empty string if n < i. Let Ti be T [i, n] for i ≤ n. The lexicographic

order ≤ between T1, T2 ∈ Σ∗ is defined as follows: a) φ ≤ T for ∀T ∈ Σ∗; b) T1 ≤ T2

if |T1| > 0, |T2| > 0 and T1[1] < T2[1]; c) T1 ≤ T2 if |T1| > 0, |T2| > 0, T1[1] = T2[1]

and T12 ≤ T22. Throughout the paper we assume integer alphabets, i.e. the size of Σ

is O(|T |).
A “don’t care” is a special character not included in Σ and we denote it by ?. A pat-

tern P is an element of ∪∞
m=1(Σ∪{?})m. The length of P is m ≥ 1 s.t. P ∈ (Σ∪{?})m

and denoted by |P |. The i-th character of a pattern P is denoted by P [i]. If a pattern

P and a string T satisfy P [j] = T [i + j − 1] for ∀j ∈ {i|1 ≤ i ≤ m, P [i] 6=?}, we say P

matches T at position i.

For w ∈ N , a “don’t care” position of length w, b = b1b2 . . . bw, is an element of

{0, 1}w. Let 1b,0b and |b| denote {1 ≤ i ≤ w|bi = 1}, {1 ≤ i ≤ w|bi = 0} and

#1b respectively. Let b[i, j] denote bibi+1 . . . bj for 1 ≤ i ≤ j ≤ w. Let b(T) denote

T [i1]T [i2] . . . T [ik] (if ik ≤ n), T [i1]T [i2] . . . T [ij] (if ij ≤ n < ij+1, 1 ≤ j < k), φ (if

n < i1) where {ij}kj=1 is the subsequence of {i}wi=1 s.t. {ij}j equals to 1b as sets. The

b-lexicographic order ≤b between T1, T2 ∈ Σ∗ is defined as T1 ≤b T2 iff b(T1) ≤ b(T2).

≤b is a preorder. We write T1 =b T2 if T1 ≤b T2 and T2 ≤b T1.

The leftmost rank of an element e in a finite totally ordered set S is #{e′ ∈ S|e′ ≤
e, e 6≤ e′}+ 1.

The suffix array SA of a text T is the unique permutation of {1, . . . , n} s.t. TSA[i] is

lexicographically increasing. SAh is a permutation s.t. TSAh[i][1, h] is lexicographically

non-decreasing. The h-rank of Ti is the leftmost rank of Ti[1, h] in {Ti[1, h]}ni=1 ordered

lexicographically. Let RSAh[1, . . . , n] be an array s.t. RSAh[i] is the h-rank of Ti. The

height array Hgt of a string T is an array s.t. Hgt[i] is the length of the longest common

prefix of TSA[i−1] and TSA[i] for 1 < i ≤ n.

The b-gapped suffix array b-SA of a string T of length n is the unique permuta-

tion of {1, . . . , n} s.t. a) Tb-SA[i] ≤b Tb-SA[i+1](1 ≤ i < n); b) b-SA[i] < b-SA[j] if

Tb-SA[i] =b Tb-SA[j] and i > j.

Let b-SAh := b[1, h]-SA. The b-rank of Ti is the leftmost rank of Ti in b-SA. Let

(b, h)-rank be b[1, h]-rank. Let b-RSAh[1, . . . , n] be an array s.t. b-RSAh[i] is the (b, h)-

2 c© 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.2
2011/11/18

情報処理学会研究報告
IPSJ SIG Technical Report

rank of Ti.

2.2 Search Method

The b-gapped suffix array can be applied to pattern matching in almost the same way

as the suffix array. If b-gapped suffix array b-SA of a string T and b ∈ {0, 1}w is given,

a pattern P of length at most w s.t. P [i] =? for i ∈ 0b and P [i] ∈ Σ for i ∈ 1b can be

located by binary search in O(|b| log n)-time. All the occurrences of the pattern can be

enumerated in O(|b| log n + Occ(P))-time where Occ(P) is the number of occurrences

of P .

3. Constructing the b-Suffix Array for Given T and b

In this section, we consider constructing b-SA for given T and b. An obvious way

to do this is to use ordinary radix sort, that is, to repeat sorting the suffixes by i-th

character while i runs through all i ∈ 1b downwards from the largest to the smallest.

It takes O(|b|n)-time and O(n)-space. We propose two more elaborate algorithms to

construct b-suffix arrays. We first explain the underlying ideas shared in common. Then

we describe each algorithm.

3.1 Underlying Ideas

In SAh suffixes of the same h-rank neighbor each other. These groups are called

h-groups. When sorted by first h′ characters where h < h′, an h-group can split into

several h′-groups but each suffix never move beyond the boundaries of the h-group it

belongs to. Thus the members of an h-group are still located together in SAh′ . In

particular, this is true for h-groups of ∀h ≤ n in SA = SAn. In some suffix array

construction algorithms, SA = SAn is obtained by repeatedly deriving SA2h from

SAh
11),8).

Similarly, in b-SAh, suffixes of the same (b, h)-rank align consecutively, which we call

a (b, h)-group. We consider constructing b-SA in a similar way as that for SA above.

But unfortunately, the method to double h at a time no longer works for b-SAh. We try

other methods to increase h. In both of the following subsections we use a modification

of radix sort to derive b-SAh of larger h from that of smaller h. This method is based

on the sort algorithms presented in1) and11).

3.2 O(gn)-Time, O(n)-Space Algorithm

For a “don’t care” position b, we call the subregion from bi1 to bi2 a run of 1 iff a)

bi = 1(i1 ≤ ∀i ≤ i2); b) i1 = 1 or bi1−1 = 0; c) i2 = w or bi2+1 = 0. A run of 1 of length

r is denoted by 1r. A run of 0 is defined similarly.

In this subsection, we prove the following theorem.

Theorem 1. Given a text T of length n and a “don’t care” position b of length w,

the b-suffix array b-SA can be constructed in O(gn)-time and O(n)-space where g is the

number of runs of 1 in b where ε can be any constant s.t. 0 < ε < 1.

b can be divided into runs as 0r′
11r1 . . . 0r′

g1rg0r′
g+1 . Let ij be the index of the head

of the j-th run of 1. Suppose b-SAij−1+rj−1−1 and b-RSAij−1+rj−1−1 are given and we

compute b-SAij+rj−1 and b-RSAij+rj−1. Because bi = 0 for i ∈ [ij−1 + rj−1, ij − 1], b-

SAij−1+rj−1−1 = b-SAij−1 and b-RSAij−1+rj−1−1 = b-RSAij−1. Hence, the (b, ij−1)-

groups are already collected and the next thing to do is to sort each elements of a

(b, ij − 1)-group according to characters between the ij-th and the ij + rj − 1-th.

Ti[ij , ij+rj−1] = Ti+ij−1[1, rj] and the right hand sides for different is can be compared

in constant time if we have RSArj , the array of rj-ranks.

RSArj is easily computed when we have SA and Hgt. The boundaries of h-groups are

those places where suffixes with different h+1-th characters lie next to each other. They

can be located by scanning Hgt once marking is s.t. Hgt[i] < h. Thus we calculate SA

and Hgt in advance.

We prepare queues for each rj-rank. We enumerate b-SAij−1 in ascending order and

put suffixes into the queues corresponding to RSArj [i + ij − 1]. Then we enumerate

queues from the one corresponding to the lowest rj-rank to the one corresponding to

the highest. From each queue, we pop all the suffixes out aligning them by the following

rule: a) Suffixes of lower (b, ij − 1)-rank are aligned before suffixes of higher (b, ij − 1)-

rank; b) suffixes of the same (b, ij − 1)-rank are aligned according to the order they

are popped out. We maintain b-RSAij−1 to find the (b, ij − 1)-rank of each suffix in

constant time. After that, suffixes in a (b, ij − 1)-group are arranged according to the

i-th characters for i ∈ [ij , ij + rj − 1] ∩ 1b, which means we got b-SAij+rj−1. b-SA is

obtained by repeating this procedure for j = 1 to g,

3 c© 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.2
2011/11/18

情報処理学会研究報告
IPSJ SIG Technical Report

Next, we explain the detail. The following data are used?1: S1: b-SAij−1, R1: b-

RSAij−1, C1: counter for S1, B: marker for the heads of (b, ij + rj − 1)-groups, S2:

buckets, R2: RSArj , C2: counter for S2, SA: suffix array, Hgt: height array.

We show how to update S1 and S2 from b-SAij−1 and b-RSAij−1 to b-SAij+rj−1 and

b-RSAij+rj−1 respectively. First, we assign RSArj to R2 using SA and Hgt. Next,

we put suffixes in S1, say TS1[i] into buckets in S2 corresponding to the rj-rank of

TS1[i]+rj−1, that is R2[i1] where i1 := S1[i] + ij − 1. Because there can be several suf-

fixes of the same rank, we use C2 to record offsets as S2[R2[i1] + C2[R2[i1]]] ← S1[i].

Suffixes of (b, ij − 1)-groups of only 1 member and Tis for i > n − ij + 1 are already

in their final position and can be skipped. Then we return the suffixes in S2 to the

tail of the (b, ij − 1)-groups they belong. When i is the index of the head of an rj-

group in S2, the index of the head of the (b, ij − 1)-group suffix S2[i + j] belongs to is

k := R1[S2[i + j]]. Again, there can be several elements to return to a (b, ij − 1)-group

and we use C1 to record offsets as S1[k + C1[k]] ← S2[i + j]. We set B[i] to 1 every

time we push back a suffix to S1[i]. At this time, the suffixes returned to the same

(b, ij − 1)-group from the same rj-group make up a (b, ij + rj − 1)-group. Each time

we finish returning suffixes from one bucket, we traverse the same bucket again setting

B[i] to 0 except the heads of (b, ij +rj−1)-groups. After returning every suffixes to S1,

we update S2 to b-RSAij+rj−1 referring to B. The whole process in this paragraph is

repeated while j runs from 1 to g.

SA and Hgt can be made in O(n)-time4),6),12),5). In each update from b-SAij−1 to

b-SAij + rj − 1, we initialize R2, C1, C2, B, move suffixes from S1 to S2, return suffixes

from S2 to S1 and update R2. All of these are done in O(n)-time. Therefore the total

time complexity is O(gn). Because we only use constant number of data of O(n)-size,

the total space complexity is O(n). Therefore theorem 1 follows.

3.3 O(wn
ε log w

)-Time and O(wεn)-Space Algorithm

Below we prove the following theorem.

Theorem 2. Given a text T of length n and a “don’t care” position b of length w, the

?1 It is possible to implement without C1 and C2 but in that case, we need to scan S1 and S2 to

find the appropriate positions to put suffixes increasing the time complexity.

b-suffix array b-SA can be constructed in O(wn
ε log w

)-time and O(wεn)-space. where ε

can be any constant s.t. 0 < ε < 1.

Fix v s.t. 1 ≤ v ≤ w. For brevity, we assume v divides w evenly. Suppose b-SA(t−1)v

and b-RSA(t−1)v are given and we compute b-SAtv and b-RSAtv. (b, (t−1)v)-groups are

already collected and we need to sort elements in a (b, (t− 1)v)-group according to i-th

characters for i ∈ [(t− 1)v + 1, tv] ∩ 1b. By the same method as that of subsection 3.2,

this sorting is done in O(n)-time if b[(t−1)v+1, tv]-RSA is given. Thus, we calculate all

b′-RSAs for all “don’t care” positions b′ of length v in advance. By computing b′-SAs

and b′-RSAs from those with smaller |b′|s to larger ones, this preprocessing is done in

O(2vn)-time.

The total time complexity is O(2vn+wn/v) and the total space complexity is O(2vn).

In particular, if we choose v to be ε log w where ε is a constant s.t. 0 < ε < 1, the time

complexity is O(wn
ε log w

) and the space complexity is O(wεn). Therefore theorem 2 fol-

lows. This value of v is chosen so that the time needed for preprocessing and those for

main process are close to each other. ?2

This algorithm is suitable for the case of multiple “don’t care” positions and a single

text. Since b′-SAs and b′-RSAs depend only on T , it is possible to share these data

among the calculations of different b-ST s for the same text and different “don’t care”

positions. ?3 In particular, when you have a text and are going to be given multiple

“don’t care” positions of the same length w, each b-suffix array can be constructed in

O(wn/ε log w)-time for 1 ≤ ∀ε. ?4

4. Constructing b-Suffix Arrays for Periodic b

In this section we prove the following theorem.

Theorem 3. Given a text T of length n, a “don’t care” position b of length p, the

b-suffix array b-SA and corresponding rank b-RSA = b-RSAp, b∗-SA[i] is obtained in

?2 The main process takes longer. The v that balances them is expressed by using the Lambert W

function.

?3 SA and Hgt in the algorithm of subsection 3.2 can also be shared. But in terms of time com-

plexity, the fact makes no difference.

?4 1 ≤ ε because it should be taken so that the preprocessing takes longer than the construction of

each b-suffix array.

4 c© 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.2
2011/11/18

情報処理学会研究報告
IPSJ SIG Technical Report

O(n)-time and O(n)-space where b∗ is a “don’t care” position obtained by repeating b

enough times to be longer than T .

Ti ≤b∗ Tj iff a) Ti[1, p] ≤b Tj [1, p] and Tj [1, p] 6≤b Ti[1, p] (⇔ b-RSA[i] < b-

RSA[j]) or b) Ti[1, p] =b Tj [1, p](⇔ b-RSA[i] = b-RSA[j]) and Ti+p ≤b∗ Tj+p. Thus,

≤b∗ on {Ti}i is equivalent to the lexicographic order on {b-RSA[i]b-RSA[i + p] . . . b-

RSA[i+ b(n− i)/pcp]}i seen as strings. To sort {Ti}i by ≤b∗ , it suffices to sort {rs(i)}i
by lexicographic order where rs(i) := b-RSA[i]b-RSA[i + p] . . . b-RSA[i + b(n− i)/pcp].

For i s.t. 1 ≤ i ≤ p and 0 ≤ k ≤ b(n− i)/pc, rs(i + kp) is a suffix of rs(i). We consider

the string rs := rs(1)0rs(2)0 . . . 0rs(p). {rs(i)}i can be sorted by sorting the suffixes

of rs. It is easy to ignore the suffixes starting from 0 because they gather to the head

when sorted. Because the comparison of two suffixes ends before or at the time when

either of them reaches the end, comparison of corresponding rs(i)s is not affected by

inserting 0s.

Almost all of the work is reduced to suffix sorting of rs, which can be done in O(n)-

time. Therefore, the total time complexity is O(n). Space complexity is also O(n).

Therefore theorem 3 follows.

An argumment similar to this is made in4).

5. Conclusion

We introduced an index structure based on the suffix array, which supports efficient

search of patterns with “don’t care”s in predetermined positions. We designed three

algorithms to construct the index. Two of them are for general inputs and the other is

for the case of patterns with periodic “don’t care”s.

参 考 文 献
1) A.Andersson and S.Nilsson. A new efficient radix sort. In Proceedings of the 35th

Annual Symposium on Foundations of Computer Science, pages 714–721, Washing-

ton, DC, USA, 1994. IEEE Computer Society.

2) DanielG. Brown. A Survey of Seeding for Sequence Alignment, pages 117–142.

John Wiley & Sons, Inc., 2007.

3) Maxime Crochemore and German Tischler. The gapped suffix array: A new index

structure for fast approximate matching. In Edgar Chávez and Stefano Lonardi,

editors, SPIRE, volume 6393 of Lecture Notes in Computer Science, pages 359–364.

Springer, 2010.

4) Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction.

In Jos C.M. Baeten, JanKarel Lenstra, Joachim Parrow, and GerhardJ. Woeginger,

editors, ICALP, volume 2719 of Lecture Notes in Computer Science, pages 943–955.

Springer, 2003.

5) Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park.

Linear-time longest-common-prefix computation in suffix arrays and its applica-

tions. In Amihood Amir and GadM. Landau, editors, CPM, volume 2089 of Lecture

Notes in Computer Science, pages 181–192. Springer, 2001.

6) Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix ar-

rays. In RicardoA. Baeza-Yates, Edgar Chávez, and Maxime Crochemore, editors,

CPM, volume 2676 of Lecture Notes in Computer Science, pages 200–210. Springer,

2003.

7) TakWah Lam, Wing-Kin Sung, Siu-Lung Tam, and Siu-Ming Yiu. Space efficient

indexes for string matching with don’t cares. In Takeshi Tokuyama, editor, ISAAC,

volume 4835 of Lecture Notes in Computer Science, pages 846–857. Springer, 2007.

8) N.Jesper Larsson and Kunihiko Sadakane. Faster suffix sorting. Technical Report

LU-CS-TR:99-214, LUNDFD6/(NFCS-3140)/1–20/(1999), Department of Com-

puter Science, Lund University, Sweden, May 1999.

9) Hao Lin, Zefeng Zhang, MichaelQ. Zhang, Bin Ma, and Ming Li. Zoom! zillions

of oligos mapped. Bioinformatics, 24(21):2431–2437, 2008.

10) Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive

homology search. Bioinformatics, 18(3):440–445, 2002.

11) Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string

searches. In Proceedings of the first annual ACM-SIAM symposium on Discrete

algorithms, SODA ’90, pages 319–327, Philadelphia, PA, USA, 1990. Society for

Industrial and Applied Mathematics.

12) GeNong, Sen Zhang, and WaiHong Chan. Linear suffix array construction by

almost pure induced-sorting. In JamesA. Storer and MichaelW. Marcellin, editors,

DCC, pages 193–202. IEEE Computer Society, 2009.

13) M.Sohel Rahman and CostasS. Iliopoulos. Pattern matching algorithms with don’t

cares. In Jan van Leeuwen, GiuseppeF. Italiano, Wiebe vander Hoek, Christoph

Meinel, Harald Sack, Frantisek Plasil, and Mária Bieliková, editors, SOFSEM (2),

pages 116–126. Institute of Computer Science AS CR, Prague, 2007.

14) StephenM. Rumble, Phil Lacroute, AdrianV. Dalca, Marc Fiume, Arend Sidow,

and Michael Brudno. Shrimp: Accurate mapping of short color-space reads. PLoS

Comput Biol, 5(5):e1000386, 05 2009.

5 c© 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.2
2011/11/18

情報処理学会研究報告
IPSJ SIG Technical Report

15) Alan Tam, Edward Wu, Tak-Wah Lam, and Siu-Ming Yiu. Succinct text index-

ing with wildcards. In Proceedings of the 16th International Symposium on String

Processing and Information Retrieval, SPIRE ’09, pages 39–50, Berlin, Heidelberg,

2009. Springer-Verlag.

6 c© 2011 Information Processing Society of Japan

Vol.2011-AL-137 No.2
2011/11/18

