
情報処理学会研究報告
IPSJ SIG Technical Report

Evaluating Complexity of Aspect-Oriented

Software Development Comparing to

Use Case Driven Software Development

Kiatsoongsong Weerayut†1 Camargo Cruz Ana Erika†1

Koichiro Ochimizu†1

Aspect-oriented software development (AOSD) with use cases proposed by

Ivar Jacobson is said to be an approach which helps increase maintainability

and reduce the effect of crosscutting concerns of the system implemented by

Use Case Driven Software Development (UDSD). However, there still has no

evidence to prove efficiency of AOSD over UDSD. This paper proposes the way

to evaluate how much AOSD helps increase the maintainability and how much

AOSD helps reduce the effect of crosscutting of the UDSD system.

1. Introduction

Nowadays, use case driven software development (UDSD) has broadly been used in

software industry [1]. However, during the use case realization, there occur two prob-

lems; scattering and tangling. Scattering is a situation that the codes that realize a

particular use case are spread across multiple components of the system. And tangling

is a situation that each component in the system contains the implementation to satisfy

different use cases. As a consequence, use cases cut across the system and then use

†1 Japan Advanced Institute of Science and Technology (JAIST)

cases are not kept separate from each other [2]. In software engineering, these problems

are called crosscutting concerns and separation of concerns problem[4].

Over the past decades, aspect-oriented programming (AOP) has been used in order to

modularize crosscutting concerns at the implementation phase [3]. Then, Ivar Jacobson

proposed aspect-oriented software development (AOSD) with use cases to complement

the concept of AOP. AOSD is a holistic approach to developing software systems with

aspects and is said to be the approach that helps reduce the effect of crosscutting con-

cerns of UDSD. As a result, the software systems built by AOSD is said to have more

maintainability than those built by UDSD.

Although AOSD has a possibility to improve problems in UDSD, but there are still no

evidence yet, so we have to define proper metrics to evaluate complexity of systems im-

plemented by both approaches. Then, we can compare those two systems implemented

in different approaches according to the measures of the defined metrics.

This paper reports the results of our research on the evaluation of AOSD complexity

in comparison to UDSD complexity to see how much AOSD can help improve main-

tainability and reduce the effect of crosscutting concerns in UDSD. In order to evaluate

these two approaches, we proposed one metric suite called the change impact metrics

suite and we applied metrics suite proposed by Conejero J. et al. [6] to our research.

This paper is divided into the following sections: section 2: Background, we present

a brief explanation of background knowledge needed to carry out our research. Section

3, 4, 5: Our Approach, we present our approach used in our research in order to achieve

our objectives. First, we describe about how to compare these two approaches. Then,

we explain about metrics suites used in our research; change impact metrics suite and

crosscutting concerns metrics suite. Section 6: Empirical Study and Results, we present

the case study and the results to validate our metrics. Section 7: Conclusion and Future

Works, we draw out our conclusions and describe our plans for future works.

2. Background

2.1 use case driven software development(UDSD)

Use Case Driven Software Development (UDSD) is an approach to develop software

system by using use cases. Use cases drive the whole development process since most

1 c© 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.9
2011/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

activities are performed starting from use cases. This leads to the increasing of sys-

tem’s understandability and maintainability [1]. UDSD process can be divided into five

phases and artifacts are created in each phase as shown in the table 1.

表 1 UDSD process and artifacts

Phase Artifacts

Requirements use case diagram and use case description

Analysis class diagram and collaboration diagram

Design class diagram and collaboration diagram

Implementation source code

Test test case and test results

After developers define the use cases in requirements phase, they define the compo-

nents and their relationships according to each use case. This activity can be called use

case realization. In this activity, use cases should have been separated from each other,

but on the other hand, there are two problems occur. These problems are:

• Tangling - a situation that the codes that realize a particular use case are spread

across multiple components of the system.

• Scattering - a situation that each component in the system contains the implemen-

tation to satisfy different use cases.

The example of these two problems is shown in Figure 1. In this figure, Hotel man-

agement system has three use cases; reserve room, check in customer, and check out

customer. After use case realization, there are seven components in the system. For re-

serve room use case, there are four components spread across the system. Consequently,

scattering occurs in this system. Moreover, for room component, there are three parts

in order to fulfill the three use cases. This is called tangling [2].

2.2 Aspect-Oriented Software Development (AOSD) with Use Cases

Aspect-oriented programming (AOP) is a programming paradigm that gives develop-

ers the means to separate code that implements crosscutting concerns and modularize

it into aspects [3]. However, we need a holistic approach to develop software systems

with aspects from requirements phase. This is aspect-oriented software development

(AOSD). Ivar Jacobson and Pan Wei NG applied use case concept to AOSD. They use

図 1 Tangling and Scattering Example [2]

the use cases as a representation of concerns. Moreover, they proposed the concept of

use-case slice that is used to separate the use cases from each other.

With the concept of aspects, we can separate some features of classes into separate

building blocks and separate extension features from the base features. Similar to this

concept, Ivar Jacobson and Pan Wei NG proposed the concept of use-case slice to pre-

serve the separation of concerns though the use case realization and implementation [3].

Use-case slice is a modularity unit that collates the specifics of a use case during use

case realization. Each use-case slice collates parts of classes, operations and so forth,

that are specific to a use case in a model. The task of composing these parts is left to

some composition mechanisms provided by AOP.

The use-case slice of hotel management system is shown in Figure 2. The horizontal

axis shows the element structure identifying the classes in the system. The vertical axis

shows the use case structure. It identifies the use cases being realized with a different

shade. Each horizontal row depicts a use-case slice containing the extensions of classes

needed to realize the use case for that row. Thus, we have the ReserveRoom use-case

slice, the CheckInCustomer use-case slice, and the CheckOutCustomer use-case slice.

Each use-case slice contains partial classes specific to the use case realization. If we

want complete class definitions, all we need to do is merge all the use-case slices.

AOSD process is the same as UDSD process but in analysis and design phase, we

create use-case slice instead of class diagram.

2 c© 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.9
2011/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

図 2 Use-case Slice Example [2]

3. How to Compare UDSD and AOSD

Because AOSD added new constructs to the systems; aspects, advices and intertype

declarations. In order to compare systems implemented by different approaches, we need

mechanisms or rules to normalize them into the same level of abstraction. Figueiredo,

E. et al. proposed a generic concern-oriented meta-model of the structural abstractions

defined for aspect-oriented system [7] as shown in Figure 3. An aspect-oriented system

consists of a set of components. A component has an interface, a set of attributes, a

set of operations and a set of declaration. An operation consists of a return type, a set

of parameters, a pointcut expression, and a set of statements. A declaration can also

have a pointcut expression. On top of the structure, we can define concerns. A concern

is not an abstraction of a modeling or programming language, such as components and

operations. However, a concern can be considered as an abstraction which is addressed

by those elements that have the purpose of realizing it.

This structure is abstract enough to be instantiated for different modeling and pro-

gramming languages. In our research, we focus on the systems implemented by UDSD

and systems implemented by AOSD. Therefore, we instantiate this meta-model struc-

ture for UDSD and AOSD as shown in Table 2. For example, the instantiation for

system element is UDSD system and AOSD system for UDSD and AOSD respectively.

For concern element, we refer to use case in both approaches. The component in UDSD

図 3 Abstract Meta-Model of Aspect-Oriented Systems [7]

is class or interface. But in AOSD, there are class, interface and aspect as components.

表 2 Meta-Model Instantiation for UDSD and AOSD Systems

Element UDSD AOSD

System UDSD System AOSD System

Concern Use Case Use Case

Component Class and Interface Class, Interface, and Aspect

Interface Method Signature Method Signature

Attribute Class Variable and Field Class Variable, Field, and Intertype Attribute

Operation Method and Constructor
Method, Constructor, Intertype Method and Con-

structor, and Advice

Declaration - Pointcut and Declare Statement

4. Change Impact Metrics Suite

One of our objectives is to evaluate how AOSD approach improves maintainability of

UDSD systems. Maintainability means the ease with which a software system or com-

ponent can be modified to correct faults, improve performance or other attributes, or

adapt to a changed environment [8]. From this definition, the maintainability directly

relates to the change to the system. Therefore, we propose the metrics suite to measure

how system is affected by the change.

4.1 Components and Relationships

In UDSD and AOSD process, there are products created during each phase. These

products are created in form of UML diagrams. In fact, there is the same characteristic

amongst those diagrams. The diagram consists of components and relationships be-

tween components. We can conclude the components and relationships in each diagram

as shown in Table 3.

3 c© 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.9
2011/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

表 3 Component and Relationship of System’s Diagrams

Approach Diagram Component Relationship

UDSD

Use Case Diagram Use Cases Use Case Associations

Class Diagram Classes Class Associations

Collaboration Diagram Classes Method Calls

AOSD

Use Case Diagram Use Cases Use Case Associations

Use-Case Slice Classes and Aspects

Associations of Class and Class,

Class and Aspect, and Aspect

and Aspect

Collaboration Diagram Classes and Aspects
Method Calls and Intertype

Operation and Advice Calls

4.2 Change Impact Metric Definition

When the change occurs, software systems have to be modified. The system S after

modifying can be divided into four parts;

• Added Part - the part that new components and new relationships are introduced

to the system. It consists of components, Add(c) and the relationships, Add(r).

• Modified and Derived Part - the part that existing components and relationships

have to be modified or reorganized because of the change. It consists of components,

Mod(c) and the relationships, Mod(r).

• Removed Part - the part that components and relationships have been removed

from the system after modifying the system to deal with change. It consists of

components, Rem(c) and the relationships, Rem(r).

• No Change Part - the part that is not modified or removed from the system by the

change. It consists of components, Noc(c) and the relationships, Noc(r).

The change impact metric is a metric that measures how much the system is affected

by the change comparing to the whole system. The detail of change impact metrics

suite is shown in Table 4.

For the change impact metric, we can apply this metric to measure the impact of

change in the level of each diagram defined earlier in Table 3 or for the entire system

by counting all the components and relationships from every diagram created from

requirements, analysis and design phase.

表 4 Change Impact Metrics Suite

Metric Equation Description

Imp(c) = Add(c) + Mod(c) + Rem(c) impact of change on components

Imp(r) = Add(r) + Mod(r) + Rem(r) impact of change on relationships

Sys(c) = Add(c) + Mod(c) + Rem(c) + Noc(c) components in the entire system

Sys(r) = Add(r) + Mod(r) + Rem(r) + Noc(r) relationships in the entire system

I =
Imp(c) + Imp(r)

Sys(c) + Sys(r)
degree of change impact

5. Scattering, Tangling, and Crosscutting Metrics Suite

In our research, one of our objectives is to evaluate the reduction of crosscutting

concerns in AOSD over UDSD. Conejero J. et al. proposed metrics suite for crosscut-

ting concerns as predictors of software instability [6]. We applied this metrics suite in

our research because it is well-defined and relevant to our objective.

5.1 Identification of Crosscutting

Conejero J. et al. defined the dependency matrix to trace the dependency between

use case and module. For example, in a software system, there are 5 use cases and 6

modules. The dependency of this system is shown in Table 5. 1 in a cell means that

class of the corresponding column contributes to addresses use case of the correspond-

ing row. On the other hand, 0 means there is no dependency between class of the

corresponding column and addresses use case of the corresponding row. If we consider

the row of dependency matrix, we can trace the dependency from use case to module

and can count the number of scattering for each use case. For example, use case 1 has

dependency to module 1 and 4, so the number of scattering is equal 2. And if we con-

sider the column of dependency matrix, we can trace the dependency from module to

use case and can count the number of tangling for each module. For example, module

1 has dependency to use case 1, 2 and 3, so the number of tangling is equal 3.

The crosscutting product matrix is obtained through the multiplication of depen-

dency matrix and transpose of dependency matrix. The crosscutting product matrix

shows the quantity of crosscutting relations as shown in Table 6. In Table 6, we show

the result of multiplication of dependency matrix in Table 5 and transpose of it. This

4 c© 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.9
2011/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

表 5 Example of Dependency Matrix

Module

m[1] m[2] m[3] m[4] m[5] m[6]

U
s
e

C
a
s
e

uc[1] 1 0 0 1 0 0

uc[2] 1 0 1 0 1 1

uc[3] 1 0 0 0 0 0

uc[4] 0 1 1 0 0 0

uc[5] 0 0 0 1 1 0

matrix is used to derive the final crosscutting matrix as shown in Table 7. A cell in

the final crosscutting matrix denotes the occurrence of crosscutting, but abstracts the

quantity of crosscutting. In the crosscutting matrix, the diagonal cells are set to be

zero because a use case cannot crosscut itself.

表 6 Example of Crosscutting Product Matrix

Use Case

uc[1] uc[2] uc[3] uc[4] uc[5]

U
s
e

C
a
s
e

uc[1] 2 1 1 0 1

uc[2] 1 3 1 1 1

uc[3] 0 0 0 0 0

uc[4] 0 1 0 1 0

uc[5] 1 1 0 0 2

表 7 Example of Crosscutting Matrix

Use Case

uc[1] uc[2] uc[3] uc[4] uc[5]

U
s
e

C
a
s
e

uc[1] 0 1 1 0 1

uc[2] 1 0 1 1 1

uc[3] 0 0 0 0 0

uc[4] 0 1 0 1 0

uc[5] 1 1 0 0 0

In our research, we use the union of all class diagrams from all use cases in UDSD

and the union of all use-case slices from all use cases in AOSD as materials to create

dependency matrix.

5.2 Metrics for Scattering, Tangling and Crosscutting

NScattering of a use case sk is the number 1’s in the corresponding row (k) of the

dependency matrix:

NScattering(sk) =

|T |∑
j=1

dmkj (1)

Where |T | is the number of modules and dmkj is the value of the cell [k,j] of the de-

pendency matrix. This metric measures how scattered a use case is. This NScattering

metric is normalized to obtain a value between 0 and 1. Then, Degree of scattering of

the use case sk is defined as:

Degree of scattering(sk) =

∑|T |

j=1
dmkj

|T | if
∑|T |

j=1
dmkj > 1

0 if
∑|T |

j=1
dmkj = 1

(2)

The closer to zero this metric is, the better encapsulated the use case is. In order to

measure the scattering of the system, Global scattering (GScattering) is the average of

the Degree of scattering values for each use case:

GScattering =

∑|S|
i=1

Degree of scattering(si)

|S| (3)

Where |S| is the number of use cases.

NTangling for the module tk are defined, where |S| is the number of use cases and

dmki is the value of the cell [k,i] of the dependency matrix:

NTangling(tk) =

|S|∑
i=1

dmik (4)

This metric measures the number of use cases addressed by a particular module. Sim-

ilar to the scattering metrics, we defined Degree of tangling and GTangling to represent

normalized tangling for module tk and global tangling, respectively:

Degree of tangling(tk) =

∑|S|

i=1
dmik

|T | if
∑|S|

i=1
dmik > 1

0 if
∑|S|

i=1
dmik = 1

(5)

5 c© 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.9
2011/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

GTangling =

∑|T |
j=1

Degree of tangling(tj)

|T | (6)

Metrics for crosscutting cosist of Crosscutpoints, NCrosscut and Degree of crosscut-

ting extracted from the crosscutting product matrix and the crosscutting matrix. The

Crosscutpoints metric for a use case sk is the number of modules where sk is crosscut-

ting to other use cases. The Crosscutpoints for sk is the value of the cell in the diagonal

of the row k or cell [k,k] (ccpmkk) in the crosscutting product matrix.

Crosscutpoints(sk) = ccpmkk (7)

The NCrosscut metric for the use case sk is the number of use cases crosscut by sk

calculated by the addition of all cells of the row k in the crosscutting matrix:

NCrosscut(sk) =

|S|∑
i=1

ccmki (8)

From Crosscutpoints and NCrosscut, the Degree of crosscutting of a use case sk is the

normalization between 0 and 1, so that the use case with lower value for this metric is

better modularized.

Degree of crosscutting(sk) =
Crosscutpoints(sk) + Concerns crosscut(sk)

|S| + |T | (9)

6. Empirical Study and Results

6.1 Case Study: ATM System

In our research, we apply our metrics to ATM system which is introduced in [9]. In

the requirements phase, we create the use case model in the same way for both UDSD

and AOSD as shown in Figure 4. Then, in analysis and design phase, in UDSD, we cre-

ate class diagram and collaboration diagram. But in AOSD, we create use-case slice and

collaboration diagram based on use-case slice. To measure change impact metric, we

need to apply some changes to the system. In ATM system, we make new requirement

by adding new use case to the system.

図 4 ATM System Use Case Diagram

6.2 Measures of Change Impact Metrics and Statistical Analysis

We measured the change impact metrics by collecting the number of components

and relationships in each diagram and calculated the degree of change impact metric

for each diagram. Moreover, for the overall impact of the change, we collected com-

ponents and relationships in every diagram and calculated the metric. The results of

the measurement of the degree of change impact I are shown in Table 8. According to

the results, we can see that the measures of AOSD are lower than UDSD, so we can

conclude that the maintainability of AOSD is higher than UDSD.

Since, only from raw data, it is not enough to lead us to the conclusion, so we analyzed

these data statistically using T-test. The t-test is a statistical data analysis procedure

to test whether or not the two independent populations have different mean values [10].

The final result of t-test is the p-value that is the probability value of a t-test. If the

p-value is less than 0.05, we conclude that we found a statistically significant difference

between the two groups.

According to results of t-test calculation, the p-value is equal 0.0109 which is less

than 0.05, so we can conclude that our results for degree of change impact I metric can

be used to identify the difference between the ATM systems implemented by UDSD

and AOSD in term of maintainability. In this case, the AOSD can help increase main-

tainability on UDSD according to the raw data of measurements and the difference is

significant according to the statistic analysis.

6 c© 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.9
2011/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

表 8 Measures of Change Impact Metric

Phase Diagram
UDSD AOSD

Imp(c)+

Imp(r)

Sys(c)+

Sys(r)
I

Imp(c)+

Imp(r)

Sys(c)+

Sys(r)
I

Requirements
Use Case Dia-

gram
3 10 0.300 3 10 0.300

Analysis

Class Diagram/

Use-Case Slice
26 76 0.342 24 86 0.279

Collaboration Di-

agram
33 116 0.284 30 121 0.248

Design

Class Diagram/

Use-Case Slice
32 98 0.327 30 117 0.256

Collaboration Di-

agram
40 141 0.284 38 151 0.252

Overall 134 441 0.304 125 485 0.258

6.3 Measures of Scattering, Tangling, and Crosscutting Metrics and Sta-

tistical Analysis

For this metrics suite, we use the class diagrams in UDSD and the use-case slices in

AOSD from analysis and design phase as materials to trace the dependency between

use cases and modules.The measures of scattering, tangling, and crosscutting metrics

for both UDSD and AOSD system at analysis and design phase are shown in Table 9.

表 9 Measures of Tangling Metric

Metric
UDSD AOSD

Analysis Design Analysis Design

GScattering 0.45 0.52 0.35 0.42

GTangling 0.34 0.32 0.21 0.20

Average of Degree of

crosscutting
0.44 0.49 0.34 0.39

Moreover, we did t-test for GScattering, GTangling and average of Degree of crosscut-

ting to prove whether the differences between the measures have statistical significance

or not. The results of t-test show that p-values of all metrics are in between 0.08 - 0.13

which are higher than 0.05. Therefore, we can conclude that the differences between

measures of UDSD system and AOSD system are not statistical significant. Therefore,

we cannot conclude that AOSD has less effect of crosscutting concerns than UDSD.

6.4 Effect of AOSD Characteristic on Our Results

Our results of measurement show that the differences of AOSD and UDSD are quite

small. After observations, we conclude that the efficiency of AOSD is lower than we

expected because of the use of non-use-case-specific slice in AOSD. Ideally, in a tangled

component or component that contains several parts fulfilling different use cases, these

parts are not related as shown in Figure 1. AOSD puts the specific parts in aspects

and use-case slice as shown in Figure 2. However, practically, in tangled component,

these parts have some methods that are used in many use cases which we call “common

parts”. The practical case for crosscutting concerns is shown in Figure 5. For example,

in the Room class, there is a method called retrieve() to retrieve data of a room. This

method is used in common for all use cases. Therefore, it is put in the common parts.

図 5 The Practical Case for Crosscutting Concerns

AOSD provides non-use-case-specific slice(NUCS) to manage the common parts.

When we realize use cases, if there are methods that are used in many use cases,

we put these methods in NUCS slice. As a result, for scattering, tangling, and cross-

cutting metrics, the use case still has the dependency to the base classes?1 and also has

a dependency to an aspect. Consequently, use cases are more scattered than the ideal

?1 The base class means a class that is used to fulfill a certain use case but it is also used by other

use cases. After applying aspects to encapsulate the parts that are specific to a certain use case,

there are still base classes for aspects to refer and merge the specific parts together.

7 c© 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.9
2011/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

case of crosscutting concerns. Some classes that have common parts are still tangled

because use cases use the common parts, and then there still has dependency relation-

ship between use case and class. Moreover, use cases cut across each other because they

use the same methods in common parts. For the change impact metrics, some classes

still have dependency to the base classes to access the common parts’ methods and also

have dependency to an aspect. Therefore, when change occurs, the change can affect

the base classes, and then the number of components and relationships in modified part

will increase from the ideal case of crosscutting concerns.

To sum up, the use of NUCS slice hinders the efficiency of AOSD on the improve-

ment of maintainability and the reduction of crosscutting concerns of UDSD. If we

ignore the use of NUCS slices, we have to duplicate the common methods and put the

common parts in the aspect in each use-case slice. The results measured from the ATM

system implemented by AOSD without NUCS slice are much lower than AOSD with

NUCS. Moreover, the t-test results show the p-values of all metrics are a lot lower than

0.05. This means that the differences between measures of UDSD and AOSD without

NUCS have definitely statistical significances. However, ignoring the use of NUCS and

duplicating the common parts into each aspect lead to lower reusabiliity of the system.

7. Conclusion and Future Works

In this paper, in order to compare UDSD and AOSD, we proposed change impact

metrics suite to evaluate the maintainability of the system and we applied scattering,

tangling, and crosscutting metrics suite proposed by Conejero J. et al. to evaluate the

effect of crosscutting concerns in the system.

The results of empirical study show that AOSD system is more maintainable and

has less effect of crosscutting concerns than UDSD system but with small differences.

This is because of the occurrence of common parts which AOSD provides non-use-case-

specific(NUCS) slice to contain them. As a result, use case still has the dependency

to the base class in common parts and some classes still has relationships to the base

classes. Therefore, the efficiency of AOSD is hindered by the use of NUCS slices. How-

ever, if we remove the use of NUCS slices, it reduces the reusability of the system.

Our plans for future works, we will apply our metrics to more case studies because

the case study that we used in our research was derived from textbook, so it is not

the example from the real projects. Moreover, for the change impact metrics, the com-

plexities of all components and relationships are not equal, so we should consider the

complexity of them and refine our change impact metrics. Additionally, we will explore

more about other approaches in AOSD proposed by Ivar Jacobson such as the approach

for separating nonfunctional concerns from the functional concerns and the approach

for separating platform-specific concerns from non-platform-specific concerns.

参 考 文 献

1) Ivar Jacobson, Grady Booch, and James Rumbaugh. “The Unified Software De-

velopment Process”. Addison Wesley Longman Inc, 2000.

2) Ivar Jacobson, and Pan-Wei Ng. “Aspect-Oriented Software Development with

Use Cases”. Pearson Education Inc, 2004.

3) Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,

Jean-Marc Loingtier and John Irwin. “Aspect-Oriented Programming”. Computer

Science Volume 1241/1997, pp. 220-242, 1997.

4) Tarr, P. et al. “N Derees of Separation: Multi-Dimensional Separation of Con-

cerns”. Proceedings of the 21st International Conference on Software Engineering,

May 1999.

5) Everald E. Mills. “Software Metrics”. SEI Curriculum Module SEI-CM-12-1.1,

December 1998.

6) Conejero, J., Figueiredo, E., Garcia, A., Hernandez, J., Jurado, E. “Early Cross-

cutting Metrics as Predictors of Software Instability”. In 47th International Con-

ference Objects, Models, Components, Patterns (TOOLS), 2009.

7) Figueiredo, E. et al. “On the Maintainability of Aspect-Oriented Software: A

Concern-Oriented Measurement Framework”. Proc. of European Conf. on Soft.

Maint. and Reeng. (CSMR). Athens, 2008.

8) D.M. Coleman, D. Ash, B. Lowther, and P.W. Oman. “Using Metrics to Evaluate

Software System Maintainability”. Computer, vol. 27, no. 8, pp. 44-49, Aug. 1994.

9) Hassan Gomaa. “Designing Concurrent, Distributed, and Real-Time Applications

with UML”. Addison-Wesley, Object Technology Series, 2000.

10) Simon Hurst. “The Characteristic Function of the Student-t Distribution”. Finan-

cial Mathematics Research Report No. FMRR006-95, Statistics Research Report

No. SRR044-95, 1995.

8 c© 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.9
2011/11/2

