
Searching Optimal Combat Strategies of On-line Action Role-playing Game
using Discrete Competitive Markov Decision Process

Chen Haoyang†1 Yasukuni Mori†1 Ikuo Matsuba†1

In the case of on-line Action Role-playing Game, the combat strategies can be divided into three distinct
classes, Strategy of Motion(SM), Strategy of Attacking Occasion(SAO) and Strategy of Using Skill(SUS).
In this paper, we analyze such strategies of a basic game model in which the combat is modeled by Discrete
Competitive Markov Decision Process. By introducing the chase model and the combat assistant technology,
we identify the optimal SM and the optimal SAO, successfully. Also, we propose an evolutionary frame-
work, including integration with competitive and cooperative coevolution, to search the optimal SUS which
is regarded as the Nash Equilibrium Point of the strategy space. Moreover, some experiments are made to
demonstrate that the proposed framework has the ability to retrieve the optimal SUS. Furthermore, from the
results, it is shown that using cooperative coevolution is much more efficient than using simple evolutionary
algorithm.

1. Introduction

In recent years, on-line Action Role-playing Games
(ARPGs, for short) become more and more popular all
over the world. An on-line ARPG is a virtual world that
consists of several distinct races. Player first creates a
character of any race, then plays the game by both ex-
ploring the virtual world and fighting with others. During
gaming, player has direct control over the created charac-
ter. Usually, the on-line ARPG is regarded as an exten-
sion of the off-line one by the reason that it allows players
to fight with each other besides AI opponent. Such new
feature results in more complexity of the game balance.
What is the game balance? In the case of off-line

ARPG, the game balance means the difficulty control of
the game and can be reached simply by adjusting the
power of AI opponent. On the other hand, however, in
the on-line ARPG, game balance mainly refers to power
balancing among the races. Currently, on-line ARPGs
are mainly balanced by hand tuning, but this approach
presents several problems. Human players are expensive
in both time and resources, and even human players can
not explore all strategies to find out whether a dominate

†1 Graduate School of Advanced Integration Science, Chiba University

one exists1). Moreover, since strengthening one race will
definitely weaken the others, the result of tuning opera-
tions may, somehow, become worse, it is hard to control.
Hence, a more theoretical and efficient design method is
needed.
Chen, Mori and Matsuba2),3) have proposed an evolu-

tionary design method for both turn-based and action-
based on-line role-playing games. In such approach, they,
successfully, constructed an automated testing frame-
work to verify whether the game world is well-balanced.
However, they just analyzed the case in which each race
has only one skill. The situation of having multi-skills
was ignored because they failed to retrieve the optimal
Strategy of Using Skill(SUS, for short), which plays a
crucial role in the automated testing framework.
In this paper, we analyze the optimal SUS of a

basic action-based game model, where the combat is
modeled by the Discrete Competitive Markov Decision
Process(DCMDP, for short)4). Also, by introducing
the Chase Model and the Combat Assistant Technol-
ogy(CAT, for short), the optimal Strategy of Motion(SM,
for short) and the optimal Strategy of Attacking Occa-
sion(SAO, for short) are investigated. The CAT can help
players to run towards the opponent automatically and at-
tack if possible. Moreover, an evolutionary framework,

- 120 -

The 16th Game Programming Workshop 2011

�� ��

������	

������	

����	�����
���

����	�����
���

����	�����

����	�����

������	

������	
Fig. 1 A Discrete Competitive Markov Decision Process With Two

States

including integration with competitive and cooperative
coevolution, is proposed to search the optimal SUS for
both sides of the combat. Furthermore, we make some
experiments to verify the proposed framework as well as
to compare the efficiency of Cooperative Coevolution Al-
gorithm(CCEA, for short) and Simple Evolutionary Al-
gorithm(SEA, for short).

2. Discrete Competitive Markov Decision
Precess

A DCMDP is a multi-player dynamic system that
evolves along discrete time points. At each time point
t, the state of the system, denoted by St , is a random
variable that can take on values from the finite set S =
1,2, ...,N. At these discrete time points, called stages,
both players have the possibility to influence the course of
the system. In this paper, we only consider the case of two
players, and we associate two finite action sets A1(s) =
{1,2, ...,m1(s)} for player 1 and A2(s) = {1,2, ...,m2(s)}
for player 2, then at any stage, the system is one of the
states and both players are allowed to choose an action
out of their respective action sets independently of one
another. If in a state s, at some decision moment, player 1
chooses a1 ∈ A1(s) and player 2 chooses a2 ∈ A2(s), then
two things happen:
(1) Player 1 earns the immediate reward r1(s,a1,a2)

and player 2 earns r2(s,a1,a2).
(2) The dynamic of the system is influenced. The

state at the next decision moment is determined
in a stochastic sense by a transition vector which
is denoted as:
p(s,a1,a2) = (p(1|s,a1,a2), ..., p(N|s,a1,a2))

a simple example of the DCMDP is shown in Fig. 1.
2.1 Classes of Strategy
Strategies for players are rules that tell them what ac-

tion to choose in any situation. The choice at a certain
decision moment may depend upon the history of the

play up to that moment. Furthermore, as is usual in game
theory, the choice of an action may occur in randomized
way, that is, the players can specify a probability vector
over their action spaces and next the action is the result of
a chance experiment according to this probability vector.
There are three classes of strategy exist, namely, the

behavior strategy, the Markov strategy, and the stationary
strategy.
Behavior strategy, denoted by FB, being the most gen-

eral type of strategy, can be represented by a sequence
π = (f0, f1, f2, ...) where, for eachet = 0,1,2, ..., the de-
cision rule ft = (ft(1), ft(2), ..., ft(N)) specifies for each
state s a probability vector ft(s) on A(s) as a function of
history of the game up to decision moment t.
A Markov strategy, denoted by FM , is a behavior strat-

egy where, for every t = 0,1,2, ..., the decision rule ft is
completely determined by the decision moment t and the
current state st at moment t.
A stationary strategy is a Markov strategy where, for

every t = 0,1,2, ..., the decision rule ft is completely
determined by the current state st at moment t. Thus,
a stationary strategy can be represented by a sequence
π = (f , f , f , ...), where f = (f (1), f (2), ..., f (N)) speci-
fies for each state s ∈ S a probability vector f (s) on A(s).
We will denote such stationary strategy by FS. If the play-
ers use π1 ∈ F1S ,π2 ∈ F2S as their strategy respectively,
there exist stationary transition probabilities:

p(s′|s,π1,π2) = P{St+1 = s′|St = s,π1,π2}
=
m1(s)

∑
a1

m2(s)
∑
a2
p(s′|s,a1,a2)π1(s,a1)π2(s,a2)

(1)

for all t = 0,1,2, ..., and Formula 1 is called Stationary
Markov Transition Property.
2.2 β -Discounted Competitive Markov Decision

Model
The infinite stream of rewards that results during a

particular implementation of a strategy pair (π1,π2) ∈
F1S ×F2S need to be evaluated in some manner. So, the
β -Discounted Competitive Markov Decision Model, de-
noted by Γβ , is introduced.
We have Rkt denoting the reward at time t to player k,

as well as

rk(π1,π2) = (rk(1,π1,π2), ...,rk(N,π1,π2)T

denoting the immediate excepted reward vector to player
k corresponding to a strategy pair (π1,π2) mentioned
above, where k = 1,2, and rk(s,π1,π2), for each s ∈ S,

- 121 -

The 16th Game Programming Workshop 2011

can be calculated by the following formula:

rk(s,π1,π2) =
m1(s)

∑
a1

m2(s)
∑
a2
rk(s,a1,a2)π1(s,a1)π2(s,a2)

The expected reward at stage t to player k resulting
from (π1,π2) and an initial state s is denoted by:

Esπ1π2(R
k
t) = [Pt(π1,π2)rk(π1,π2)]s

where [u]s denotes the sth entry of a vector u, Pt(π1,π2)
is the t-step Transition Probability Matrix(TPM, for
short). Consequently, the sth entry of the overall dis-
counted value vector of a strategy pair (π1,π2) to player
k will be given by:

vβ
k(s,π1,π2) =

∞

∑
t=0

β tEsπ1π2(Rt
k) (2)

where β ∈ [0,1).
Theorem 14)

Let (π1∗,π2∗)∈F1S ×F2S be a optimal strategy pair of Γβ ,
then (π1∗,π2∗) is optimal in the entire class of behavior
strategies. That is:

vβ
1(π1,π2∗)≤ vβ

1(π1∗,π2∗)

and

vβ
2(π1∗,π2)≤ vβ

2(π1∗,π2∗)

for all π1 ∈ F1B ,π2 ∈ F2B .
In the game theory, we also call that (π1∗,π2∗) ∈

F1S ×F2S is a Nash Equilibrium Point(EP, for short) of the
space F1B ×F2B . This theorem is vary important because
it suggests that we can retrieve the EP of vβ

k(s,π1,π2)
with (π1,π2) ∈ F1B ×F2B by just searching the space of
F1S ×F2S .
2.3 Zero-Sum Γβ
A Γβ will be called sum-zero if
r1(s,a1,a2)+ r2(s,a1,a2) = 0 (3)

for all s ∈ S,a1 ∈ A1(s),a2 ∈ A2(s). Thus we may drop
the superscript k by defining:

r(s,a1,a2) = r1(s,a1,a2) =−r2(s,a1,a2)
so, a extension of this definition lead to the following:

vβ (π1,π2) = vβ
1(π1,π2) =−vβ

2(π1,π2)

for all (π1,π2) ∈ F1B ×F2B .
Hence, in the case of zero-sum Γβ , the two sets of

inequalities defining an EP reduce to the single set of
saddle-point inequality as follow:

vβ (π1,π2∗)≤ vβ (π1∗,π2∗)≤ vβ (π1∗,π2) (4)

Formula 4 leads to another important theorem, that is,
if (θ1∗,θ2∗) ∈ F1B ×F2B is another pair of optimal strate-
gies, then we have the following equation:

vβ (θ1∗,θ2∗) = vβ (π1∗,π2∗) (5)

this simply means that in the case of zero-sum Γβ , the
overall discounted value vectors of all optimal strategy
pair coincide and can be denoted by:

vβ = (vβ (1),vβ (2), ...vβ (N))T

Thus, we can retrieve vβ by searching the space F1S ×
F2S instead of F

1
B ×F2B , and the result follows from The-

orem 1 and Formula 5.

3. Cooperative Coevolution Algorithm

Cooperative Coevolution Algorithm(CCEA, for short)5)

has been proposed to solve large and complex problems
through problem decomposition. It models an ecosystem
which consists of two or more species. Mating restric-
tions are enforced simply by evolving the species in sep-
arate populations. The species interact with one another
within a shared domain model and have a cooperative re-
lationship. The original architecture of CCEA for opti-
mization can be summarized as follows:
(1) Problem Decomposition.

Decompose a objective vector with high dimen-
sion into smaller subcomponents that can be han-
dled by conventional Evolution Algorithms(EAs).

(2) Subcomponents Interaction.
Combine the individual of current species with
representatives from other species to form a total
solution.

(3) Subcomponent Optimization.
Evolve each subcomponent separately using a cer-
tain EA.

An ideal CCEA should decompose a large problem
into subcomponents in which the no-linear relationship
among different subcomponents are minimal. In such
case, CCEA improves the performance significantly on
traditional EAs6). However, when the no-linear relation-
ship becomes strong, CCEA provide lower performance
than traditional EAs7). In this paper, a comparison is
made between Simple Evolutionary Algorithm(SEA, for
short) and CCEA to varify the capability of CCEA.

- 122 -

The 16th Game Programming Workshop 2011

�

�

�

��������

����	
���

�
�

�	
�

��
�

Fig. 2 The Chase Model

4. Game Model

In this paper, we construct a two-dimensional ARPG
model in which three distinct races(race A, B and C)
are designed with maximum level of L. Each race has
seven properties, which are Health(H, for short), Dodge
Rate(DR, for short), Skill Damage(SD, for short), Skill
Critical Hit Rate(SCHR, for short), Skill Cool Down
Time(SCDT, for short), Skill Range(SR, for short) and
Velocity(V, for short), as well as two skills. Except
H and SD which are monotone increasing functions of
l = {1,2, ...,L− 1,L}, all the other properties are de-
signed to be constant. SCHR denotes the probability that
player outputs the double damage. SCDT, belonging to
the time feature, means that how much time should the
character rest after an attack, and SR, a kind of space fea-
ture, denotes the range in which the skill can be used.
Specially, in the game world, Velocity is measured in pix-
els per frame instead of miles per second.
In order to evaluate the power of each race, a standard

square map with width w is introduced, and all battles
will be held in it. In this case, we only concern the ”1
versus 1” fighting type which contains two players(the
defender and the attacker), because it is the core of the
combat system of on-line ARPG. As a principle, after be-
ing attacked, the defender will be able to launch at least
one attack. And there is no constrain on battle time, that
is , players are allowed to fight as long as they like. The
basic design contents are as follows:
(1) The width of the standard map: w= 400
(2) Health: HA(l)> HB(l)> HC(l)
(3) Skill Damage:

SDmaxA (l)> SDmaxB (l)> SDmaxC (l)
(4) Dodge Rate: DRC > DRB > DRA
(5) SCDT: SCDTC > SCDTB > SCDTA
(6) Skill Range: SRC > SRB > SRA

������������������������	

	���

����������	
������
��
�
�����������	
����������
��������������	
���������
��������
����
������
�
�

��

�
��������������
�
��������
�����
����������������
����������
���������
����
��� ���
�
������
�����
��

������
�������������
����

���������������
�!���	����"�����
����������
��

�����������
���������������������
���������������������	
��������#$������
��������������
����
������
�
������������
�������
�

������������������������������

����������	
��
���
��
�����������	
��
�������

��

�
��������������
�
��������
����������������
�������
��
�����
��

������
�����������������
�����������������	
��
�����#$���
��
�������
�

Fig. 3 The Attacking Logic of Attacker and Defender

(7) Velocity: VC >VB >VA
where SDmaxk (l) denotes the maximum damage among
two skills of race k with level l.
In the combat system of on-line ARPG, the strate-

gies can be divided into three types, Strategy of Using
Skill(SUS, for short), Strategy of Motion(SM, for short)
and Strategy of Attacking Occasion(SAO, for short).
Also in the ”1 versus 1” fighting type, we design the low-
velocity race to play the role of defender, because if a
high-velocity defender chose the strategy of keeping es-
caping, the battle will become meaningless and uninter-
esting. Based on these ideas, we model the motion of the
players by using the Chase Model(refer to Fig. 2), and by
the theory of vector differential, we acquire the following
formula:

d |−→r |
dt

= |−→vatk|cosω−|−−→vde f |cosθ (6)

where −→r is the distance vector of the two players, −→vatk
and −−→vde f denote the velocity of attacker and defender.
According to Formula 6, the attacker should maximize

d|−→r | by maximizing cosω and the defender should min-
imize d|−→r | by maximizing cosθ . These can be recog-
nized as the optimal SMs of both players.
Before analyzing the optimal SAO, we introduce the

Combat Assistant Technology(CAT, for short) which has
been applied to most of on-line ARPGs(such as JXOn-
line, World of Warcraft, etc.). It helps players to run to-
wards the opponent automatically and attack if possible,
so the optimal SAO should be analyzed based on it. The
pseudo-code of the attacking logic is shown in Fig. 3, and
Fig. 4 demonstrates the attacking process of combat.

- 123 -

The 16th Game Programming Workshop 2011

� � � � � � ��

�	���� �	�����	����

�	�
��
�����

��	
�

�

�������������

Fig. 4 Attacking Process of Using The Combat Assistant Technology

After making an attack at point f , the attacker waits at
point f for SCDTatk frames, and the defender, by using
the CAT, will strike back at a point within (a,b] where he
can output the maximum damage because |ab| = |−−→vde f |.
So using the CAT to attack is the optimal SAO of the
defender. On the other hand, using the CAT, the attacker
could launch an attack in range (c,d], (d,e] and (e,g]with
the probability of P1, P2, P3. We define (P1,P2,P3) as the
Action Probability Vector(APV, for short) , which repre-
sents the action feature and can be retrieved through sta-
tistical analyze. Hence, the optimal SAO of attacker is
that making attack with the APV of the expert-level play-
ers.
Assuming the combat can be modeled by DCMDP, we

shall use the maximum lifetime of defender(Tde f) and
attacker(Tatk) to form the state space

S= {(0,1),(0,2), ...,(Tde f ,Tatk−1),(Tde f ,Tatk)}
in which the (0,0) state does not exist and Tde f ,Tatk are
functions of level l as follow:

Tde f (l) =

⌈
Hde f (l)
SDminatk (l)

⌉
Tatk(l) =

⌈
Hatk(l)
SDminde f (l)

⌉
(7)

whereHk(l) denotes the health value of k with level l, and
SDmink (l) is defined as the minimum damage among two
skills of k with level l.

5. Competitive Coevolutionary Framework

In this section, first, we model the combat process by
using the zero-sum Γβ process, in this step, the fitness
function will be constructed. Next, we will introduce
the competitive framework as well as demonstrate how
it works.
As the preceding section stated, there is no time con-

strain during fighting, that is, the combat can be regarded
as an infinite process, where players keep changing their
state from one to another by their actions. And this infi-
nite process can be evaluated by Γβ .
It is natural for any player that he(she) wants to max-

imize his(her) win probability during battles. Thus, we
shall use the increment of win probability from stage t to
t+1, as the expectation of immediate reward of the deci-
sion rule pair (ft ,gt). Let p1(t), p2(t) be the win proba-
bilities of player 1 and player 2 at stage t respectively,
then, by the fact that the larger t becomes, the higher
probability of game over will be, we obtain the follows:

∑
t→∞

p1(t)+ p2(t) = 1

from such formula, it can be inferred that an increment
of p1(t) will bring a potential decrement to p2(t) in the
future.
With these results, in this case, combat can be regarded

as the zero-sum game, and can be modeled by zero-sum
Γβ process. The the immediate reward vector and the
overall discounted value vector are defined as follows:

r(π1,π2) = (P1(π1,π2)− IN)Q

vβ (s,π1,π2) =
∞

∑
t=0

β t
[
Pt(π1,π2)r(π1,π2)

]
s
(8)

where

π1 = (f , f , f , f ,)
π2 = (g,g,g,,g,)
Q= (q1,q1, ...qN)T

qi =

{
1 si ∈ ST
0 si /∈ ST

(9)

ST denotes the absorbing state set in which the life-
time of attacker is 0, and particularly, in this case, the
vβ (s,π1,π2) will always converge into a certain value,
even though the discount factor, β , is set to 1.
Since the combat always starts from the state

(Tde f ,Tatk), denoted by sN , it is natural that we shall use
v1(sN ,π1,π2), denoting the win probability of defender,
as the fitness function of our evolutionary algorithm.
The competitive framework consists of two symmetri-

cal blocks(refer to Fig. 5), the left block denotes the evo-
lutionary process of π1 while the right block represents
π2. Both blocks use CCEA to search the solution space,

- 124 -

The 16th Game Programming Workshop 2011

���� ��� ����

��
�	
��

	��	�	����

���� ���� ���

��
�	
��

	��	�	�������

���������������������������������
��	
�

���� ��� ����

���
�	
��

	��	�	����

���� ���� ���

���
�	
��

	��	�	�������

��������������������������������
��	
�

Fig. 5 The Competitive Coevolutionary Framework

that is, each decision rule, f or g, is divided into N groups
which will be evaluated in turn. Such group, for example,
group i, denotes the probability vector on actions of state
i, that is, f (i) or g(i). Through the elite pair of current
generation, (f ∗,g∗), the two blocks of framework inter-
act in a competitive way, and this enables the framework
to lead such elite pair to converging in the decision rule
pair of an EP.
The pseudo-code of the algorithm is shown as follows:

(1) Create species sif for f (i) and s
i
g for g(i), where

i= {1,2, ...,N}.
(2) Initialize population for every species by using the

uniform distribution, where each bit of chromo-
some has the same probability to be a 1.

(3) Select a individual from each f (i) and g(i), ran-
domly, to form the initial elite decision rule pair
(f ∗,g∗).

(4) Set generation t = 0.
(5) Set i= 1.
(6) Evaluate the individuals of species sif with g

∗ as
well as f ∗(j), where j �= i.(maximize vβ)

(7) Replace the f ∗(i) by the current elite, if necessary.
(8) Select the outstanding individuals, and construct

the new probability distribution from them. Then
new generation can be obtained by sampling this
distribution and mutation.

(9) While(i<= N) set i= i+1, goto 6.
(10) Set i= 1,
(11) Evaluate the individuals of species sig with f ∗ as

well as g∗(j), where j �= i.(minimize vβ)
(12) Replace the g∗(i) by the current elite, if necessary.
(13) Select the outstanding individuals, and construct

the new probability distribution from them. Then
new generation can be obtained by sampling this
distribution and mutation.

(14) While(i<= N) set i= i+1, goto 11.

Table 1 The Attacking Times of Defender in a Round

Range (c,d] Range (d,e] Range (e,g]

(SK1A,SK1C) 2 1 1

(SK2A,SK1C) 2 2 1

(SK1A,SK2C) 2 1 1

(SK2A,SK2C) 2 2 1

(15) If the termination criteria are not met, set t = t+1,
goto 5.

6. Experiments and Results

In this section, we will use the proposed competitive
coevolutionary framework to retrieve the EP of a battle
group. A character, from race A with level 3, is chosen
as the defender, and with the same level, a character from
race C as the attacker. Also, for convenience, we define
SK1A,SK

2
A as the two skills of race A, similarly, SK

1
C,SK

2
C

for race C. In accordance with the basic design contents
mentioned before, we set the experiment environments as
follows:
(1) VA = 10, VC = 25, DRA = 0.3, DRC = 0.45,

HA(3) = 100, HC(3) = 60.
(2) Properties of SK1A: {SD(3) = 30,SR= 70,

SCDT = 1,SCHR= 0.1}.
(3) Properties of SK2A: {SD(3) = 20,SR= 70,

SCDT = 2,SCHR= 0.3}.
(4) Properties of SK1C: {SD(3) = 25,SR= 190,

SCDT = 13,SCHR= 0.3}.
(5) Properties of SK2C: {SD(3) = 25,SR= 190,

SCDT = 14,SCHR= 0.6}.
(6) The APV of attacker is (0.2,0.6,0.2).
(7) In CCEA, population size of each species = 100,

In SEA, population size = 500.
(8) Generation t = 600, Mutation Rate = 0.01.
We define the fighting round, a period of time, from at-

tacker launching an attack to the ending of his(her) wait-

- 125 -

The 16th Game Programming Workshop 2011

Fig. 6 The Probability Transition Matrix Defined by Skill Pair SKiA,SK
j
C

ing time. Such definition implies that attacker can attack
only one time in a round. Also, based on the experiment
environments, we obtain the attacking times of defender,
when players chose a certain skill pair and attacker at-

tacked in a certain range. The results are shown in Table
1.
By using these results, the probability transition matrix

defined by skill pair, SKiA,SK
j
C where i, j= {1,2}, can be

- 126 -

The 16th Game Programming Workshop 2011

 0.57

 0.572

 0.574

 0.576

 0.578

 0.58

 0 10 20 30 40 50 60 70 80 90 100

Fi
tn

es
s

V
al

ue
 o

f E
P

Executions

CCEA
SEA

Fig. 7 The Fitness of EP Retrieved by Each Execution

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

C
om

pu
ta

tio
n

Ti
m

e(
se

co
nd

s)

Executions

CCEA
SEA

Fig. 8 The Computation Time of Retrieving EP in Each Execution

calculated(refer to Fig. 6), then according to Formula 1,
we can retrieve the probability transition matrix defined
by a stationary strategy pair (π1,π2). Consequently, such
strategy pair can be evaluated by v1(sN ,π1,π2).
Besides the proposed algorithm, another one, whose

blocks use SEA instead of CCEA, is introduced for com-
parison. Considering the stochastic nature of the algo-
rithms, each of the programs is repeated 100 times. The
results are shown in Fig. 7 and Fig. 8.
According to the results in Fig. 7, both two algorithms

can retrieve the EP, (π1∗,π2∗), and we can obtain the ex-
ception and the variance of v1(sN ,π1∗,π2∗), as follows:

E(v1(sN ,π1∗,π2∗)) = 0.57474595
Var(v1(sN ,π1∗,π2∗)) = 1.41743336×10−8

(10)

Such data are very important because we can judge
whether the designed contents are well-balanced based
on it. Also, it can be seen from Fig. 8 that the CCEA
is much faster than SEA in searching EP of the solution
space, hence a better placement solution than using SEA.

7. Conclusion and Future Work

In this paper, we constructed a simple ARPG system
and modeled it by using the zero-sum Γβ process. We
noted that in the case of zero-sum Γβ , an EP of the en-
tire strategy space can be retrieved just by searching the
stationary strategy space, and all the overall discounted
value vectors of the EPs are coincide. Also, an evolution-
ary framework, which includes integration with competi-
tive coevolution and CCEA, has been proposed to search
the EP of combat. Based on the framework, we made
some experiments with certain environments. The results
showed that the EP can be retrieved, and by using CCEA,
the efficiency and capability of the framework have been
improved significantly.
In the future work, we will investigate another combat

type in which the battle time is constrained, and in such
type the strategies of players will no longer be stationary.

References

1) Leigh R., Schonfeld J., and Louis S. Using coevo-
lution to understand and validate game balance in
continuous games. Proceedings of the 10th Annual
Conference on Genetic and Evolutionary Computa-
tion, 1563-1570, ACM, 2008.

2) Chen Haoyang, Y. Mori, and I. Matsuba. Design
Method for Game Balance with Evolutionary Algo-
rithms using Stochastic Model. Proc. International
Conference on Computer Science and Engineering,
Shanghai, Oct. 2011.

3) Chen Haoyang, Y.Mori, and I. Matsuba. Evolution-
ary Approach to The Balance Problem of On-line
Action Role-playing Game. Proc. International Con-
ference on Computational Intelligence and Software
Engineering, Wuhan, Nov. 2011.

4) Filar J., K Vrieze. Competitive Markov Decision
Processes, Springer-Verlag, 1996.

5) M, Potter. and K, De Jong. A Cooperative Coevo-
lutionary Approach to Function Optimization, Proc.
of the Third Conference on Parallel Problem Solving
from Nature, pp.249-257, Jerusalem, Israel, 1994.

6) M, Potter. and K, De Jong. Cooperative Coevolu-
tion: An architecture for evolving coadapted sub-
components, Evolutionary Computation, 8(1):1-29,
2000.

7) R, P Wiegand. An Analysis of Cooperative Co-
evolutionary Algorithms, PhD thesis, George Mason
University, Fairfax, Virginia, 2004.

- 127 -

The 16th Game Programming Workshop 2011

