
The Design and Implementation of a Pattern-directed

MCTS-based Computer Go Program -- WINGO

Rou-Yu Lai

Department of Information

Management,

Chang Jung Christian

University,

Tainan, Taiwan, R.O.C.

qwertyuiopyo@gmail.com

Hsin-Hung Chou

Department of Information

Management,

Chang Jung Christian

University,

Tainan, Taiwan, R.O.C.

chouhh@mail.cjcu.edu.tw

Shun-Chin Hsu

Department of Information

Management,

Chang Jung Christian

University,

Tainan, Taiwan, R.O.C.

schsu@mail.cjcu.edu.tw

Shi-Jim Yen

Department of Computer

Science and Information

Engineering, National

Dong Hwa University,

Hualien, Taiwan, R.O.C.

sjyen@mail.ndhu.edu.tw

Abstract
In recent years, almost all the top programs
in the computer Go tournaments are
developed using Monte Carlo Tree Search
(MCTS), which brings the top programs
having strength to win against the top
professional human players on the 9 × 9
board.

In this paper, we introduce a new
computer Go program, WINGO. WINGO is
a pattern-directed MCTS-based 9X9
computer GO program, written in C++. The
pattern set of WINGO adopts the patterns of
a traditional knowledge-based computer go
program Dragon, including 3X3 and 5X5
patterns. Experiments show that it improves
the strength of WINGO with the Dragon
patterns adopted.
Keywords: Computer Go; Monte Carlo
Tree Search; Patterns.

1. Introduction

While the first computer Go program
proposed in the late 1960s, computer Go is
always one of the tough challenges in the

field of artificial intelligence. Comparing to
the other popular board games, the search
space for 19X19 Go is quite large, there are
319×19 ≈ 10170 distinct board states to be
considered. There has no simple and
reasonable evaluation function been found
for Go program so far. The direct way to
encode the Go knowledge into a program is
using the patterns. Patterns can be applied in
all stages of a game, from opening to
endgame. Almost all Go programs contain a
set of patterns and a pattern matching
function. In the early tournaments, the
strength of a Go program was relied on the
completeness of their pattern set. For
example, Taiwanese program Dragon[4],
developed by Professor Shun-Chin Hsu and
his student Dong-Yue Liu of National
Taiwan University, were remarkable for its
well-defined pattern set. Dragon contains
about five hundred patterns without
fixed-size, which describe not only the small
area patterns but also the higher-level
descriptions of the game states.

In this paper, we introduce a new

- 88 -

The 16th Game Programming Workshop 2011

computer Go program, WINGO. WINGO is
a pattern-directed MCTS-based 9X9
computer GO program, written in C++.
WINGO is constructed from an
MCTS-based program Cjugo[5], which was
developed by Professor Hsin-Hung Chou
and ever participated the tournament of
JAIST 2010 held in Kazanawa Japan. The
pattern set of WINGO adopts the patterns of
a traditional knowledge-based computer go
program Dragon, including 3X3 and 5X5
patterns. Experiments show that it improves
the strength of WINGO with the Dragon
patterns adopted.

The rest of this paper is organized as
follows: The second section introduces the
Monte Carlo Tree Search briefly. The third
section describes the pattern encoding
scheme of WINGO. The fourth section
shows the experimental results. At last, we
give conclusion in fifth section.

2. Monte Carlo Tree Search

In recent years, almost all the top programs
in the computer Go tournaments are
developed in Monte Carlo Tree Search
(MCTS)[3], which brings the top programs
having strength to win against the top
professional human players on the 9X9
board. Recently, the top programs have
reached the strength about six dan amateur
level on the 19X19 board.

MCTS is a kind of best-first search that
tries to find the best move and to keep the
balance between exploration and
exploitation of all move. MCTS was firstly
implemented in CRAZY STONE[3], the

winner in the 9X9 Go tournament at the
2006 Computer Olympiad. Together with
the emergence of UCT[6], the huge success
of MCTS stimulated profound interest
among Go programmers.

MCTS uses two main strategies: (1) A
simulation strategy gives the explorations on
the candidate moves played in the
Monte-Carlo simulations. (2) A selection
strategy, derived from the Multi-Armed
Bandit problem, selects the best move using
the results of previous explorations. The
more number of simulations, the quality of
the move-selection will be more accurate. It
derives that the strength of the program
would depend on the program parallelism
and the power of the hardware. However,
the parallelism and the power of the
hardware have the limitation. We need the
Go knowledge to help the simulation more
accurately. In the other words, each move of
the simulation is not totally random, but
directed by the patterns we built in.

Many enhancements of MCTS have
been proposed, such as Rapid Action Value
Estimation (RAVE)[7,8] and progressive
bias[1], to strengthen its effect. Most of
comprehensive studies were also focused on
the policy and better quality of the
playout[1,2,9].

3. Pattern Encoding

The pattern set of WINGO adopts about 600
3X3 patterns and 280 5X5 patterns of
Dragon. For each 3X3 pattern, we represent
the content of a board point by 2 bits:
EMPTY(00), BLACK(01), WHITE(10), and

- 89 -

The 16th Game Programming Workshop 2011

BOARDER(11). We encode each 3X3
pattern into an integer by a sequence of 16
bits. The 3X3 pattern sequence is shown in
Figure 1. Figure 2 shows a 3X3 pattern
instance with code 33963.

Fig. 1. 3X3 pattern sequence.

Fig. 2. 3X3 pattern instance.

We encode each 5X5 pattern into three
integers each represents 8 points by a
sequence of 16 bits. The 5X5 pattern
sequence is shown in Figure 3. Figure 4
shows a 5X5 pattern instance with code
(18496,0, 128).

Fig. 3. 5X5 pattern sequence.

Fig. 4. 5X5 pattern instance.

4. Experiments
We have conducted two experiments to
show that the pattern set improves the
performance of our program. The first one is
that the engine without patterns against
GNU GO 3.8 with level 10 and Komi 7.5
through KGS website. The second one is
that the engine with patterns against the
same opponent. We ran WINGO and GNU
GO on the computers with Intel Core Q8200,
4cores, 4G memory. The results are show in
Table 1 as follows.

Table 1. Experiment results.
engine\win rate Black White Average
WINGO
without pattern

20/60
� 33%

12/40
� 30%

32/100
� 32%

WINGO
with pattern

20/42
� 48%

36/62
� 58%

56/102
� 55%

- 90 -

The 16th Game Programming Workshop 2011

5. Conclusion

Experiments show that it improves the
strength of WINGO with the Dragon
patterns adopted, increasing the win rate
against GNU GO about 23%. In the future,
we will try to combine the pattern weight
defined in Dragon into our engine to make
the simulation more accurate.

Reference

[1] Chaslot, G., Winands, M., Bouzy, B.,
Uiterwijk, J. W. H. M., and Herik, H. J.
van den., Progressive Strategies for
Monte-Carlo Tree Search. Proceedings
of the 10th Joint Conference on
Information Sciences, pp.655-661, Salt
Lake City, USA, 2007.

[2] Chaslot, G., J-B. Hoock, J.-B, Perez, J.,
Rimmel, A., Teytaud, O. and Winands,
M. Meta, Monte-Carlo Tree Search for
Automatic Opening Book Generation.
Proceedings of the IJCAI’09 Workshop
on General Intelligence in Gmae
Playing Agents, pp. 7-12, 2009.

[3] Coulom, R., Efficient Selectivity and
Backup Operators in Monte-Carlo Tree
Search. Proceedings of the 5th
International Conference on Computer
and Games, Vol.4630 of Lecture Notes
in Computer Science, pp.72-83,
Springer, Turin, Italy, 2006.

[4] Dong-Yue Liu and Shun-Chin Hsu,
Design and Implementation of
Computer Go Program, National
Taiwan University, Department of
Computer Science & Information

Engineering, 1989.
[5] F. Karger and M. Babar,

MYGOFRIEND wins Go 9x9
Tournament, ICGA Journal, Vol. 33, No.
2, pp.169-179, 2010.

[6] Kocsis, L. and Szepesv'ari, C., Bandit
Based Monte-Carlo Planning. In J.
Furnkranz, T. Scheffer and M.
Spiliopoulou (eds.), Machine Learning:
ECML 2006, Lecture Notes in
Artificial Intelligence 4212,pp.282-293,
2006.

[7] Gelly, S. and Silver, D., Combining
Online and Offline Knowledge in UCT.
Proceedings of the 24th International
Conference on Machine Learning, pp.
273-280, Corvallis Oregon USA, 2007.

[8] Gelly, S. and Silver, D., Monte-Carlo
tree search and rapid action value
estimation in computer Go. Artificial
Intelligence, Vol. 175, No. 11, 2011.

[9] Hendrik, B., Adaptive Playout Policies
for Monte-Carlo Go. Master thesis,
Institut für Kognitionswissenschaft,
Universität Osnabruck, 2010.

- 91 -

The 16th Game Programming Workshop 2011

