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あらまし BN曲線を用いた最近の効率のよいペアリングでは、これを Fp2 上で 6次ツイストして
与えられるペアリング有理点群が用いられる。これに対して、定義体 Fp2 をOEFを用いて構成し
た場合の、Rho法の効率のよい適用について考える。
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Abstract Recent efficient pairings with BN curve use a pairing rational point group with sextic
twist over Fp2 . For the twisted pairing rational point group, this research considers to efficiently
apply the rho method for which OEF technique plays an important role.

1 Introduction

Recently, pairing based cryptographic applica-
tions such as ID-based cryptography and group
signature schemes have received much atten-
tion. Barreto–Naehrig (BN) curve [1] with em-
bedding degree 12 is one of the most important
families of ordinary pairing friendly curves be-
cause sextic twist is available. Recent ef-
ficient pairings with BN curve such as Ate
pairing [2], twisted-Ate pairing [3] and cross–

twisted Ate pairing [4] also use a pairing ratio-
nal point groupG2 on sextic twisted curve over
Fp2 . Thus, G2 has the isomorphic group G′

2

over twisted curve E′(Fp2). This paper focuses
on the isomorphic groups. In order to solve
ECDLPs, Pollard’s rho method [5] that uses
random walks and collisions is well-known. In
detail, let E(Fq) be an elliptic curve and let
P,Q ∈ E(Fq) satisfy P = [s]Q. In order to
solve the discrete logarithm [s] = logP (Q),
Pollard’s rho method tries to find some col-
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lision points Ri1 = Ri2 among a lot of ran-
dom walks Ri = [ai]P + [bi]Q with random
scalars ai and bi. If any efficient automor-
phisms such as [u]P = ψ(P ) exist, not only
collision points themselves but also their con-
jugates with respect to efficient automorphism
is useful. In order to activate the automor-
phism attack with rho method, it is needed
to deside some coset leader from 12 conjugate
rational points. It is known that normal basis
representations of x, y coordinates of rational
points efficiently work over G2. This paper
show an approach with sextic twist, normal
basis conversion, and optimal extension field
[6].

2 Fundamentals

Let us briefly review elliptic curve discrete log-
arithm problem, rho method [5], non symmet-
ric pairing groups on BN curve [1], and auto-
morphism attach for G2 on BN curve.

2.1 Elliptic curve discrete logarithm
problem (ECDLP)

Let Fp be a prime field and E be an ordinary
elliptic curve over Fp . E(Fp) that denotes the
set of rational points on the curve, including
the infinity point O, forms an additive Abelian
group. In general, the defining equation of the
curve is written in the form of

E : y2 = x3 + ax+ b, a, b ∈ Fp. (1)

In what follows, let the order denoted by #E(Fp)
be a prime number r to make the discussion
simple. Usually, #E(Fp) is written as

#E(Fp) = p+ 1− t, (2)

where t is the Frobenius trace of E(Fp). Then,
let P and s be a certain rational point in E(Fp)
and positive integer less than #E(Fp), respec-
tively. The rational point Q = [s]P is easily
obtained by a scalar multiplication. However,
its inverse problem that solves the scalar s only
with the x and y coordinates of the rational
points P and Q is difficult when the order is
enough large. This problem is called elliptic
curve discrete logarithm problem (ECDLP).

The cryptographies based on ECDLPs re-
quires that the order #E(Fp) is sufficient large
such as more than 160–bit number. Let r
be the group order, the probability of success
of collision–based attacks such as the well–
known Pollard’s rho method [5], for example,
is roughly given by 1/

√
r.

2.2 Pollard’s rho method

Let xP and yP be the x and y coordinates of
rational point P ∈ E(Fp). In what follows, it
is often denoted by P (xP , yP ) or P = (xP , yP ).
In order to solve ECDLPs, rho method with

random walks is well–known. In brief, sup-
pose that a rational point Q is given by [s]P
with a certain scalar s and a rational point
P ∈ E(Fp). Iteratively calculating the fol-
lowing random walks with random numbers ai
and bi less than r,

Ri = [ai]P + [bi]Q, (3)

for a certain pair of integers u and w, one may
find the following collision points.

Ru = Rw, in detail, xRu = xRw and yRu = yRw .
(4a)

Simply, listing and sorting the coordinates (xRi ,
yRi) and random scalars (ai, bi) of the random
walks Ri, the collision points Ru and Rw will
be found by noting that their x and y coordi-
nates becomes the same. Then, the scalar s is
successfully obtained by

s = −(au − aw)(bu − bw)
−1 mod r. (4b)

According to [5], the number of iterations such
that the collision points are 90% successfully
found becomes about 2.15

√
r.

In general, the next random pointRi+1 based
on Ri is given by some simple operations such
as just an elliptic curve addition. For example,
pre–compute several random points Wj , then
Ri+1 is given by Ri plus a certain one of the
pre–computed random points. For activating
rho method, the one needs to be uniquely de-
termined from some information of Ri,
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2.3 Non–symmetric pairing groups
on BN curve

According to Barreto et al. [1], BN curve that
is one of the most efficient pairing– friendly
curves is given in the form of

E : y2 = x3 + b, b ∈ Fp, (5)

where the setting parameters p (characteristic)
and r (group order) are systematically given
with an integer variable χ as

p = 36χ4 − 36χ3 + 24χ2 − 6χ+ 1, (6a)

r = 36χ4 − 36χ3 + 18χ2 − 6χ+ 1. (6b)

Since the embedding degree of BN curve is 12,
consider E(Fp12) and its non–symmetric pair-
ings such as Ate pairing use the two rational
point groups G1 and G2 as

G1 = E(Fp12)[r] ∩Ker(ϕ− [1]), (7a)

G2 = E(Fp12)[r] ∩Ker(ϕ− [p]), (7b)

where ϕ is Frobenius endomorphism, ı.e.,

ϕ : E → E : (x, y) 7→ (xp, yp). (8)

According to [7], the coordinates xP and yP
of every rational point in G2 are elements in
Fp6 and Fp4 , respectively. In addition, G2 has
its isomorphic group G′

2 that is a subgroup of
a certain sextic twisted subfield curve E′(Fp2).
Costello et al. [8] have efficiently used G′

2 for
accelerating pairing–related calculations.

2.4 Automorphism attack for G2 on
BN curve

This paper focuses on the isomorphic groups
G2 and G′

2. First, Eq.(7b) means that a ratio-
nal point P ∈ G2 satisfies

[p]P = ϕ(P ). (9)

Since the embedding degree is 12, the scalar
multiplication [p] and Frobenius endomorphism
ϕ have period 12 such as [p12]P = ϕ12(P ) = P .
For P ∈ G2, there are 12 variants as

[pl]P = ϕl(P ) = (xp
l

P , y
pl

P ), l = 0, 1, · · · , 11.
(10)

In this paper, they are called conjugate ratio-
nal points. Since p12 ≡ 1 (mod r), let λ12 = p
be a primitive 12–th root of unity modulo r.
Then, briefly suppose that a rational point

Q is given by [s]P with a certain scalar s and
a rational point P ∈ G2. Iteratively calcu-
late the following random walks with random
numbers ai and bi less than r,

Ri = [ai]P + [bi]Q. (11)

Then, for a certain pair of integers u and w,
one may find the following collision points Ru

and Rw such that one of the following 12 equa-
tions based on the automorphism ϕ hold.

Ru =
[
λl12

]
Rw = ϕl(Rw), (12a)

l = 0, 1, 2, · · · , 11.

For example, suppose that Ru = [λ12]Rw is
satisfied. Then, the scalar s is successfully ob-
tained by

s = −(au − λ12aw)(bu − λ12bw)
−1 mod r.

(12b)
Thus, the 12 conjugate rational points con-
tribute to reduce the computational cost for
the attack about 1/

√
12 [2].

In order to activate the automorphism at-
tack with rho method, a coset leader of the
automorphism class ϕl(Rw), l = 0, 1, 2, · · · , 11
needs to be uniquely determined with out any
complicated arithmetic operations. For this
purpose, it is known that normal basis rep-
resentations of the x, y coordinates of ratio-
nal points efficiently work according to Eq.(10)
[9]. For example, let the x coordinate of ratio-
nal point be represented with a certain normal
bases as follows,

(x0, x1, x2, · · · , x11), (13)

xi ∈ Fp, i = 0, 1, 2, · · · , 11.

Then, its conjugates with respect to Fp are
simply given by the cyclic shifts of vector co-
efficients of x. Thus, a certain coset leader for
the next random walk will be uniquely deter-
mined, for example, by max{xi} as flagging. It
is important that the determination needs no
arithmetic operations. Then, the next random
point will be efficiently determined.
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3 Automorphism attack for G′
2

on BN curve

In the preceding sections, it is introduced that
Frobenius map ϕ and normal basis are effi-
ciently work for collision–based attack together
with rho method. However, for its isomorphic
group G′

2 on BN curve, they does not simply
work because it is defined with sextic twist. In
what follows, it is shown that optimal exten-
sion field (OEF) [6] efficiently activates these
techniques.

3.1 Constructing Fp12 as an OEF

Especially in the case that 4 divides (p − 1),
OEF extensively accelerates the arithmetic op-
erations including isomorphic mapping between
G2 and sextic twisted G′

2 on BN curve. Most
of cases satisfy the condition and thus in this
case (p− 1) will be divisible by 12.

First, consider an quadratic and cubic non
residue c in the prime field Fp such that

c(p−1)/3 ̸= 1 and c(p−1)/2 ̸= 1. (14)

Then, x12−c becomes irreducible over Fp. Let
ω be its zero, Fp2 , Fp4 , Fp6 , and Fp12 are respec-
tively constructed with the settings ass shown
in Table 1. As an important property, for an
arbitrary element A = (a0, a1) = a0 + a1α =
a0+a1ω

6 in Fp2 , multiplying β = ω3 for exam-

ple results in βA = a0β+a1β
3 = a0ω

3+a1ω
9 =

(0, a0, 0, a1). It is easily found that it becomes
an element in Fp4 and it does not need any
arithmetic operations. In the same, multiply-
ing γ = ω2 results in γA = (0, a0, 0, 0, a1, 0).

3.2 Sextic twisted curve E ′ and iso-
morphic map between G2 and G′

2

Let the BN curve be E : y2 = x3+b, the sextic
twisted curve E′ over Fp2 is given by

y2 = x3 + bα or y2 = x3 + bα5. (15)

In brief, suppose that the former curve is the
objective twisted one. According to [7], E′(Fp2)
has a subgroup of order r, that is denoted by
E′(Fp2)[r]. As previously introduced, it is just

G′
2. Since G2 and G′

2 are isomorphic to each
other, the following isomorphic map is given.

φ : G′
2 → G2, (16a)

(x, y) 7→ (α1/3x, α1/2y). (16b)

Based on α = ω6, α1/3 = ω2 and α1/2 = ω3

respectively belong to Fp6 and Fp4 . Thus, for
every rational point P (xP , yP ) ∈ G2, xP and
yP respectively belong to Fp6 and Fp4 .

3.3 A step for the automorphism at-
tack for G′

2

As introduced in Sec.2.4, the normal bases
representation of coordinates of rational point
will be desired. Since OEF of course adopts
polynomial bases as shown in Table 1, they
would like to be converted to some normal
bases representations. In addition, the calcu-
lation cost for the bases conversion is preferred
to be negligible.

According to [10], the following normal bases
are available in Fp4 , Fp6 , and Fp12 ,

{θ4, θp4, · · · , θ
p3

4 }, θ4 =
3∑

i=0

βi, (17a)

{θ6, θp6, · · · , θ
p5

6 }, θ6 =
5∑

i=0

γi, (17b)

{θ12, θp12, · · · , θ
p11

12 }, θ12 =
11∑
i=0

ωi. (17c)

Then, the conversions Eqs.(18) respectively
hold for Fp4 and Fp6 , where µ and ϵ are prim-
itive quartic and sextic roots of unity, respec-
tively. Thus, the polynomial basis representa-
tions such as (0, a0, 0, a1) and (0, a0, 0, 0, a1, 0)
in Fp4 and Fp6 are converted to their normal
basis representations as Eqs.(19). Therefore,
the basis conversion just needs to calculate
µa0, µa1, ϵa0 and ϵa1.
Then, based on the normal basis representa-

tions, the coset leaders will be efficiently deter-
mined. In addition, the hash lists for searching
collisions will be also prepared as previously
introduced. As an optional technique, norms
for coordinates are also available for no false
collisions [11].
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modular polynomial basis for vector representation

Fp2 x2 − c {1, ω6} {1, α}, α = ω6

Fp4 x4 − c {1, ω3, ω6, ω9} {1, β, β2, β3}, β = ω3

Fp6 x6 − c {1, ω2, ω4, ω6, ω8, ω10} {1, γ, γ2, γ3, γ4, γ5}, γ = ω2

Fp12 x12 − c {1, ω, ω2, ω3, ω4, · · · , ω11}

Table 1: modular polynomial and basis for each field construction


θ4
θp4
θp

2

4

θp
3

4

 =


1 1 1 1
1 µ −1 −µ
1 −1 1 −1
1 −µ −1 µ




1
β
β2

β3

 , (18a)



θ6
θp6
θp

2

6

θp
3

6

θp
4

6

θp
5

6


=



1 1 1 1 1 1
1 ϵ −(ϵ+ 1) −1 −ϵ ϵ+ 1
1 −(ϵ+ 1) −ϵ 1 −(ϵ+ 1) −ϵ
1 −1 1 −1 1 −1
1 −ϵ −(ϵ+ 1) 1 −ϵ −(ϵ+ 1)
1 ϵ+ 1 −ϵ −1 −(ϵ+ 1) ϵ





1
γ
γ2

γ3

γ4

γ5

 . (18b)


1 1 1 1
1 µ −1 −µ
1 −1 1 −1
1 −µ −1 µ




0
a0
0
a1

 =


a0 + a1
µa0 − µa1
−a0 − a1

−µa0 + µa1

 , (19a)



1 1 1 1 1 1
1 ϵ −(ϵ+ 1) −1 −ϵ ϵ+ 1
1 −(ϵ+ 1) −ϵ 1 −(ϵ+ 1) −ϵ
1 −1 1 −1 1 −1
1 −ϵ −(ϵ+ 1) 1 −ϵ −(ϵ+ 1)
1 ϵ+ 1 −ϵ −1 −(ϵ+ 1) ϵ





0
a0
0
0
a1
0

 =



a0 + a1
ϵa0 − ϵa1

−ϵa0 − ϵa1 − a0 − a1
−a0 + a1
−ϵa0 − ϵa1

ϵa0 − ϵa1 + a0 − a1

 .
(19b)
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4 Conclusion

This paper has shown an automorphism im-
provement for the collision based attack on G′

2

with BN curve. Since Frobenius map for ra-
tional points is available on G2, this paper has
shown an approach with sextic twist, normal
basis conversion, and optimal extension field.
The approach can be directly applied on G′

2.

References

[1] P. S. L. M. Barreto, and M. Naehrig,
“Pairing–Friendly Elliptic Curves of
Prime Order,” SAC2005, LNCS 3897,
Springer–Verlag, pp. 319–331, 2006.

[2] H. Cohen and G. Frey, Handbook of El-
liptic and Hyperelliptic Curve Cryptogra-
phy , Discrete Mathematics and Its Appli-
cations, Chapman & Hall CRC, 2005.

[3] S. Matsuda, N. Kanayama, F. Hess,
and E. Okamoto, “Optimised versions
of the Ate and Twisted Ate Pairings,”
IMA2007, LNCS, Vol.4887, pp. 302-312,
2007.

[4] M. Akane, Y. Nogami, and Y. Morikawa,
“Fast Ate Pairing Computation of Em-
bedding Degree 12 Using Subfield–
Twisted Elliptic Curve,” IEICE Trans,
vol. E92–A, no. 2, pp. 508–516, Feb. 2009.

[5] J. M. Pollard, “Monte Carlo methods
for index computation (mod p),” Math.
Comp., 32(143), pp. 918–924, 1978.

[6] D. Bailey and C. Paar, “Optimal Exten-
sion Fields for Fast Arithmetic in Public-
Key Algorithms,” Crypto’ 98, LNCS
1462, Springer–Verlag,, pp. 637–650,
1998.

[7] Y. Nogami, M. Akane, Y. Sakemi, H.
Kato, and Y. Morikawa, “Integer Vari-
able χ–based Ate Pairing,” Pairing2008,
LNCS 5209, Springer–Verlag, pp. 178–
191, 2008.

[8] C. Costello, T. Lange, and M. Naehrig,
“Faster Pairing Computations on Curves
with High-Degree Twists,” PKC2010,

LNCS 6056, Springer–Verlag, pp. 224–
242, 2010.

[9] R. Gallant, R. Lambert, S. Van-
stone, “Improving the Parallelized Pol-
lard Lambda Search on Binary Anoma-
lous Curves”Mathematics of Computa-
tion, vol. 69 Issue 232, 2000.

[10] Y. Nogami, Y. Morikawa, “A Method to
Construct a Normal Basis over OEF,”
23th Symposium on Information Theory
and its Applications(SITA2000), vol.1 of
2, pp. 113–116, 2000.

[11] H. Kato, S. Takeuchi, Y. Nogami, Y.
Morikawa T. Matsushima, “A Consider-
ation of the Efficient Discrete Logarithm
Computation by Using Norm on Barreto-
Naehrig Curve Defined over an Exten-
sion Field” Computer Security Sympo-
sium 2010(CSS2010) vol. 2, pp. 471–476,
2010.

- 148 -


