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Aiming to achieve sensing coverage for given Areas of Interest (AoI) over
time at low cost in a People-Centric Sensing manner, we propose a concept
of (α, T )-coverage of a target field where each point in the field is sensed by
at least one mobile node with the probability of at least α during time period
T . Our goal is to achieve (α, T )-coverage of a given AoI by a minimal set
of mobile nodes. In this paper, we propose two algorithms: inter-location
algorithm that selects a minimal number of mobile nodes from nodes inside the
AoI considering the distance between them and inter-meeting-time algorithm
that selects nodes regarding the expected meeting time between the nodes. To
cope with the case that there is an insufficient number of nodes inside the AoI,
we propose an extended algorithm which regards nodes inside and outside the
AoI. To improve the accuracy of the proposed algorithms, we also propose an
updating mechanism which adapts the number of selected nodes based on their
latest locations during the time period T . In our simulation-based performance
evaluation, our algorithms achieved (α, T )-coverage with good accuracy for
various values of α, T , AoI size, and moving probability.

1. Introduction

Recently, the demand for realtime environmental information about specific re-
gions in urban areas has been increasing for various purposes such as surveillance,
navigation, and event detection. People moving inside an urban area offer the
possibility of covering a given area of interest (AoI) at low cost. Exploiting people
as a part of the sensing infrastructure, introduces a new sensing paradigm called
People-Centric Sensing (PCS) 1). PCS realizes that people with mobile devices
can act as mobile sensors to sense and gather information from the environment
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to serve sensing applications and their users. In PCS, the coverage depends on
the uncontrollable mobility of people, therefore it is difficult to achieve full cov-
erage of the target AoI. Consequently, it is preferable to measure the expected
coverage degree as a ratio.

Here, we describe our motivation scenario and our problem settings. The re-
altime urban sensing scenarios drive an interesting motivating application. In
a city sensing application, for instance, users want to know the information in
a specific AoI such as interesting spots, crowded places, events on specific loca-
tions, and so on. In such an application, a user sends a query about a geographic
area as the AoI, a required coverage ratio α (i.e., the required percent of cover-
age of the AoI), the required information (e.g., noise level), and a query interval
(maximum allowable response time) T . Then, the query responding process will
be carried out by some people with mobile devices in the AoI, which satisfy the
query requirements. Here, to minimize cost, it is desirable to select a minimal
number of people with mobile devices that can provide the desired information.
We refer to this problem as the (α, T )-coverage problem.

In this paper, we formally describe the (α, T )-coverage problem. Given a target
field that is composed of a set of points, an AoI as a subset of it, a set of mobile
nodes, and a query with a required coverage ratio α and a specified time interval
T , we define the problem that finds a minimal set of mobile nodes such that
each point in the AoI is visited and sensed by at least one node within T with
a probability of at least α. To solve this problem, we need to predict the future
locations visited by each mobile node depending on its current location when a
query is initiated and its mobility. Thus, we model the mobility of the mobile
nodes with a discrete Markov chain. The solution for this problem depends
critically on the number and the initial locations of mobile nodes inside and near
the target AoI when a query is initiated. One possible solution for this problem
is the random selection of nodes. The main drawback of random selection is
inefficiency by selecting a set of nodes that are likely to visit the same locations
in AoI in the future and this set may not be minimal to achieve the coverage.

The initial version of this paper was presented at the SIGMBL conference held on Sep.
2010, which was sponsored by SIGMBL. This paper was recommended to be submitted to
IPSJ Journal by the chairman of SIGMBL.
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To avoid this drawback, we should carefully select a minimal set of nodes that
are not likely to visit the same locations. Based on this insight, we propose two
algorithms: inter-location and inter-meeting-time algorithms, to meet a coverage
ratio α in time period T . The inter-location algorithm estimates the probability
of locations in the AoI being visited by each mobile sensor node in T , and selects a
minimal number of mobile nodes inside the AoI considering the distance between
the nodes. The inter-meeting-time algorithm selects a minimal number of nodes
regarding the expected time until any two of the nodes will meet at a location.
Sometimes, the required coverage may not be achieved due to an insufficient
number of nodes existing inside the AoI. To meet the required coverage in this
case, we also propose an extended algorithm which takes into account not only
nodes existing inside the AoI, but also nodes outside the AoI.

The future estimated location of each node could be inaccurate when T is large,
resulting in inaccurate coverage. For more accurate coverage, we propose an
updating mechanism for the inter-location and the inter-meeting-time algorithms
which aims to remove useless nodes and add some extra nodes that contribute
more to AoI coverage. This updating mechanism is periodically executed every
specified time interval during T .

We conducted simulation experiments to evaluate the performance of the pro-
posed algorithms for various parameter settings. As a result, we confirmed that
the proposed algorithms achieve (α, T )-coverage with good accuracy for a variety
of values of α, T , and AoI size, and the inter-meeting time algorithm selected the
smallest number of nodes without deterioration of the coverage accuracy.

The rest of this paper is organized as follows. Section 2 reviews the related
studies. Section 3 defines the (α, T )-coverage problem. Section 4 describes the
proposed algorithms. Section 5 shows the performance evaluation of the proposed
algorithms through simulation-based experiments, and finally Section 6 concludes
the paper.

2. Related Work

Many studies have proposed data gathering protocols to realize efficient com-
munication between sensor nodes in wireless sensor networks (WSNs) 2)–5). Some
studies also have proposed the use of mobile sensor nodes in WSNs to improve

coverage, lifetime, and/or fault-tolerance 6),7).
Recently, information collection by pedestrians in PCS has received increasing

attentions. PCS is different from existing WSNs because we cannot control the
mobility of mobile nodes. In addition, the two important criteria in PCS are
coverage of the AoI and time. There are several studies and research projects
based on PCS 8)–15).

Cartel 8) is a mobile communications infrastructure based on car-mounted com-
munication platforms exploiting open WiFi access points in a city, and provides
urban sensing information such as traffic conditions. CitySense 9) provides a static
sensor mesh offering similar types of urban sensing data feeds. SensorPlanet 10) is
a platform that enables the collection of sensor data on a large and heterogeneous
scale, and establishes a central repository for sharing the collected sensor data.
Bubble-sensing 11) is a sensor network that allows mobile phone users to create
a connection between tasks and places of interest in the physical world. Mobile
users are able to affix task bubbles at places of interest and then receive sensed
data as it becomes available in a delay-tolerant fashion. PriSense 12) relies on
data slicing and mixing and binary search to enable privacy-preserving queries,
where each node slices its data into (n+1) data slices, randomly chooses n other
nodes, and sends a unique data slice to each of them. Finally, each node sends the
sum of its own slice and the slices received from others to the aggregation server.
Anonysense 13) is a privacy-aware architecture for realizing pervasive applications
based on collaborative, opportunistic sensing by personal mobile devices. Anony-
Sense allows applications to query and receive context through an expressive task
language and by leveraging a broad range of sensor types on mobile devices, and
at the same time respects the privacy of users. GreenGPS 15) is a navigation ser-
vice that uses participatory sensing data to map fuel consumption on city streets
and find the most fuel-efficient route for vehicles between arbitrary endpoints.

Most of these approaches focus on information collection, but do not consider
the probabilistic coverage in PCS when the information collection period is re-
stricted to a short time duration such as an on-demand query. They consider
neither the difficulties of achieving sensing coverage of a relatively wide area nor
the time requirements of on-demand sensing by mobile users. However, these
two criteria are very important in PCS. To meet these criteria, it is also very
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important to estimate the area covered by each mobile node in a specified time in-
terval. However, existing studies do not consider such a spatiotemporal coverage
by mobile nodes.

In Refs. 16) and 17), we formulated the (α, T )-coverage problem and proposed
two probabilistic algorithms: an inter-location based algorithm, called ILB, and
an inter-meeting-time based algorithm, called IMTB, that consider on-demand
sensing by mobile users, and probabilistic coverage in PCS based on the mobility
of people. Also, we evaluated the performance of ILB and IMTB for various
parameter settings including a realistic scenario on a specific city map. ILB
and IMTB algorithms were based only on the initial locations of mobile nodes
inside AoI and did not consider the latest locations during the time period. To
improve the accuracy of the proposed algorithms, our contribution in this paper
is the proposal of two extensions: (i) an updating mechanism for ILB and IMTB
algorithms which aims to remove useless nodes and add some extra nodes that
contribute more to AoI coverage during the query interval, and (ii) an extended
algorithm which regards not only nodes existing inside the AoI, but also nodes
near the AoI. In addition, we compare the proposed algorithms with a random
selection method to evaluate their performance.

3. The (α, T )-Coverage Problem

In this section, we first describe the models and assumptions for our target
PCS application, then formulate the target problem to realize the application.

3.1 Assumptions and Models
3.1.1 System Model
We assume an application such that when requested, some of the mobile users

take part in a task to obtain the latest environmental information such as noise
level, sunshine intensity, temperature, exhaust gas concentration, and so on, over
a specified geographical area of the urban district in a PCS fashion. We assume
that those participating users are willing to serve as mobile sensors based on some
incentive such as electronic currency or coupons given by a service provider.

We denote the whole service area by A. A road (street) network on which
mobile users can move spans the area A. A service user wants to know the
approximate condition of a specific area called the Area of Interest (AoI ) pro-

duced by obtaining the environmental information about some locations in the
AoI. Thus, we assume that there are multiple sensing locations with a uniform
spacing Δ �1 (e.g., Δ = 50 m) on each road and that sensing coverage is achieved
by obtaining the environmental information about all of the sensing locations in
the specified AoI. We show an example road network with sensing locations in a
service area in Fig. 1.

We represent the road network with sensing locations by a connected graph
G = (V,E), where V is the set of vertices corresponding to sensing locations
(some of them are intersections) and E is the set of edges corresponding to
segments between neighboring sensing locations on roads.

Multiple service users of this application exist on service area A and are moving
on graph G. Each mobile user is equipped with a portable computing device such
as smartphones capable of accessing the Internet via a cellular network (CDMA,
GSM) from any place in A, measuring the current location, and sensing the
nearby environmental information with its built-in sensors (camera, microphone,
light-intensity sensor, etc). Hereafter, we refer to a service user with a mobile
device simply as a node.

We assume that time progresses discretely (0, 1, 2, . . .). Let U denote a set of
nodes on G at time 0 (i.e., the time when a query is initiated). Each node moves
from one vertex to one of its neighboring vertices on G in a unit of time. The
mobility of nodes is based on a probabilistic model. Let vu

0 ∈ V denote the initial
(at time 0) location of node u. Let Prob(u, t, vu

0 , vt) denote the probability that
each node u with its location vu

0 at time 0 visits a vertex vt ∈ V at time t.
3.1.2 Service Model
We assume that our target application provides users with an on-demand query

service for sensing a specific AoI and we treat a single query at a time. We assume
that there is a fixed server s in the Internet that can communicate with nodes of
U and executes required tasks.

We say that the AoI is α-covered if every sensing location in the AoI is visited
(and thus the environmental information is sensed) by at least one node with a

�1 We assume that each road can be divided into an integer number of segments with length
Δ.
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Fig. 1 Example of road network. Fig. 2 Moving probability example for four
sensing locations {v1, v2, v3, v4} and
initial locations of two nodes {u1, u2}.

probability of at least α. Here, we call α the coverage ratio. In our application,
a node sends s a query which asks for sensing a specified AoI with a specified
coverage ratio α in a specified time interval T . We denote each query q by
a quadruple 〈AoI, Stype, α, T 〉. Here, AoI is the area of interest in the service
area specified by a set of sensing locations of V , and Stype specifies the type of
environmental information to be sensed, such as temperature.

3.2 Problem Formulation
We call the probability of a set of nodes U ′(⊆ U) visiting a sensing location v (∈

V ) in a time interval T , the set coverage probability denoted by SetProb(v, U ′, T )
and define it by the following equation.

SetProb(v, U ′, T ) = 1−
∏

u∈U ′

T∏
t=0

(1− Prob(u, t, vu
0 , v)) (1)

Figure 2 shows an example for four sensing locations v1, v2, v3, and v4 and
the moving probabilities between them. As shown in Fig. 2, there are initially
two nodes u1 and u2 at sensing locations v2 and v4, respectively. Table 1 shows
the set coverage probabilities of v1, v2, v3, and v4 by U ′ = {u1, u2} when T = 2.
Definition 1. (α, T )-coverage: Given a graph G = (V,E), an area specified
by a set of sensing locations AoI ⊆ V , a set of nodes U ′ ⊆ U , a required coverage
ratio α, and a time interval T , the area AoI is called (α, T )-covered if the

Table 1 Visiting time and set coverage probabilities for the example in Fig. 2 with T = 2.

Sensing node u1 node u2

location Prob(u1, t, v2, v) Prob(u2, t, v4, v) SetProb(v, U ′, 2)

v t = 0 t = 1 t = 2 t = 0 t = 1 t = 2 U ′ = {u1, u2}
v1 0 0.6 0 0 0.6 0 1 − (1 − 0.6)(1 − 0.6) = 0.84

v2 1 0 0.56 0 0 0.56 1 − (1 − 1)(1 − 0.56)(1 − 0.56) = 1

v3 0 0.4 0 0 0.4 0 1 − (1 − 0.4)(1 − 0.4) = 0.64

v4 0 0 0.44 1 0 0.44 1 − (1 − 0.44)(1 − 1)(1 − 0.44) = 1

following condition holds.
∀v ∈ AoI, SetProb(v, U ′, T ) ≥ α (2)

We formally define the (α, T )-coverage problem as follows:
Definition 2. Given a service area as a connected graph G = (V,E), a set
of nodes U on G at time 0, and a query q = 〈AoI, Stype, α, T 〉, the (α, T )-
coverage problem is the problem of selecting a minimal set of nodes U ′ ⊆ U

which achieves (α, T )-coverage of AoI.
We define the objective function of this problem by the following equation.

minimize |U ′| (3)
subject to AoI is (α, T )-covered (4)

This problem is NP-hard since it implies, as a special case, the Minimum Set
Covering Problem (MSCP) 18) which is known to be NP-hard.

4. Algorithms

In this section, we propose two heuristic algorithms for the problem defined
in Section 3, named Inter-Location Based (ILB) and Inter-Meeting Time Based
(IMTB) algorithms. We assume that all algorithms are executed by the server s

in a centralized fashion.
4.1 Preliminaries
Our basic idea is to select nodes that have higher probabilities of visiting dis-

tinct sensing locations in the specified AoI within a time interval T , prior to
selecting other nodes.

The proposed algorithms depend on the probability Prob(u, t, vu
0 , vt) of each

node u with initial location vu
0 visiting a location vt at time t (0 ≤ t ≤ T ).

To simplify our explanation, we represent the graph G = (V,E) for the service
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(a) Original service area graph (b) Reduced service area graph

Fig. 3 An example of a service area graph with AoI and its reduction for T = 8.

area by a grid of sensing locations (vertices) with a uniform spacing Δ between
neighboring vertices and only vertical and horizontal edges (here, each edge is
bi-directional), as shown in Fig. 3 (a). Let N denote the number of vertices
(i.e., |V |) and xi denote the i-th vertex of V (1 ≤ i ≤ N). We model the node
movement on the grid as a discrete Markov chain. For each node u, we define a
vector with N states where the i-th state represents the probability that u is in
vertex xi.

Assuming that there are a sufficient number of nodes in target area A, we select
nodes only within the specified AoI. Here, at time 0, we are given a query and
the current distribution of nodes. Let U0(⊆ U) denote the set of nodes which are
located in the target AoI at time 0.

4.1.1 Computation of Coverage Probability of a Vertex
Let P denote the probability matrix with size N ×N , where its i-th row and

j-th column element represents the probability of a node at vertex xi to move
to vertex xj by a unit of time. We define an initial state vector vu

0 representing
that a node u is initially located at xi ∈ V by the following equation.

vu
0 = (p1, p2, . . . , pN ) (5)

where

pj =

{
0 (j 	= i)
1 (j = i)

(6)

Then, we can calculate the coverage probability of vertex xk ∈ V by node u at

time t by the following equation.
Prob(u, t, vu

0 , xk) = [vu
0 × P t]k (7)

Here, [ ]k denotes the k-th element in the resulted vector.
4.1.2 Reduction of Probability Matrix Size
If the target service area contains many sensing locations, the probability ma-

trix P will be large, resulting in a serious computational overhead in the server
s. However, we only select nodes in the specified AoI and thus we do not need to
consider the nodes which move more than T/2 away from the border of the AoI
since such nodes never come inside the AoI again. This fact allows us to reduce
the size of the probability matrix from N × N to (M + L) × (M + L), where
M is the number of sensing locations included in the AoI and L is the number
of sensing locations outside the AoI such that their shortest distance to the AoI
border is at most T/2. Here, note that N 
 M + L holds for typical scenarios
where AoI and T are reasonably small and N is large.

Let Vin(⊆ V ) denote a set of vertices included in the AoI. Let Vout(= V −
Vin) denote the set of vertices outside the AoI, but in the service area. Let
distance(x, y) denote the shortest distance from vertex x to vertex y on G. Let
V

T/2
out denote a set of vertices in Vout such that the shortest distance from any

vertex of V
T/2
out to at least one vertex of Vin is at most T/2. V

T/2
out is defined by

the following equation.

V
T/2
out = {x | x ∈ Vout ∧ ∃y, distance(x, y) ≤ T/2 ∧ y ∈ Vin} (8)

The vertices that belong to V
T/2
out are illustrated in Fig. 3 (b).

We can calculate the coverage probability of all vertices in Vin taking into
account only the node moving probability at each vertex of Vin ∪ V

T/2
out . Conse-

quently, we define the new probability matrix P ′ for vertices of Vin ∪ V
T/2
out .

We define the i-th row and j-th column element p′i,j of P ′ by the following
equation.

p′i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pi,j (xi, xj ∈ Vin ∪ V
T/2
out ∧ i 	= j)

∑
x∈Ngh(i)

p(i, x) (xi ∈ V
T/2
out − V

T/2−1
out ∧ i = j)

(9)
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Here, Ngh(i) is the set of neighboring vertices outside V
T/2
out and pi,j is the

probability of the corresponding edge in the original matrix P . Equation (9)
represents that the moving probability from xi to xj is the same as the original
matrix P if i is not equal to j. In addition, knowing that nodes once going outside
V

T/2
out cannot go inside the AoI in T , we for convenience set the probability of a

node staying at the same location xi at border of V
T/2
out to the sum of probabilities

of outgoing edges to outside V
T/2
out .

4.2 The Inter-Location Based Algorithm (ILB)
The ILB uses the distance between nodes as a metric to select a set of mobile

nodes. Intuitively, the more distant these nodes are, the more likely it is for these
nodes to visit distinct sensing locations of AoI. We denote the distance between
the initial locations of nodes u and u′ in U0 by du,u′ which is determined as the
length of the shortest path between vu

0 and vu′
0 on G. The ILB selects a minimal

set of mobile nodes U ′(⊆ U0) such that the distance between any pair of nodes
u and u′ in U ′ is equal to or larger than a threshold dth, and the specified AoI is
(α, T )-covered. The above statement is defined as follows.

minimize |U ′| subject to (11)− (12) (10)
du,u′ ≥ dth,∀u, u′ ∈ U ′ (11)
AoI is (α, T )-covered (12)

The value of dth should be dependent on three parameters: the total number
of time steps T , the required coverage ratio α, and the maximum distance dmax

that is the largest distance between the initial locations of two nodes in U0.
Intuitively, as T increases and/or α decreases, the number of selected nodes
should decrease. On the contrary, as T decreases and/or α increases, the number
of selected nodes must be increased to meet the (α, T )-coverage constraint. To
reflect the above relationship among parameters, we define the distance threshold
dth by the following equation.

dth = min
(

T

α · dmax
, dmax

)
(13)

Algorithm 1 shows the node selection process of ILB. The input parameters
are the set of mobile nodes U , the area of interest AoI, the required coverage
ratio α, the query interval time T , and the service area graph G = (V,E). In

Algorithm 1 The Inter-location based algorithm (ILB)
Input: U , AoI, α, T , G = (V,E)
Output: U ′

1: U ′ ← ∅
2: Compose Vin, V

T/2
out , U0 from AoI and U

3: P ← ComputeProbMatrix(AoI,Vin ∪ V
T/2
out )

4: for ∀u ∈ U0 do
5: Compose u’s initial state vector vu

0

6: end for
7: dmax ← max

u,u′∈U0
{du,u′}

8: dth ← min( T
α·dmax

, dmax)
9: while SetProb(v, U ′, T ) < α,∀v ∈ Vin do
10: if U0 = ∅ then
11: return ∅
12: end if
13: Select u ∈ U0 at random
14: if U ′ = ∅ or min

u′∈U ′
{du,u′} ≥ dth then

15: U ′ ← U ′ ∪ {u}, U0 ← U0 − {u}
16: end if

17: end while
18: return U ′

line 1, the algorithm initializes U ′ to be empty. In line 2, it composes the sets of
vertices Vin and V

T/2
out , and the set of nodes in the AoI, U0. In line 3, it composes

the probability matrix P . In lines 4 to 6, it composes the initial state vector
for each node u ∈ U0. In lines 7 and 8, the algorithm determines the maximum
distance dmax between nodes in U0 and the distance threshold dth, as defined in
Eq. (13). In lines 9 to 18, the algorithm selects a set of nodes U ′ as follows: (i)
while the AoI is not (α, T )-covered, the algorithm checks the state of U0 and
if U0 is empty, the algorithm returns ∅ (i.e., the current U0 is not sufficient to
satisfy the required coverage α), as shown in lines 9 to 12, (ii) the algorithm
selects a node u ∈ U0 at random, as shown in line 13; and (iii) it adds the node
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u to the selected set of nodes U ′ if U ′ is empty or the distance between u and
each node u′ ∈ U ′ is no less than the threshold dth, as shown in lines 14 to 16.
Finally, in line 18, the algorithm returns the selected set of nodes U ′.

4.3 The Inter-Meeting Time Based Algorithm (IMTB)
The ILB algorithm is based on the distance between nodes. Hence, the selec-

tion process is location-dependent and does not take the query interval time T

into consideration. To make the node selection more efficient taking into account
the value of T , we propose an inter-meeting time based (IMTB) algorithm which
uses the expected first meeting time between nodes as a metric. This meeting
time metric reflects the probability of nodes visiting distinct sensing locations
of the AoI and describes the expected first meeting time of any pair of nodes
u, u′ ∈ U0. Intuitively, as the meeting time between nodes increases, the proba-
bility of visiting distinct sensing locations also increases �1 because those nodes
explore different locations until they meet for the first time. We denote the ex-
pected first meeting time between nodes u and u′ in U0 by mtu,u′ . The IMTB
algorithm selects a minimal set of nodes U ′(⊆ U0) such that the meeting time
mtu,u′ between any pair of nodes u and u′ in U ′ is no less than a meeting time
threshold mtth, and the specified AoI is (α, T )-covered. The above statement is
defined as follows.

minimize |U ′| subject to (15)− (16) (14)
mtu,u′ ≥ mtth,∀u, u′ ∈ U ′ (15)
AoI is (α, T )-covered (16)

The values of mtu,u′ and mtth are calculated as follows.
The expected first meeting time mtu,u′ represents the earliest time when two

nodes u and u′ in U0 may meet at some location vt ∈ Vin and is defined by the
following equation.

mtu,u′ =

{
min

t∈MTu,u′
{t} (MTu,u′ 	= ∅)

T (MTu,u′ = ∅)
(17)

where MTu,u′ is a set of possible meeting time between u and u′ during the time

�1 This is not the case if the probability of a node staying at the same location is high, but we
suppose the environment where most of the nodes near the AoI are likely to move directly
to their destinations.

period T and is defined by the following equation.

MTu,u′ = {t | Prob(u, t, vu
0 , vt) > 0 ∧ Prob(u′, t, vu′

0 , vt) > 0, 0 ≤ t ≤ T,

∃ vt ∈ AoI} (18)

The meeting time threshold mtth should be dependent on three parameters: the
total number of time steps T , the required coverage ratio α, and the maximum
expected first meeting time mtmax between pairs of nodes in U0. Intuitively,
as T increases and/or α decreases, the number of selected nodes will decrease.
To reflect the above relationship among parameters, we define the meeting time
threshold mtth as follows.

mtth = min
(

T

α ·mtmax
,mtmax

)
(19)

Algorithm 2 shows the node selection process of IMTB. The input parameters
are the same as in Algorithm 1. In lines 1 to 6, the algorithm does the same
steps as lines 1 to 6 in Algorithm 1. In lines 7 and 8, the algorithm determines
the maximum expected first meeting time mtmax between nodes in U0 and the
threshold mtth, as defined in Eq. (19). In lines 9 to 18, the algorithm selects a
set of nodes U ′ as in Algorithm 1, except in line 14, where it adds the node u

to the selected set of nodes U ′ if U ′ is empty or the expected first meeting time
between u and each node u′ ∈ U ′ is no less than the threshold mtth.

4.4 The Extended Algorithm without Thresholds (EWOT)
As we described in the previous two subsections, the ILB and IMTB algorithms

apply the selection process only on a set of nodes located inside AoI at time 0,
U0, and do not consider the nodes outside the AoI. The number of nodes inside
the AoI at time 0 may not be sufficient to guarantee the α-coverage of the AoI
in time period T , if it is too small.

To cope with this situation, we extend the algorithms to add more nodes lo-
cated outside the AoI in the selection process based on their contributions to
the coverage of the AoI. Here, the contribution of a node means the expected
number of locations in the AoI visited by the node during the time period T .
The contribution of a node located outside the AoI should be dependent on its
initial location and the time period T . In other words, it should be dependent on
the shortest distance from the added node to the AoI. Intuitively, if this distance
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Algorithm 2 The Iner-meeting time based algorithm (IMTB)
Input: U , AoI, α, T , G = (V,E)
Output: U ′

1: U ′ ← ∅
2: Compose Vin, V

T/2
out , U0 from AoI and U

3: P ← ComputeProbMatrix(AoI,Vin ∪ V
T/2
out )

4: for ∀u ∈ U0 do
5: compose u’s initial state vector vu

0

6: end for
7: mtmax ← maxu,u′∈U0{mtu,u′ : mtu,u′ 	=∞}
8: mtth ← min( T

α·mtmax
,mtmax)

9: while SetProb(v, U ′, T ) < α,∀v ∈ Vin do
10: if U0 = ∅ then
11: return ∅
12: end if
13: Select u ∈ U0 at random
14: if U ′ = ∅ or min

u′∈U ′
{mtu,u′} ≥ mtth then

15: U ′ ← U ′ ∪ {u}, U0 ← U0 − {u}
16: end if

17: end while
18: return U ′

of a new added node is more than T , then the node will not visit any locations
in the AoI within the time period T . So, the distance must be less than or equal
to T . In order to avoid a very large number of added nodes, we only add nodes
if the shortest distance to the AoI is less than or equal to �T

2 �. We denote the
extended algorithm without thresholds by EWOT.

Algorithm 3 shows the node selection process of EWOT. The input parameters
are the same as in Algorithms 1 and 2. In line 1, the algorithm initializes U ′ to
empty. In line 2, it composes the sets of vertices Vin and V

T/2
out , and the sets

of nodes U0 and U
T/2
0 (this contains all nodes that initially exist in V

T/2
out ). In

line 3, it composes the probability matrix P . In lines 4 to 6, it composes the

Algorithm 3 The Extended Algorithm without Thresholds (EWOT )
Input: U , AoI, α, T , G = (V,E)
Output: U ′

1: U ′ ← ∅
2: Compose Vin, V

T/2
out , U0, U

T/2
0 from AoI and U

3: P ← ComputeProbMatrix(AoI,Vin ∪ V
T/2
out )

4: for ∀u ∈ U0 ∪ U
T/2
0 do

5: compose u’s initial state vector vu
0

6: end for
7: while SetProb(v, U ′, T ) < α,∀v ∈ Vin do
8: if U0 	= ∅ then
9: Select u with the highest coverage contribution of U0

10: U ′ ← U ′ ∪ {u}, U0 ← U0 − {u}
11: else if U0 = ∅ then
12: if U

T/2
0 = ∅ then

13: return ∅
14: end if
15: Select u with the highest coverage contribution of U

T/2
0

16: U ′ ← U ′ ∪ {u}, UT/2
0 ← U

T/2
0 − {u}

17: end if
18: end while
19: return U ′

initial state vector for each node u ∈ U0 ∪ U
T/2
0 . In lines 7 to 19, the algorithm

selects a set of nodes U ′ as follows: (i) while the AoI is not (α, T )-covered, if U0 is
not empty, the algorithm selects a node u with the highest coverage contribution
of U0 and adds it to the selected set of nodes U ′, as shown in lines 7 to 10. (ii) if
U0 is empty (i.e., the current U0 is not sufficient to satisfy the required coverage
α), the algorithm checks the state of U

T/2
0 , and if it is empty, the algorithm

returns ∅, as shown in lines 11 to 14, (iii) the algorithm selects a node u with
the highest coverage contribution of U

T/2
0 , as shown in line 15; (iv) it adds the

node u to the selected set of nodes U ′, as shown in line 16. Finally, in line 19,
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Fig. 4 Query execution sequence between the server and mobile nodes.

the algorithm returns the selected set of nodes U ′.
Figure 4 shows the execution sequence process of a query for the proposed

algorithms between the server and the mobile nodes. The steps of this execution
sequence process as follows: (1) the server sends the query to all mobile nodes
that exist in the service area, (2) each mobile node sends its location information
to the server, (3) the server performs the selection algorithm steps (ILB, IMTB,
or EWOT) and notifies the selected nodes to start their sensing job, and (4)
finally, at the end of the query time interval, all selected mobile nodes send the
sensed data of their covered locations to the server.

4.5 The ILB and IMTB Algorithms with Updating Mechanism
As we described in the previous two subsections, the ILB and IMTB algorithms

are based only on the initial locations of nodes inside the AoI and do not consider
the latest locations of nodes during the query period T . There can be a scenario
that some nodes initially exist in the AoI and may go out of the AoI after some
time during the query period T . Also, some nodes may initially exist outside
of the AoI and may go into the AoI after some time during the query period
T . If we track the location of nodes in and near the AoI during period T , we
can achieve more accurate coverage with lower cost by removing useless nodes
and adding some extra nodes that contribute more coverage. For more accurate
coverage, we propose an updating mechanism for the ILB and IMTB algorithms
that aims to adapt the number of selected nodes based on the latest location of
nodes. This updating mechanism is executed every specified time interval during

the time period T .
Let tcurrent denote the current time step. The updating mechanism consists of

the following steps
( 1 ) Calculate the remaining required coverage ratio, β �1 (β = α− γ, where γ

is the already achieved coverage ratio).
( 2 ) Estimate the coverage probability for all uncovered locations in the AoI by

the nodes in U ′ if their current locations exist in the AoI by using the ILB
or IMTB algorithms.

( 3 ) If the estimated coverage probability is less than β, then one-by-one add
a new node to the selected set while all locations in the AoI are (β, T −
tcurrent)-covered.

( 4 ) If the estimated coverage probability is larger than β, then one-by-one
remove a node from U ′ as long as all uncovered locations in AoI are (β, T−
tcurrent)-covered.

By using this updating mechanism, the ILB and IMTB algorithms can adapt
the number of selected nodes by adding or removing some nodes to improve
the accuracy of the coverage probability of the AoI as much as possible. This
updating mechanism is executed periodically every specified time interval which
is called the updating interval UI.

It is preferable to determine the value of UI internally. In other words, it
should be dependent on T and α. So, we use the distance threshold dth and the
meeting time threshold mtth of ILB, and IMTB, respectively to determine the
value of UI as follows.

UI =

{
dth for ILB

mtth for IMTB
(20)

We refer to the ILB and IMTB with the updating mechanism by ILB-up and
IMTB-up, respectively.

4.6 Complexity
Here, we evaluate the computing time of the proposed algorithms according to

�1 Here, to minimize the total overhead, β represents the maximum deficit coverage ratio
among all locations in AoI.
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the size of matrix P , (M + L)2, the number of nodes in U0 (i.e., inside AoI),
n, and the total number of steps, T . According to the coverage probability of a
vertex which is defined in Eq. (7), the computing time of ILB and IMTB is O (n ·
(M +L)2 ·T ), while the computing time for EWOT is O((n+n′) · (M +L)2 ·T ),
where n′ is the number of nodes in U

T/2
0 (i.e., outside AoI).

5. Performance Evaluation

In this section, we show the results of simulation experiments that examine
the coverage performance of the proposed algorithms in terms of the number of
nodes selected and the accuracy of the achieved coverage ratio. We compared the
proposed algorithms with the random selection method which repeats selecting
a node randomly among all nodes inside the AoI until satisfying (α, T )-coverage
and does not use any distance or time thresholds.

5.1 Simulation Environment
The QualNet 19) simulator was used with the input parameters listed in Ta-

ble 2, such as service area size, number of nodes, node speed, etc. In addition,
the node mobility was based on a discrete Markov model as described in Sec-
tion 4. The service area was represented as a grid of sensing locations arranged
with uniform spacing, 50 meters. We selected the AoI as a rectangular region
where its position was selected at random within the service area. The ratio of
its size to the service area size, called AoI-Size, was selected from {0.01, 0.25,
0.45, 0.5, 0.65, 0.85} and the corresponding number of sensing locations in each

Table 2 Configuration parameters.

Configuration parameter Value in simulation

# nodes 25 to 200

Node speed 1 m/s

Field size 500 m × 500 m

Required coverage, α 0.2, 0.4, 0.5, 0.6, 0.8, 0.9

Total # sensing locations in A 121

AoI-Size (# sensing locations) 0.01 (4), 0.25 (36), 0.45 (56),

0.5 (66), 0.65 (77), 0.85 (99)

Δ 50 m

Total # steps (time period), T 2, 4, 6, . . . , 20

AoI was {4, 36, 56, 66, 77, 99}. The initial node location was selected at random
among all sensing locations in the service area. We repeated every simulation
experiment 5 times with different initial node distributions, then averaged the
results.

We measured the performance of the proposed algorithms in terms of the num-
ber of selected nodes and the achieved coverage ratio by changing the number of
nodes, the AoI-Size, the total number of time steps (query interval time), and
the required coverage ratio. Here, we define the achieved coverage ratio as the
ratio of the number of sensing locations visited in the AoI by at least one node
to the total number of sensing locations in the AoI. We say that the algorithms
satisfy the required coverage ratio if the average achieved coverage ratio of several
simulation runs is no less than the required ratio.

5.2 Simulation Results without Updating Mechanism
In this section we show the simulation results for the proposed algorithms with-

out the updating mechanism in two cases. In the first case, the moving probabil-
ities of a node at a location to its neighboring locations were equal probabilities
(i.e., uniform and equal to 0.25). To show the performance of the proposed algo-
rithms under non-uniform moving probabilities, in the second case, the moving
probabilities of a node at a location to its neighboring locations were unequal
probabilities. We show simulation results in Figs. 5, 6, 7, 8, 9, 10 and 11 (The
black lines with empty and solid rectangles in Figs. 5–11 (a) represent the number
of candidate nodes in U0 and U0 ∪ U

T/2
0 , respectively).

(a) Number of selected nodes (b) Achieved coverage ratio

Fig. 5 Performance for different AoI sizes.
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(a) Number of selected nodes (b) Achieved coverage ratio

Fig. 6 Performance for different time steps.

(a) Number of selected nodes (b) Achieved coverage ratio

Fig. 7 Performance for different number of nodes.

(a) Number of selected nodes (b) Achieved coverage ratio

Fig. 8 Performance for different required coverage ratios.

Fig. 9 Moving probabilities cases for probability p.

(a) Number of selected nodes (b) Achieved coverage ratio

Fig. 10 Performance for different AoI sizes with random moving probability.

(a) Number of selected nodes (b) Achieved coverage ratio

Fig. 11 Performance for different moving probabilities, p.

5.2.1 Results for Equal Moving Probabilities
Figure 5 shows the performance for different AoI-Size in the case of medium

required coverage ratio and medium number of time steps. The number of nodes
was 100, the required coverage α was 0.5, and the total number of steps was 8. In
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Fig. 5 (a), the number of selected nodes increased as the AoI-Size increased. This
is because, when the AoI-Size increased, we needed more nodes to satisfy the
required coverage ratio. As shown in Fig. 5 (a), the number of selected nodes for
the proposed algorithms was much smaller than the number of candidates nodes
in the AoI and it was reduced by 75.46%, 79.77%, and 57.06% for ILB, IMTB, and
EWOT, respectively, while for the random algorithm, its reduction was 53.62%.
In Fig. 5 (b), the required coverage was almost satisfied by all algorithms. When
the AoI-Size was 0.01, the number of selected nodes and the variance of ILB
was smaller than other algorithms. For a larger AoI-Size, the number of selected
nodes and the variance of IMTB were smaller than other algorithms. As a result,
for a smaller values of the AoI-Size, the ILB is the best, while the IMTB is the
best in the case of a larger AoI-Size.

Figure 6 shows the performance for different numbers of time steps with a
medium size AoI and a medium required coverage ratio. The AoI-Size was 0.5.
In Fig. 6 (a), the number of selected nodes decreased as the total number of steps
increased. This is because the distance and meeting time threshold increases in
proportion to the total number of steps. The number of selected nodes for IMTB
was lower than other algorithms since the required coverage is medium and the
meeting time increased when the AoI-Size is medium. The number of selected
nodes was reduced by 74.55%, 79%, and 66.6% of the number of candidates
nodes in the AoI for ILB, IMTB, and EWOT, respectively, while for random
algorithm, its reduction was 60.83%. In Fig. 6 (b), all algorithms satisfied the
required coverage and the variance of IMTB was smaller than other algorithms.

Figure 7 shows the performance for different numbers of nodes with a medium
size AoI, a medium required coverage ratio, and a medium number of time steps.
The AoI-Size was 0.5. In Fig. 7 (a), when the number of nodes was 25 to 125,
the number of selected nodes increased as the number of nodes increased. This
is because, when the number of nodes increases, the algorithms add more nodes
to satisfy the required coverage. However, when the number of nodes was larger
than 125, the number of selected nodes was fixed since the number of selected
nodes is bound by the number of nodes needed to satisfy the required coverage.
Also, when the number of nodes was 25 to 75, the number of selected nodes was
reduced by 49.93% of the number of candidate nodes inside and outside the AoI

for EWOT. For a larger number of nodes, it was reduced by 78.35%, 85.23%,
68.74%, and 67.38% of the number of candidate nodes in the AoI for ILB, IMTB,
EWOT, and random algorithms, respectively. In Fig. 7 (b), the required coverage
was not satisfied by ILB, IMTB, and random algorithms when the total number
of nodes was 25 to 75, while the EWOT algorithm satisfied the required coverage
with small variance. This is because the EWOT algorithm takes into account
nodes that also exist outside the AoI and it can add more nodes to meet the
required coverage. For a larger number of nodes, all algorithms satisfied the
required coverage and the variance of IMTB was smaller than other algorithms.
As a result, for a small number of nodes inside AoI, the EWOT is the best, while
the IMTB is the best in the case of a larger number of nodes.

Figure 8 shows the performance for different required coverage ratio with a
medium size AoI and a medium number of time steps. The AoI-Size was 0.5. In
Fig. 8 (a), the number of selected nodes increased as the required coverage ratio
increased. This is because, as the required coverage ratio increases, we need more
nodes to satisfy it. The number of selected nodes for IMTB was lower than other
algorithms and it was reduced by 76.68% of the number candidate nodes in the
AoI. On the other hand, it was reduced by 69.46%, 58%, and 50.45% for ILB,
EWOT, and random algorithms, respectively. In Fig. 8 (b), the required coverage
was satisfied by all algorithms and the variance of IMTB is smaller than other
algorithms.

Here, we summarize the simulation results as follows.
• ILB, IMTB, and EWOT algorithms reduce the number of selected nodes to a

great extent for (α, T )-coverage compared to the number of candidate nodes
in the AoI.

• For a small AoI, ILB can select a smaller number of nodes to meet the
required coverage with a smaller variance than IMTB, EWOT, and random
algorithms.

• For medium and large AoI, IMTB can select a smaller number of nodes to
meet the required coverage with a smaller variance than ILB, EWOT, and
random algorithms.

• When only a small number of nodes are initially located in the AoI, only the
EWOT algorithm can meet the required coverage.
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5.2.2 Results for Unequal Moving Probabilities
In the real environment, the moving probabilities of a node at any location to

its neighboring one are almost unequal. In order to investigate to what extent the
unequalness of the moving probability affects the performance of the proposed
methods, we conducted simulations according to the following two scenarios.
• a) random moving probabilities: in this scenario, the moving probability

of a node at a location i to one of its neighboring locations is determined
randomly between 0.01 and 0.09 such that the sum of all moving probabilities
to its neighboring locations is equal to 1.

• b) baised moving probability p: in this scenario, we constructed a model
by defining a moving probability parameter p as shown in Fig. 9. In the sim-
ulations, the value of p was selected from {0.05, 0.1, 0.15, 0.2, 0.25}. Based
on this model, when p is small, most of the nodes are likely to move towards
a specific direction with higher probabilities (e.g., towards bottom right cor-
ner). Here, p = 0.25 corresponds to the case of equal moving probability.

Figure 10 shows the performance for a different AoI-Size by using random
moving probabilities. The number of nodes was 100, the required coverage α was
0.5, and the total number of steps was 8. In Fig. 10 (a), the trend on the number
of selected nodes was almost similar to the case of Fig. 5 (a), but more nodes were
selected. This is because, in this scenario, the probability matrix is not uniform
and there are a smaller number of nodes that visit some sensing locations in AoI.
In Fig. 10 (b), the required coverage is almost satisfied by all algorithms.

Figure 11 shows the performance for different values of p. Where a sufficient
number of nodes exists in the AoI, a clear impact of p value may not occur
on the AoI coverage. So, it is preferable to evaluate the performance of the
proposed algorithms when there is an insufficient number of nodes inside the
AoI. Therefore, in this simulation, the number of nodes was 50. In Fig. 11 (a),
the number of selected nodes decreased as p increased. This is because, when
p increases, the expected number of different visited locations for each node
increases. In Fig. 11 (b), the required coverage was satisfied only by EWOT. This
is because, there is an insufficient number of nodes inside the AoI. Also, EWOT
reduced the number of selected nodes by 66.74% of the number of candidate
nodes inside and outside the AoI. The variance of ILB, IMTB, and random

algorithms decreased as p increased. This is because, when p increases the nodes
tend to move in different directions and the expected number of different covered
locations increases. As a result, if there is an insufficient number of nodes inside
the AoI and most of the nodes tend to move towards a specific direction, the
EWOT algorithm is the best among all algorithms.

5.2.3 Traffic Overhead and Resource Consumption Ratio
In this section, we show the traffic overhead and the efficiency in mobile nodes’

resources consumption of the proposed algorithms.
The main objectives of the proposed node selection algorithms are (i) achieving

AoI coverage ratio α in time period T and (ii) minimizing the overall cost consist-
ing of (1) the incentive fees (determined depending on resource consumption of
mobile nodes for sensing and uploading) paid to the nodes that perform sensing
and uploading and (2) the total traffic amount.

Here, we defined the method in which the node selection is not performed and
all candidate nodes are performing the sensing and uploading operations as the
standard method. According to the query execution sequence in Fig. 4, to execute
the standard method, only two processes (1) and (4) are needed. On the other
hand, to execute the proposed algorithms, the four processes (1), (2), (3), and
(4) are needed. Here, the traffic overhead of the proposed algorithms depends
on the number of mobile nodes in each process of the query execution sequence.
Now, we will explain how to measure the traffic overhead as follows.

Let N denote the total number of mobile nodes in service area A, B denote
the number of all candidates in the AoI, and C denote the number of selected
candidates (for the proposed algorithms). In the case of the standard method,
the number of mobile nodes in (1) and (4) are N and B, respectively. So, the
total traffic (in terms of the number of transmitted messages) for the standard
method is equal to N +B. In the case of the proposed algorithms, the number of
mobile nodes in (1), (2), (3), and (4) are N , B, C, and C, respectively. So, the
total traffic (in terms of the number of transmitted messages) for the proposed
algorithms is equal to N + B + 2C. We will define the traffic overhead for the
proposed algorithms as follows.

traffic overhead =
2C

N + B
(21)
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(a) Traffic overhead (b) Resource consumption ratio

Fig. 12 Traffic overhead and resource consumption ratios for different AoI sizes.

Also, to show the efficiency in mobile nodes’ resource consumption of the pro-
posed algorithms compared to the standard method, we defined the resource
consumption ratio of the number of selected candidates to the total number of
candidates existing in AoI as follows.

Resource consumption ratio =
C

B
(22)

According to Eqs. (21) and (22), we measured the traffic overhead and the re-
source consumption ratio for ILB, IMTB, EWOT, and random algorithms com-
pared to the standard method for different values of AoI size, number of steps,
number of nodes, and required coverage in the case of the equal moving proba-
bilities scenario.

Figure 12, shows the traffic overhead and the resource consumption ratio for
a different AoI-Size. The number of nodes was 100, the required coverage α was
0.5, and the total number of steps was 8. In Fig. 12 (a), the traffic overhead
increased as the AoI-Size increased. When the AoI-Size was 0.01, the traffic
overhead of ILB was lower than other algorithms and it was 2%. For a larger
AoI-Size, the traffic overhead of IMTB was lower than other algorithms and it
increased from 5% to 12.4% as the AoI size increases. In Fig. 12 (b), the resource
consumption ratio of the proposed algorithms was much lower than the standard
method. When the AoI-Size was 0.01, the resource consumption ratio of ILB and
EWOT was lower than other algorithms and it was 31% and 27%, respectively.

(a) Traffic overhead (b) Resource consumption ratio

Fig. 13 Traffic overhead and resource consumption ratio for different values of steps.

For a larger AoI-Size, the resource consumption ratio of IMTB was lower than
other algorithms and it was between 12% to 16%.

Figure 13 shows the traffic overhead and the resource consumption ratio for a
different numbers of time steps. The AoI-Size was 0.5. In Fig. 13 (a), the traffic
overhead decreased as the number of steps increased. The traffic overhead of
IMTB was lower than other algorithms and it decreased from 27% to 6% as the
number of steps increases. In Fig. 13 (b), the resource consumption ratio of the
proposed algorithms was much lower than the resource consumption ratio in the
case of the standard method. The resource consumption ratio of IMTB was lower
than other algorithms in most values of time steps and it was between 11% and
45%.

Figure 14 shows the traffic overhead and the resource consumption ratio for
a different numbers of nodes. In Fig. 14 (a), the traffic overhead decreased as the
number of nodes increased. The traffic overhead of IMTB was lower than other
algorithms and it decreased from 23% to 8% as the number of nodes increases. In
Fig. 14 (b), the resource consumption ratio of the proposed algorithms was lower
than the standard method. The resource consumption ratio of IMTB was lower
than other algorithms and it was between 13% and 36%.

Figure 15 shows the the traffic overhead and the resource consumption ratio
for a different required coverage ratio. In Fig. 15 (a), the traffic overhead increased
as the required coverage ratio increased. The traffic overhead of IMTB was lower
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(a) Traffic overhead (b) Resource consumption ratio

Fig. 14 Traffic overhead and resource consumption ratio for different number of nodes.

(a) Traffic overhead (b) Resource consumption ratio

Fig. 15 Traffic overhead and resource consumption ratio for different values of required
coverage, α.

than other algorithms and it increased from 4% to 29% as the required coverage
ratio increases. In Fig. 15 (b), the resource consumption ratio of the proposed
algorithms was lower than the standard method. The resource consumption
ratio of IMTB was almost lower than other algorithms and it was between 7%
and 48%.

5.2.4 Sensitivity of P Matrix
In this section, we study the sensitivity of matrix P on the performance of

the proposed algorithms by adding a noise parameter called σ to the moving
probability matrix P as follows.

Fig. 16 Effect of σ on the achieved coverage ratio for different values of AoI size.

P = (pi,j ± σk), k = 0, 1, 2, . . . , T − 1, s.t.
M+L∑
j=1

(pi,j ± σk)=1, 1 ≤ i ≤M + L

(23)

According to Eq. (23), we conducted simulation experiments to show the impact
of σ on the performance of the proposed algorithms against the AoI-size. This
is because the size of matrix P depends on the AoI-size and the impact of σ will
be more visible. The value of σ was randomly selected between 0 and 1.

As shown in Fig. 16, the performance of all algorithms was affected by the
value of σ where the variance of all algorithms was bigger than the variance of
all algorithms in the case of Fig. 5 (b). In addition, the IMTB still achieved the
lowest variance compared to other algorithms.

5.3 Simulation Results with Updating Mechanism
In this section, we show the simulation results which we conducted for ILB-up

and IMTB-up. We measured the performance of ILB-up and IMTB-up in terms
of the number of selected nodes, the achieved coverage ratio, the total number of
sensing times, and the communication overhead. In the simulations, the required
coverage α was 0.5 and the AoI-Size was 0.5. In order to evaluate the overhead
of the updating mechanism, we define the total number of sensing times as the
total number of times at which the selected nodes perform a sensing action. It
is defined as follows.

totalSensingTimes =
∑
u∈C

nstu, C =
⋃

t∈UT

Ct (24)
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(a) Achieved coverage vs. Total # of steps (b) Achieved coverage vs. Total # of nodes

Fig. 17 Coverage performance for updating algorithms.

where, nstu is the number of sensing times of a node u, C is the set of all selected
nodes during the time period T , Ct is the set of selected nodes at updating time
t (C0 represents the initial selected set), and UT is the set of updating times.

Also, we define the communication overhead as the total number of candidate
nodes for all updating times during the time period. It is defined as follows.

ComOverhead =
∑

t∈UT

candidates(t) (25)

where, candidates(t) is the number of candidate nodes at time t. Here, the
candidate nodes are the nodes inside the AoI or within distance (T − t) from the
AoI border. We show the simulation results in Figs. 17 and 18.

Figure 17 (a) shows the performance for a different numbers of time steps with
a medium size AoI and a medium required coverage ratio. The number of nodes
was 100. As shown in Fig. 17 (a), the required coverage was satisfied by ILB-up
and IMTB-up. The accuracy of ILB-up and IMTB-up was better than ILB and
IMTB in Fig. 6 (b) and their variances were lower than ILB and IMTB. This is
because, ILB-up and IMTB-up adapt the number of selected nodes during the
time period and ILB and IMTB do not. Figure 17 (b) shows the performance
for a different numbers of nodes with a medium size AoI and a medium required
coverage ratio. The number of time steps was 8. While ILB and IMTB did
not satisfy the required coverage ratio when the total number of nodes was 25
to 75 (Fig. 7 (b)), ILB-up and IMTB-up satisfied the ratio thanks to the update

(a) Change in number of selected nodes dur-
ing time period, total number of steps =
20

(b) Communication overhead when total
number of steps is 10 and 20

(c) Number of sensing times when total num-
ber of steps is 10 and 20

Fig. 18 Change in number of selected nodes, communication overhead, and number of
sensing times for updating algorithms.

mechanism. For a larger number of nodes, all algorithms satisfied the required
coverage.

Figure 18 (a) shows the change in the number of selected nodes during a time
period when T was 20. As shown in Fig. 18 (a), ILB-up and IMTB-up adapt the
number of selected nodes by adding or removing nodes to improve the accuracy
as much as possible during the time period. Figures 18 (b) and 18 (c) show the
communication overhead and the total number of sensing times when the time
period was 10 and 20 steps. In Fig. 18 (b), the communication overhead for ILB-
up and IMTB-up was larger than ILB and IMTB since ILB-up and IMTB-up
requires all nodes to communicate in and near the AoI at each update time.
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In Fig. 18 (c), the total number of sensing times for ILB-up and IMTB-up was
smaller than ILB and IMTB since the update mechanism selects only necessary
nodes taking into account the already covered sensing locations at each update
time.

In conclusion, the update mechanism can be used for applications that require
a high accuracy of AoI coverage and are not concerned with the communication
overhead. On the other hand, if low communication overhead is required, it is
better to use ILB and IMTB without the update mechanism.

6. Conclusion

In this paper, we tackled the (α, T )-coverage problem in people centric sens-
ing with a motivating application scenario. We formulated this problem as an
optimization problem with the objective of minimizing the number of selected
nodes to meet the demanded coverage ratio α within a query interval time T . To
resolve this problem, we proposed heuristic algorithms.

Our simulation results showed that the proposed algorithms achieved (α, T )-
coverage with good accuracy for a variety of values of α, T , AoI size, and moving
probability, and that the inter-meeting time based algorithm selects a smaller
number of nodes without deteriorating coverage accuracy. Also, the proposed
algorithms reduce the cost (number of sensing times) to a great extent compared
to the case of selecting all nodes in the AoI. In addition, our updating mechanism
adapts the number of selected nodes by removing useless nodes and adding some
extra nodes that contribute more to AoI coverage.

In this paper, we considered only the case where a single query is issued at a
time. In future work, we will try to make the proposed algorithms adaptive in
the case of multiple simultaneous queries to minimize the overhead.
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Editor’s Recommendation

This paper aims at reducing the total cost for sensing a specified AoI (Area of
Interest) in urban district by mobile users equipped with sensors based on People-
Centric Sensing (PCS). Since mobile users mobility is uncontrollable, it is difficult
to guarantee sensing coverage of a specified AoI in PCS. For this challenge, the
authors modeled users mobility by discrete Markov chain and formulated the
problem for covering each point of a specified AoI at specified probability in a
specified time. The authors proposed two novel algorithms to solve the problem
and showed that the proposed algorithms accurately achieve AoI coverage of
specified probability in a specified time with much smaller number of users than
selecting all users in AoI.

(Chairman of SIGMBL Atsushi Takeshita)
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