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Abstract 
In recent years, almost all the top programs 
in the computer Go tournaments are 
developed using Monte Carlo Tree Search 
(MCTS), which brings the top programs 
having strength to win against the top 
professional human players on the 9 × 9 
board. 

In this paper, we introduce a new 
computer Go program, WINGO. WINGO is 
a pattern-directed MCTS-based 9X9
computer GO program, written in C++. The 
pattern set of WINGO adopts the patterns of 
a traditional knowledge-based computer go 
program Dragon, including 3X3 and 5X5 
patterns. Experiments show that it improves 
the strength of WINGO with the Dragon 
patterns adopted.  
Keywords: Computer Go; Monte Carlo 
Tree Search; Patterns. 

1. Introduction 

While the first computer Go program 
proposed in the late 1960s, computer Go is 
always one of the tough challenges in the 

field of artificial intelligence. Comparing to 
the other popular board games, the search 
space for 19X19 Go is quite large, there are 
319×19 ≈ 10170 distinct board states to be 
considered. There has no simple and 
reasonable evaluation function been found 
for Go program so far. The direct way to 
encode the Go knowledge into a program is 
using the patterns. Patterns can be applied in 
all stages of a game, from opening to 
endgame. Almost all Go programs contain a 
set of patterns and a pattern matching 
function. In the early tournaments, the 
strength of a Go program was relied on the 
completeness of their pattern set. For 
example, Taiwanese program Dragon[4], 
developed by Professor Shun-Chin Hsu and 
his student Dong-Yue Liu of National 
Taiwan University, were remarkable for its 
well-defined pattern set. Dragon contains 
about five hundred patterns without 
fixed-size, which describe not only the small 
area patterns but also the higher-level 
descriptions of the game states. 

In this paper, we introduce a new 
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computer Go program, WINGO. WINGO is 
a pattern-directed MCTS-based 9X9 
computer GO program, written in C++. 
WINGO is constructed from an 
MCTS-based program Cjugo[5], which was 
developed by Professor Hsin-Hung Chou 
and ever participated the tournament of 
JAIST 2010 held in Kazanawa Japan. The 
pattern set of WINGO adopts the patterns of 
a traditional knowledge-based computer go 
program Dragon, including 3X3 and 5X5 
patterns. Experiments show that it improves 
the strength of WINGO with the Dragon 
patterns adopted. 

The rest of this paper is organized as 
follows: The second section introduces the 
Monte Carlo Tree Search briefly. The third 
section describes the pattern encoding 
scheme of WINGO. The fourth section 
shows the experimental results. At last, we 
give conclusion in fifth section. 

2. Monte Carlo Tree Search 

In recent years, almost all the top programs 
in the computer Go tournaments are 
developed in Monte Carlo Tree Search 
(MCTS)[3], which brings the top programs 
having strength to win against the top 
professional human players on the 9X9
board. Recently, the top programs have 
reached the strength about six dan amateur 
level on the 19X19 board. 

MCTS is a kind of best-first search that 
tries to find the best move and to keep the 
balance between exploration and 
exploitation of all move. MCTS was firstly 
implemented in CRAZY STONE[3], the 

winner in the 9X9 Go tournament at the 
2006 Computer Olympiad. Together with 
the emergence of UCT[6], the huge success
of MCTS stimulated profound interest 
among Go programmers. 

MCTS uses two main strategies: (1) A 
simulation strategy gives the explorations on 
the candidate moves played in the 
Monte-Carlo simulations. (2) A selection 
strategy, derived from the Multi-Armed
Bandit problem, selects the best move using 
the results of previous explorations. The 
more number of simulations, the quality of 
the move-selection will be more accurate. It 
derives that the strength of the program 
would depend on the program parallelism 
and the power of the hardware. However, 
the parallelism and the power of the 
hardware have the limitation. We need the 
Go knowledge to help the simulation more 
accurately. In the other words, each move of 
the simulation is not totally random, but 
directed by the patterns we built in. 

Many enhancements of MCTS have 
been proposed, such as Rapid Action Value 
Estimation (RAVE)[7,8] and progressive 
bias[1], to strengthen its effect. Most of  
comprehensive studies were also focused on 
the policy and better quality of the 
playout[1,2,9]. 

3. Pattern Encoding 

The pattern set of WINGO adopts about 600 
3X3 patterns and 280 5X5 patterns of 
Dragon. For each 3X3 pattern, we represent 
the content of a board point by 2 bits:
EMPTY(00), BLACK(01), WHITE(10), and 
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BOARDER(11). We encode each 3X3 
pattern into an integer by a sequence of 16 
bits. The 3X3 pattern sequence is shown in 
Figure 1. Figure 2 shows a 3X3 pattern 
instance with code 33963. 

Fig. 1. 3X3 pattern sequence. 

Fig. 2. 3X3 pattern instance. 

We encode each 5X5 pattern into three 
integers each represents 8 points by a
sequence of 16 bits. The 5X5 pattern 
sequence is shown in Figure 3. Figure 4 
shows a 5X5 pattern instance with code 
(18496,0, 128). 

Fig. 3. 5X5 pattern sequence. 

Fig. 4. 5X5 pattern instance. 

4. Experiments 
We have conducted two experiments to 
show that the pattern set improves the 
performance of our program. The first one is 
that the engine without patterns against
GNU GO 3.8 with level 10 and Komi 7.5 
through KGS website. The second one is 
that the engine with patterns against the 
same opponent. We ran WINGO and GNU 
GO on the computers with Intel Core Q8200, 
4cores, 4G memory. The results are show in 
Table 1 as follows. 

Table 1. Experiment results. 
engine\win rate Black White Average
WINGO 
without pattern

20/60
� 33%

12/40
� 30%

32/100
� 32%

WINGO
with pattern

20/42
� 48%

36/62
� 58%

56/102
� 55%
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5. Conclusion 

Experiments show that it improves the 
strength of WINGO with the Dragon 
patterns adopted, increasing the win rate 
against GNU GO about 23%. In the future, 
we will try to combine the pattern weight 
defined in Dragon into our engine to make 
the simulation more accurate. 
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