
IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011)

Regular Paper

Performance Evaluation of a Distributed File System

with Locality-Aware Metadata Lookups

Nan Dun,†1 Kenjiro Taura†1

and Akinori Yonezawa†1

GMount is a high-performance distributed file system with locality-aware
metadata lookups and small installation effort. GMount organizes computer
nodes in a decentralized hierarchical overlay to unify separate local file systems
into a global shared namespace and achieve locality-aware metadata lookups.
GMount offers not only better performance when application executes with
considerable data access locality, but also the ability to effortlessly and rapidly
enable data sharing among clusters, clouds, and supercomputers. This paper
presents performance evaluation of the latest GMount implementation by using
both micro-benchmark and real-world data-intensive applications. Experimen-
tal results demonstrate that GMount has highly scalable metadata and I/O
operation performance when data access locality is common, and the perfor-
mance of GMount is practically useful for routine data-intensive computing
practice.

1. Introduction

Distributed file systems have been used as an indispensable data sharing ap-
proach for data-intensive distributed computing. Nevertheless, especially in wide-
area computing environments, traditional distributed file systems can encounter
four problems due to limited metadata operation scalability and deployment com-
plexity.

High-Latency Metadata Operation Existing distributed file systems usually
adopt an architecture consisting of centralized metadata server and multi-
ple data storage server, which can lead to nontrivial problem in high-latency
wide-area environments. Specifically, metadata lookup operations will suffer
from the high network latency when requesting clients are located far away

†1 Graduate School of Information Science and Technology, The University of Tokyo

from the central metadata server. It is particularly inefficient when the target
data is stored close to the clients, but the metadata of the target data needs
to be retrieved from the distant metadata server. But on the other hand,
data-intensive applications have a tendency of data access locality, which can
be achieved by either application its own inherent structure or file affinity job
scheduling from workflow management system 1). Therefore, it is important
that distributed file system should take advantage of data access locality to
optimize overall application execution performance by reducing the latency
of metadata operations in wide-area environments.

Limitation of Dedicated File Servers Conventional distributed file system usu-
ally uses dedicated filesystem servers (both for metadata server and data
storage server) to serve file requests from multiple computer nodes. First,
this design limits the scalability when the number of computer nodes in-
creases and exceeds the capacity of dedicated file servers. Second, this design
does not offer the co-location of data and computation, in which data can be
stored and processed on computer nodes locally (e.g., on the local filesystems
of computer nodes) to achieve better I/O throughput.

High Setup Cost The installation of most distributed file systems requires so-
phisticated system knowledge and, sometimes, root privilege. There is an
extra setup cost if the filesystem depends on a heavy stack of software. In
large-scale environments having many servers, the deployment of distributed
file system, usually undertaken by system administrators, is considerable
complex, laborious, error-prone, and tedious for general non-privileged users.

Cross-Domain Restrictions Realistic domain policies and restrictions impose
additional challenges to installing existing distributed file systems across dif-
ferent administration domains. For example, different domains have different
user sets and security policies. Internal dedicated file servers are not allowed
to be exported to computer nodes in other domains. Other restrictions of net-
work configurations such as NAT or firewall, can further limit the feasibility
to build a common middleware over different administration domains.

Being aware of these problems, we propose GMount — an instantaneously de-
ployable user-level filesystem with locality-aware metadata lookups. By GMount,
non-privileged users are able to effortlessly and quickly install a distributed file

110 c© 2011 Information Processing Society of Japan



111 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

system on arbitrary resources they can access. More important, the metadata
operation performance of GMount can scale in the wide-area environments by
making use of the data access locality of applications. We have illustrated the
design and a prototype implementation of GMount in our previous paper 2). This
paper presents the performance evaluation of the latest GMount implementation
with several performance enhancements. As a comparison with an existing dis-
tributed file system, we particularly study the impact of data access locality on
overall scalability and performance of running real-world applications.

2. System Organization

2.1 Overview
Figure 1 shows the architecture of GMount distributed file system. GMount is

constructed from a standalone FUSE 3)-based remote file system called SSHFS-
MUX 4) (i.e., sshfsm in Fig. 1). SSHFS-MUX enables non-privileged users to
transparently manipulate files on multiple remote machines via one mountpoint
on local file system (with the union file system semantics 5)), only requiring that
users can login to remote machines by SSH.

By a scalable spanning tree based algorithm and two SSHFS-MUX mount
operations (i.e., Union-Mount and Cascade-Mount, see our previous paper 2) for
more details), separate computer nodes are organized in a hierarchical overlay

Fig. 1 System architecture of GMount.

in order that: 1) individual namespaces of local filesystems are unified into one
global shared namespace, and 2) clients carry out metadata lookups in a locality-
aware manner.

In summary, the overlay is constructed as follows. First, separate nodes are
grouped according to their network proximity, such as network latency or physical
network layout, in order that nodes within the same group are able to commu-
nicate with low latency (e.g., group A with node a, c, d, and e). Next, for each
group of nodes, one representative node (root node of the tree of this group) is
elected to unify the local namespaces of all nodes (e.g., node a for group A and
node b for group B). Then, the individual unified namespaces from every group
are exported and unified in the same way among representative nodes (i.e., node
a and b).

SSHFS-MUX is implemented in about 6000 lines of C codes and requires
only standard SFTP server 6) installed beforehand. GMount uses GXP paral-
lel/distributed shell 7) as the distributed loader of GMount to invoke SSHFS-
MUX processes in parallel. These two factors allow users to efficiently install
GMount in large-scale distributed environments. Figure 2 illustrates the execu-
tion flow of GMount.

Fig. 2 Execution flow of GMount.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan



112 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

Fig. 3 Comparison of file lookup latency using different architectures.

2.2 Locality-Aware Metadata Lookups
Unlike distributed file systems with central metadata server, there is no cen-

tralized metadata repository in GMount and all metadata manipulations are
directly performed on the local file systems of the nodes that store the data.
Clients lookup files in a location-affinity order over the entire overlay. Specif-
ically, a file lookup first takes place in the client’s own local namespace, then
this searching is expanded to the namespaces of adjacent nodes (i.e., in the same
cluster), and finally floods to other distant nodes until the target data is found.
Using Fig. 1 as an example, a client in site A, say node c, first searches the target
file within nodes (i.e., a, c, d, and e) of site A, and stops searching if the file is
found. Otherwise, the lookup request is forwarded by node a to nodes of group
B until the request is satisfied (i.e., file is finally found or does not exist in any
node). If there are additional sites, such as another site C and D, node a will
forward the search request sequentially, also in a locality-aware manner based on
the network affinity between these sites.

Figure 3 summarizes the circumstances when GMount performs better or
worse than the distributed file system using central metadata server. For central
metadata server approach, the latency of file lookup is determined by the distance
between metadata server and the client. For GMount, the latency of file lookup
depends on how target file is close to the requesting client. As a result, GMount
can outperform central metadata server approach if clients tend to have more

data access in adjacent nodes. However, GMount can also fall behind the central
metadata server approach when there are more requests for distant files.

The approach of GMount is particularly effective for the kind of distributed
applications in which more data is manipulated locally and separately. For exam-
ple, many data-intensive applications consist of a large amount of jobs to process
data separately in parallel, and many intermediate files are created, modified,
and finally deleted during the execution. Therefore, synchronizing the updates
of these short-life and merely-shared intermediate files can be an overhead for cen-
tral metadata management, especially in the high-latency environments. How-
ever, for those distributed applications in which files traversal (e.g., “find” or
“ls -R” commands) is common or most data is globally shared, GMount could
not outperform the central metadata server approach.

2.3 Performance Improvements
Our evaluation of previous GMount implementation has pointed out two ma-

jor problems that restrict the I/O performance of GMount 2): 1) limited SSH
bandwidth, and 2) congested I/O in hierarchical overlay.

2.3.1 Limited SSH Transfer Rate
Using OpenSSH 6) as data transfer channel can suffer from a low throughput

because of limited buffer size and SSH encryption overhead. While the SSH
encryption overhead is ignorable because of current fast CPUs, limited trans-
fer buffer will significantly degrade the performance in long fat network. This
problem has been well illustrated in previous SSH study 8) and HPN-SSH 9) is a
workaround proposed for this problem.

However, applying HPN-SSH requires to patch existing OpenSSH installa-
tion in servers, which leads to additional setup effort. By the hints from the
“directport” option of original SSHFS 10), we propose a simpler and straightfor-
ward workaround. We implemented a proxy-like TCP server waiting for client
connections instead of using default SSH ports. When a client initials the SFTP
request to the server via the raw socket connection, the TCP server accepts the
connection, starts up the sftp-server process locally, and creates a socket pair
to bridge the incoming connection and the input/output streams of sftp-server
process 6).

This approach honours the underlying SFTP protocol but allows us to use raw

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan



113 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

socket instead of SSH. It does not only bypass the SSH limitations but also
provides a chance for user-level program to do TCP-tuning or simply leave it
to underlying kernel TCP-tuning routines 11). Though using raw socket for data
transfer may raise data security and integrity concerns in untrusted environments,
user can return to using default SSH channel, or apply HPN-SSH for better
performance without scarifying data security.

2.3.2 Congested I/O in Overlay
The original motivation of constructing the hierarchical overlay is to unify

separate namespaces and perform file lookups. Though I/O data traffic can also
pass (more specifically, being routed) through overlay, it is inefficient and leads
internal node to be a bottleneck.

Therefore, the optimal approach is to enable client to directly access a file for
I/O operations if the client knows the storage location of the target file, such as
the IP address of server that stores this file. However, since node is mounted via
FUSE, which means that we are only able to pass information through standard
file system interfaces. Thus, in the case of cascade mount, the client becomes
blind to where the target file originally comes from.

It is virtually impractical to modify the interface of FUSE (requires modifying
the kernel module) to meet our needs. One possible solution is inspired by the
“use ino” option in FUSE 3), which allows SSHFS-MUX program to set the inode
number and pass it to stat() file system call. The trick is using the inode number
to piggyback the node information (i.e., index of node) of the file storage location
and let client use this information to establish direct connection for data I/O.
Note that the approach does not broke the properties of inode number as long as
its uniqueness is guaranteed. As a result, clients establish extra direct connections
(separate from the connections used by the overlay) on demand to the nodes that
hold the target data for I/O operations, and the overlay is only used for metadata
operations.

3. Evaluation

3.1 Experimental Environments
Our experiments used the InTrigger multi-cluster platform 12), consisting of

16 sites of clusters with approximately 400 nodes in total. The sites are ge-

Fig. 4 Configuration of experimental environments.

ographically distributed in universities and research institutions of Japan. All
InTrigger servers have a uniform software installation and configuration: Linux
kernel 2.6.26, OpenSSH 5.3p1, FUSE 2.8.3, SSHFS-MUX 1.3 and GXP 3.06. We
used 64 available nodes from 5 sites for the evaluation. Figure 4 shows the con-
figuration of these nodes, with the RTT of network links between sites annotated.
Note that the RTT between nodes within the same site is around 0.15 ms.

The micro-benchmark used in experiments is ParaMark 13), which can issue
parallel metadata or I/O requests with configurable access pattern from multiple
clients to stress the file system.

We compare GMount with Gfarm 1),14), a wide-area distributed file system with
central metadata server. Since Gfarm uses the same strategy as GMount (i.e., co-
location of data and computation by federating local file system of computation
nodes) and a previous global installation on InTrigger is available for cross-site
data sharing, it allows us to conduct a specific metadata operation performance
comparison in the same environment. Note that Gfarm metadata server is at
Tsukuba site.

3.2 Parallel Metadata Operation
We first investigate the impact of data access locality on the overall perfor-

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan



114 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

mance. From the client’s point of view, metadata access can involve manipu-
lating files that reside on close or distant servers to the client. Here, one node
is considered to be adjacent to another node if they are in the same site/LAN.
Accordingly, we define radj as the ratio of “the amount of adjacent data access”
to “the amount of total data access” of one client, where adjacent access is the
data access destined for servers that are located in the same cluster/LAN as the
requesting client.

Then we synthesize following access pattern to investigate the impact of data
access locality on metadata operations performance. First, ParaMark creates
and distributes a collection of data files over all nodes. Next, it generates a
random access sequence of data files such that this sequence includes a ratio radj

of adjacent access (relative to the requesting client). Then this sequence is used
to access data files from the client. The count of each type of metadata operation
is 1000 and we use the aggregated throughput of all clients for comparison.

Since Gfarm has one central metadata server located in one site, the metadata
operations performance of Gfarm client depends on the client’s location relative
to the metadata server. Therefore, we differentiate following two configurations:
(i) Gfarm in LAN — client is in the same LAN as the metadata server, and (ii)
Gfarm in WAN — client is in a different site.

From Fig. 5, it reads that the metadata operations performance of Gfarm scales
up to around 10000 ops/sec when the number of clients is 16 for most metadata
operations except rmdir. The parallel metadata operation performance does not
scale up significantly when the number of concurrent clients increases from 4 to
16, because the load reaches the capacity of metadata server.

In WAN, Gfarm achieves about 1600 ops/sec peak performance for 32 con-
current clients in our experimental configuration (See Fig. 6). Similar results
have been reported in another evaluation of Gfarm in InTrigger environment 1),
where creat achieves about 1800 ops/sec for 32 concurrent clients and about
2400 ops/sec for 64 concurrent clients. Though the evaluation results are slightly
different, they are in the same order of magnitude and the difference can be due
to the selection of servers. The high latency between clients and metadata servers
leads to overall low metadata operations performance of Gfarm in wide-area en-
vironments.

Fig. 5 Parallel metadata operations performance of Gfarm in LAN (radj = 1).

Fig. 6 Parallel metadata operations performance of Gfarm in WAN (radj = 1).

The parallel metadata operation performance of GMount, on the other hand,
scales up to an average of 70000 ops/sec for 64 concurrent clients in WAN environ-
ment (see Fig. 7), which mainly attributes to the locality awareness of metadata
operations. Note that it is also comparable to the 100000 ops/sec throughput

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan



115 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

Fig. 7 Parallel metadata operations performance of GMount in WAN (radj = 1).

Fig. 8 Parallel metadata operations performance of Gfarm in WAN (0.2 < radj < 0.8).

of Ceph (using multiple metadata servers) for 128 distributed data servers in
LAN 15).

Figures 8 and 9 show the evaluation results of Gfarm and GMount, respec-
tively, with 64 concurrent clients when there are data accesses for remote files

Fig. 9 Parallel metadata operations performance of GMount in WAN (0.2 < radj < 0.9).

(i.e., radj �= 1). While the performance of Gfarm remains unchanging with the
latency between clients and metadata servers, the performance of GMount is sen-
sitive to data access locality of requests. As shown in Fig. 9, GMount achieves an
equivalent performance as Gfarm when radj ≈ 0.65. However, GMount is about
5x slower than Gfarm when there is only 20% adjacent data accesses, in which
GMount has to search local nodes first before looking up in remote nodes, as
indicated in Section 2.2.

3.3 Parallel I/O Performance
Before showing overall I/O performance comparison, we present the underlying

SSHFS-MUX transfer rate in the WAN environments. Since Gfarm and GMount
both establish direct connections for I/O access, point-to-point data transfer
rate between nodes over the network (especially over the WAN) is important to
overall I/O performance. We choose two distant servers that are connected by
high-latency and low-bandwidth WAN links to test data transfer rates of using
different file systems. The bandwidth between these two nodes is 150 Mbps and
an average of RTT time is 23.6 msec, measured by Iperf 16). The file size is 256 MB
(cache effect does not concern here because network link is a bottleneck) with a
variety of block sizes from 4 KB to 16 MB.

Figure 10 presents the comparison results. SSHFS (i.e., equivalent to SSHFS-

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan



116 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

Fig. 10 Comparison of point-to-point data transfer rate in WAN.

Fig. 11 Comparison of parallel read performance.

MUX without SSH bypassing) and Gfarm are limited to achieve only 25% uti-
lization of the network bandwidth. On the other hand, SSHFS-MUX with SSH
bypassing is able to effectively utilize available bandwidth.

Using the same configuration for metadata tests, we evaluate the parallel read
and write performance using 2 GB file size and 128 KB block request size for each
concurrent client.

Results in Figs. 11 and 12 show that the performance of Gfarm and GMount

Fig. 12 Comparison of parallel write performance.

both scales with the number of clients, while GMount has an overall 10–20%
higher throughput than Gfarm. One possible reason of the I/O overhead of Gfarm
is that its data servers need to synchronize metadata updates to metadata server.
Comparing with the I/O evaluation of our previous prototype implementation 2)

(with default SSH channel and routed I/O traffic), the proposed enhancements
(see Section 2.3) significantly boost the I/O throughput and scalability.

3.4 Real-World Applications
Finally, we use two real-world scientific workflow applications to investigate

the workflow execution performance by using GMount and Gfarm. We use GXP
make 17), a workflow engine based on GNU make, to execute this workflow on
the same 64 nodes as in previous experiments. For both GMount and Gfarm,
the input data set is initially placed at one node and distributed accordingly by
underlying distributed file systems during the execution.

3.4.1 Event Recognition
The event recognition application 18) is to extract and classify biomolecular

events mentioned in English texts. Example biomolecular events of interest are
an expression of a certain gene, a phosphorylation of a protein, and a regulation
of certain reactions. Its execution structure (i.e., workflow DAG) is shown in
Fig. 13. The input data set consists of 158 input data (i.e., medline XML file),

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan



117 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

Fig. 13 Workflow DAG of event recognition.

Fig. 14 Execution profiles of event recognition workflow.

where each input data corresponds to a processing unit (the entire DAG chart)
shown in Fig. 13. A maximum of 4 concurrent jobs is allowed to run on each
node, resulting an overall maximum parallelism of 252.

Figure 14 shows the execution summaries, where the workflow finished in

Fig. 15 Latency of file creation in root directory.

3257 seconds when using Gfarm and 2759 seconds (or 15% speedup) when using
GMount. However, the peak parallelism by using Gfarm (i.e., 159 concurrent
jobs) was reached at 28 second, and the parallelism by using GMount (i.e., 156
concurrent jobs) was reached at 198 second. The workflow running on Gfarm has
faster initial scheduling performance is because many new files/directories are
created under the work directory during the data split and distribution stage at
the beginning. In Gfarm, the metadata server can quickly handle these requests
because metadata is managed in one place. However, in GMount, a file creation
in root directory results a file existence checking in all nodes.

To verify this, we extract and collect the execution time of those small jobs
that create new files under the working directory. The distributions of execution
time of these jobs by using GMount and Gfarm are presented in Fig. 15. We
found that the file creation in GMount has an average of higher latency than in
Gfarm, some of file creation time even are 100 times than the average latency.
This is because lookup message floods for concurrent creations on many nodes,
resulting saturated data traffic in GMount overlay.

3.4.2 Montage
Montage astronomy scientific application 19) is a popular benchmark that has

been widely used in workflow studies 20). The input data set used in this experi-

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan



118 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

Fig. 16 Execution profiles of Montage workflow.

ment includes 609 input files. Note that the input data corresponds to the jobs in
the first stages of the entire workflow�1. Here, we use a smaller scale configura-
tion including 40 nodes from Keio and Hongo sites since using more nodes does
not change the execution structure but only increases the execution time. We
still use the existing installation of Gfarm in InTrigger and the metadata server
of Gfarm is in Tsukuba site. We set a limitation of 8 concurrent jobs on each
node, resulting an overall parallelism of 320.

Figure 16 shows execution profiles by using different distributed file systems,
where the workflow finished in 547 seconds seconds when using GMount and 3638
seconds when using Gfarm. Note that the execution time can not be compared
straightforwardly since computer nodes in Tsukuba site are not included, where
Gfarm nodes in Keio and Hongo have to talk to the metadata server in Tsukuba
site.

Figure 17 demonstrates the comparison of execution time of each phase. Sim-
ilar as in event recognition workflow, GMount has low performance at the initial

�1 The workflow DAG of Montage is online available at http://confluence.pegasus.isi.edu/
display/pegasus/WorkflowGenerator.

Fig. 17 Comparison of execution time of different phases.

phase mProjectPP because many files are created under the root directory. The
largest difference comes from the phase mConcatFit, where 2000 seconds are cost
in Gfarm but only 20 seconds are used in GMount. Although the environmen-
tal latency for Gfarm is 2–3 times higher than GMount due to the placement
of the Gfarm metadata server, it is not enough to make such long execution
time. Instead, there is significant high latency in Gfarm when clients establish
the first connection to data server for data transfer. In mConcatFit phase, the
merge process opens and reads sequentially many small files (i.e., 913 files, each is
280 Bytes) that are distributed in all nodes, which requires the client to establish
connections to every other node one after another and leads to an accumulated
long execution time.

4. Related Work

Most existing distributed file systems consist of dedicated file servers and are
designed for the highly coupled cluster environments, such as PVFS 21), Lus-
tre 22), GPFS 23), GoogleFS 24), HadoopFS 25), and Ceph 15). To the best of our
knowledge, they have not been deployed for practical usage in multi-cluster en-
vironments except GPFS-WAN 26). Other filesystem evaluation in the wide-area

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan



119 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

Fig. 18 Architectural comparison of existing distributed file systems.

environments includes Lustre 27),28), in which the complexity of deployment and
low scalability and performance in the wide-area are reported. Ceph 15) is an
experimental peta-scale parallel file system, using a cluster of metadata servers
to achieve scalable metadata operations. However, the effectiveness of multiple
metadata servers has not been studied in multi-clusters environments.

Figure 18 illustrates the architectural comparison of existing distributed file
systems. The decoupling of metadata and file data management, one of key ideas
for distributed file system design, brings out significant scalability improvement
of high-performance parallel file systems. PVFS, Lustre, pNFS, GFS, HDFS,
and Gfarm all benefit from this principle and thus adopt the “one metadata
server, multiple data servers” architecture. However, with the increasing number
of clients and data footprint in application, one single metadata server easily
reaches its capacity and becomes the bottleneck for further performance scaling.
As a result, the distributed management of metadata is introduced, and one typ-
ical example of this design is Ceph. Besides Ceph, GFS also shows its future
plan of using distributed namespace servers 29). Lustre and Gfarm also intend to
implement multiple metadata servers 14),22). Though without many details, Glus-
terFS 30) also gives us a hint on using dynamic distributed metadata technique,

similar as GMount, to achieve better scalability.
To clarify the differences between GMount and other distributed file systems,

we state that: 1) GMount should not be considered to be a persistent distributed
storage system, it is designed for sharing data rather than storing data, and 2)
its usage scenario is different.

First, GMount is an instantaneous and user specific file system that is supposed
to be constructed on demand and destructed after the usage. It is a complemen-
tary distributed file system for data-intensive computing practice, i.e., executing
data-intensive applications among cross-domain resources in the wide area, where
conventional distributed file systems can not be straightforwardly applied or can
not work as well as in the LAN environments.

Second, as the tradeoffs to achieve better performance when there are more data
access locality in application execution, GMount uses a weaken cache consistency
model and sacrifices the fault tolerance in current implementation. GMount does
not have its own cache subsystem or data replication mechanism for I/O or fault
tolerance. Data are stored and manipulated directly on the local filesystems
where target data stored in remote servers over the network. Since GMount
directly harnesses the local file system to store user data, GMount assumes that
the data availability is guaranteed by local filesystems of each server.

5. Conclusions and Future Work

GMount is a high-performance distributed file system with locality-aware meta-
data operations and small installation effort. Evaluation shows that GMount is
able to benefit from data access locality of applications to achieve better per-
formance than existing wide-area file system with central metadata server. In
addition, with the ability to rapidly and effortlessly unify local file systems of ar-
bitrary resource for global data sharing, GMount is practically useful for general
users to conduct their data-intensive distributed computing practice. GMount
also shows a novel way of building practically useful distributed file system with
simple building blocks and the small implementation.

Our major future work includes the design and implementation of a more so-
phisticated metadata management to improve the metadata lookup performance
by reducing the overhead of global searching when data access locality is not sig-

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan



120 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

nificant. We also plan to implement a simpler interface to allow existing workflow
management systems to retrieve file storage locations for file affinity scheduling.

GMount is an open-source software and online available at http://sf.net/
projects/gxp/ and http://sshfsmux.googlecode.com/.

Acknowledgments We would like to thank our colleagues for their valuable
suggestions on this work. We also would like to thank the referees for their efforts
and comments. This research is supported in part by the MEXT Grant-in-Aid
for Scientific Research on Priority Areas project “New IT Infrastructure for the
Information-explosion Era.”

References

1) Tatebe, O., Hiraga, K. and Soda, N.: Gfarm grid file system, New Generation
Computing, Vol.28, pp.257–275 (2010).

2) Dun, N., Taura, K. and Yonezawa, A.: GMount: An ad hoc and locality-aware
distributed file system by using SSH and FUSE, Proc. 9th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid ’09 ), pp.188–195 (May
2009).

3) Szeredi, M.: FUSE: Filesystem in userspace (online), available from 〈http://
fuse.sourceforge.net/〉.

4) Dun, N.: SSHFS-MUX (online),
available from 〈http://sshfsmux.googlecode.com/〉.

5) Wright, C.P., Dave, J., Gupta, P., Krishnan, H., Quigley, D.P., Zadok, E. and
Zubair, M.N.: Versatility and Unix semantics in namespace unification, ACM Trans.
Storage, Vol.2, pp.74–105 (Feb. 2006).

6) OpenSSH (online), available from 〈http://www.openssh.org/〉.
7) Taura, K.: GXP: An interactive shell for the grid environment, Proc. International

Workshop on Innovative Architecture for Future Generation High-Performance Pro-
cessors and Systems (IWIA ’04), pp.59–67, Charlotte, NC, USA (Apr. 2004).

8) Rapier, C. and Bennett, B.: High speed bulk data transfer using the SSH protocol,
Proc. 15th ACM Mardi Gras Conference, pp.1–7, Baton Rouge, LA, USA (Jan.
2008).

9) HPN-SSH (online), available from 〈http://www.psc.edu/networking/projects/
hpn-ssh/〉.

10) Szeredi, M.: SSH filesystem (online), available from 〈http://fuse.sourceforge.net/
sshfs.html〉.

11) Enabling high performance data transfers (online), available from 〈http://
www.psc.edu/networking/projects/tcptune/〉.

12) InTrigger multi-cluster platform (online), available from 〈http://

www.intrigger.jp/〉.
13) Dun, N.: ParaMark: Parallel filesystem benchmark (online), available from

〈http://paramark.googlecode.com/〉.
14) Gfarm (online), available from 〈http://datafarm.apgrid.org/〉.
15) Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E. and Maltzahn, C.: Ceph: A

scalable, high-performance distributed file system, Proc. 7th Symposium on Oper-
ating Systems Design and Implementation (OSDI ’06 ), pp.1–7 (2006).

16) Iperf (online), available from 〈http://sourceforge.net/projects/iperf/〉.
17) Taura, K., Matsuzaki, T., Miwa, M., Kamoshida, Y., Yokoyama, D., Dun, N.,

Shibata, T., Choi, S. and Tsujii, J.: Design and implementation of GXP Make
– A workflow system based on make, Proc. IEEE e-Science 2010 Conference (e-
Science ’10 ) (Dec. 2010).

18) Miwa, M., Sætre, R., Kim, J.-D. and Tsujii, J.: Event extraction with complex
event classification using rich features, Journal of Bioinformatics and Computa-
tional Biology, Vol.8, No.1, pp.131–146 (Feb. 2010).

19) Jacob, J.C., Katz, D.S., Berriman, G.B., Good, J.C., Laity, A.C., Deelman, E.,
Kesselman, C., Singh, G., Su, M.-H., Prince, T.A. and Williams, R.: Montage: A
grid portal and software toolkit for science-grade astronomical image mosaicking,
International Journal of Computational Science and Engineering, Vol.4, pp.73–87
(July 2009).

20) Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C. and Katz, D.S.: Pegasus:
A framework for mapping complex scientific workflows onto distributed systems,
Scientific Programming Journal, Vol.13, No.3, pp.219–237 (2005).

21) Parallel Virtual File System (online), available from 〈http://www.pvfs.org/〉.
22) Lustre file system (online), available from 〈http://www.lustre.org/〉.
23) Schmuck, F. and Haskin, R.: GPFS: A shared-disk file system for large comput-

ing clusters, Proc. Conference on File and Storage Technologies, pp.231–244 (Jan.
2002).

24) Ghemawat, S., Gobioff, H. and Leung, S.-T.: The Google file system, Proc. 9th
ACM Symposium on Operating Systems Priciples (SOSP ’03 ), pp.29–43, New York,
NY, USA (Oct. 2003).

25) Shvachko, K., Kuang, H., Radia, S. and Chansler, R.: The Hadoop distributed file
system, Proc. IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST ’10 ) (May 2005).

26) Andrews, P., Kovatch, P. and Jordan, C.: Massive high-performance global file
systems for grid computing, Proc. 2005 ACM/IEEE Conference on Supercomputing
(SC ’05 ), IEEE Computer Society, Washington, DC, USA (2005).

27) Cope, J., Oberg, M., Tufo, H.M. and Woitaszek, M.: Shared parallel file systems in
heterogeneous linux multicluster environments, Proc. 6th LCI International Con-
ference on Linux Clusters (Apr. 2005).

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan



121 Performance Evaluation of a Distributed File System with Locality-Aware Metadata Lookups

28) Simms, S.C., Pike, G.G. and Balog, D.: Wide area filesystem performance using
lustre on the TeraGrid, Proc. The TeraGrid 2007 Conference (June 2007).

29) McKusick, K. and Quinlan, S.: GFS: Evolution on fast forward, Queue, Vol.53,
No.3, pp.42–49 (Mar. 2010).

30) GlusterFS (online), available from 〈http://www.gluster.org/〉.

(Received January 28, 2011)
(Accepted May 26, 2011)

Nan Dun is currently postdoctoral researcher at Department
of Information and Communication Engineering, The University
of Tokyo. He was born in 1980, He received his B.S. from Peking
University, M.S., and Ph.D. degrees from The University of Tokyo
in 2003, 2007, and 2011. His major research interests include
parallel/distributed computing, high-performance computing, and
operating systems. He is a member of IEEE.

Kenjiro Taura is associate professor at Department of In-
formation and Communication Engineering, The University of
Tokyo. He was born in 1969, and received his B.S., M.S., and DSc
degrees from The University of Tokyo in 1992, 1994, and 1997.
His major research interests include parallel/distributed comput-
ing and programming languages. He is a member of ACM and
IEEE.

Akinori Yonezawa was born in 1947. He received his Ph.D.
degree in Computer Science from the MIT in 1977. He is professor
in Department of Computer Science at The University of Tokyo.
He was a member of the Scientific Advisory Board of German Na-
tional Research Institute of Computer Science (GMD), and served
as the president of Japanese Society of Software Science and Tech-
nology and a member of the Evaluation and Promotion Committee

of Japanese MITI’s Real World Computing Program. Since April 2006, he had
been the director of the Information Technology Center, The University of Tokyo.
Also, he was a member of Microsoft Trust Worthy Computing Academic Advi-
sory Board (TCAAB). He received the AITO Dahl-Nygaard Prize in 2008. He
was awarded a “Medal of Honour with a Purple Ribbon of Japan (Shiju-housho)”
at Imperial Palace in 2009.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 4 110–121 (Oct. 2011) c© 2011 Information Processing Society of Japan


