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Abstract We propose a human motion tracking method that locates the segmented body parts to the target

correspondingly using synchronized multiple cameras. Our method is capable of extracting 3D articulated pos-

tures with 42 degrees of freedom through a sequence of visual hulls. We seek for the globally optimal solutions

of the likelihood with the local memorization about the “fitness” of each body segment. Our method avoids the

local minimum problem efficiently by mean combination and articulated combination of particles selected based

on the weights of the different body segments. We deform the template surface model using the motion tracking

data by linear blend skinning (LBS). The details of the surface are recovered by fitting the deformed surface to

2D silhouettes. The extracted posture and estimated surface are refined by registering the corresponding body

segments. The mean distance between the deformed reference sample model to the target is about 2cm and the

mean matching difference between the projected images of the generated surfaces and the original images is about

7% in our experiments.
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1. Introduction

Kinematic human body motion capture and 3D

spatio-temporal surfaces reconstruction, especially for

fast motion clips, from synchronous multi-camera or

multi-view video sequences are still the challenging and

fundamental problems for many applications, includ-

ing 3D animation movies and games, medical diagnos-

tics motion analysis, or robot motion simulation. Un-

like marker-based motion capture system which requires

people to wear skin-tight clothing with markers, the

multiple images from the marker-less system can be uti-

lized to generate not only the human motion data but

also the realistically complicated surfaces even for hu-

man wearing loose apparels.

Marker-less motion estimation has been studied in

fields of computer graphics and computer vision for

years. The features, such as textures, illuminations and

depth informations are always utilized to calculate the

correspondences between the neighboring frames. It is

intuitive to represent the human motion by articulated

skeleton models. Then a sequence of surfaces can be

recovered easily by a skinning method such as linear

blend skinning (LBS).

Vlasic et al. [1] presented a method which pulled the

template skeleton to fit the visual hull by minimizing an

energy function. This approach does not always work

well. So if the posture is misaligned they will adjust it

by hand. Gall et al. [2] also extracted the 3D articulated

model which registered the contour and texture corre-

spondences by solving an energy minimization problem

in the first stage. In addition, they detected the mis-

aligned limbs and refined the pose by particle filter to

seek for global optimization. In the surface estimation

stage, both Vlasic and Gall utilized the skinning method

to generate the surface model and then recover the de-

tails by deforming it to match the silhouette rims.

Deutscher et al. [3] constructed an articulated body

simplified by cones with elliptical cross-section and as-

signed the model 29 degrees of freedom. They esti-

mated the 3D posture deforming the model to match 2D

images by the annealed particle filter (APF) method.

However, the oversimplified models made it difficult to

recover complicated shape and motion precisely and

they ignored the motion of the hands and feet. In ad-

dition, as mentioned in [4], the result of the APF relied

on the quality of the initial particles. Hence, it is easy

to dash into the local minimization instead of the global

optimization of the likelihood especially in the higher di-

mensional configuration spaces. We proposed a method

that defined the local weights and made new particles

by mean combination in [5] to avoid the local minimiza-
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tion problem. However, this method still depended on

the distribution of the initial particles and not really

represented the “fitness” of each body segment.

In this paper, we employ the volumetric models [6]

generated from multi-view images directly for 3D pose

estimation. About 2% number of voxels are chosen for

motion tracking in order to decrease the computational

cost as the number of voxels of each model is about 100

thousands. The segmented volumetric model is given

and assigned 42 degrees of freedom (DOF) as a template

volumetric model. We also capture the 3D posture for

human body by annealing to generate new ones accord-

ing to the survival rate of the particles. We calculate the

“fitnesses” for all body segments, select several particles

that matches well for different body segments and com-

bine them to generate a new particle in order to avoid

the local minimization problem of the APF method. In

addition, the self-intersection detection is given to avoid

to produce the unsubstantial particles.

A segmented template surface with an underlying

skeleton model is used for surface reconstruction. In our

work, we construct a mesh model by marching cubes [7]

and extract the articulated skeleton model from it for

the first frame. Then we segment the mesh surface into

15 parts based on the skeleton and geodesic distances

similar to [8], [9]. Tadano et al. [8] proposed a motion

extraction method based on Reeb graph and a geodesic

function utilizing principal component analysis. Lee et

al. [9] utilized the extracted skeleton chains, segmented

the time-varying mesh surfaces based on skeleton mod-

els by distance calculations, and refined the 3D pose

using the decomposition results. The skin attachment

was estimated based on the surface labeling and heat

equilibrium as described in [10]. Then the template sur-

face is deformed based on the estimated motion and de-

formed to match the silhouettes. Then we extract the

transformation between the template surface of the ini-

tial frame and the deformed mesh surface by solving a

least squares problem. Furthermore, the motion is re-

fined by matching the segment volumetric models by

iterative closest points (ICP) method [11].

This paper is organized as follows. Section 1. explains

the related work in this field, outlines our method for

motion tracking and surface reconstruction. The seg-

mentation method for the template mesh surface and

volumetric models are described in in section 2.. A sam-

pling method is talked about in section 3.. In section 5.,

a motion tracking method that guards to generate parti-

cles with global optimization and local memorization is

introduced. Section 6. introduces the Laplacian defor-

mation framework to recover the surface details, which

enforces the reverted 2D images obtained by the esti-

mated surface to match with the silhouettes. In Section

7., we show our experimental results, and we summarize

the results and discuss the future work in Section 8..

2. Model decomposition

The challenging problem of human motion tracking is

how to avoid the local mis-alignment while seeking for

the global matching in a high dimensional configuration

space. The segmented model is provided to guide the

“fitness” of each body segment. In addition, the rest

model is labeled by figuring out the correspondences of

the deformed segmented which enforces the local regis-

tration for each limb.

2. 1 Mesh surface segmentation

It is popular to use a simplified segmented model rep-

resented by cones with joints to extract the rest pos-

tures. The complicated model such as a subject-specific

model proposed in [12] can also be utilized but it is not

easy to achieve from the usual maker-less system. As

we sample the sequence of the visual hulls to estimate

the human postures

The model decomposition work is necessary as we

tend to analyze and locate each body segment for the

human body and we abandon to use the simple model

represented by cones with joints. Although a subject-

specific model generation method is proposed in [12],

it is not easy to achieve this for the usual maker-less

system. However, it is hard to segment the volumet-

ric model directly in a time-consistent manner as no

explicit correspondence between frames is given in our

time-varying visual hulls. So we first segment the tem-

plate mesh surface then label the corresponding volu-

metric model.

We prefer constructing the template model for the

first frame directly from images to avoid the registration

problem as described in [2] while the surface is generated

by the laser. We assume there are not any crossed body

segments for the initial posture as the quality of the

template will affect on the reconstructed time-varying

sequence. The template surface and the visual hulls

are all constructed using the multi-camera system. A

skeleton model as shown in Fig. 2 (a) is extracted from

the mesh surface. It can be obtained by hand or the

methods proposed in [8], [9]. The template model is seg-

mented into 15 body parts based on geodesic distance

and the underlying skeleton (b). Then the visual hull (c)
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(a) Image (b) No refinement (c) Refinement

Fig. 1 Visual hull segmentation.

is decomposed according to the segmented mesh surface.

Our proposed mesh surface segmentation algorithm is

conducted according to the following steps:

(1) Calculate the five start points which are the near-

est one in the model to the corresponding leaf joint of

the skeleton.

(2) Label the body segments of head, hands and feet

in respectively. We assign a plane which passes the joint

of two articulated bones and splits them in two parts.

It is easy to detect the vertices which does not belong

the corresponding segment. The geodesic distances to

the start point are computed. Assume that the start

point is labeled as i, the minimal geodesic distance of

the vertex that does not belong to the same body seg-

ment according to the plane is k, then the vertices whose

geodesic distances are less than k will be labeled as i.

We add a virtual point which is assumed to be neigh-

boring to all the vertices whose geodesic distances are

k. The virtual point is used as the start one for the next

segmentation process.

(3) Repeat Step 2 to segment the lower parts of the

legs and arms, the upper parts, and the body in turn.

This method is robust for the uniform model while it

represents each body segment clearly. We recover the

time-varying surfaces based on the template model, the

volumetric sequence is able to be labeled according to

the corresponding one. Each volumetric model is par-

titioned into 15 limbs in accordance with the minimum

Euclidean distances to the corresponding deformed tem-

plate model. However, it will be time-consuming if we

calculate all the distances between points in the mesh

surface and the visual hull. We replace the vertices with

the nearest volume data and represent the visual hull

to be labeled by boolean values. For each volume, the

k−neighboring data are detected in turn until it meets

with the surface data. Then the segmented body is uti-

lized to extract the articulated pose for the next frame.

2. 2 Visual hull segmentation

The visual hull can be labeled by searching the near-

est vertex in the corresponding mesh surface. The seg-

mented model is then utilized in the motion tracking

process for the next frame. It is intuitive to use the re-

constructed surface to decompose the volumetric model

but usually the surface generated by the motion track-

ing data always exists noise. If we do not remove the

noise, the segmentation result will have effect on the

motion tracking results and then make the segmenta-

tion worse for the next frame. The error will be accu-

mulated. It is easy to locate the positions for hands,

feet and the head. At first we relabel these parts ac-

cording to the bone length and the volume, locate the

bone joints and label the father segments again. This

method is simple and effective to avoid the accumula-

tive problem. It is always harder to locate the right

position for hands and feet then we can learn from Fig.

1(b) that the parts of the hands occupy the ones of the

forearms. It is because of the error of motion estimation

and in return this result will cause the mis-aligned prob-

lem for motion extraction. The error will be removed

by refining the segmentation based on the skeleton and

volume as shown in Fig. 1(c). We also can see from

that parts of the noise data in front of the chest occur

as the volume intersection method are not split into the

body part of the chest but this kind of noise can be

removed in the process of surface reconstruction using

the template surface.

3. Sampling

The voxel size is set 1cm in this paper. The numbers

of the voxels in the visual hulls for an adult are usually

over 80 thousands therefore it is time-consuming to use

all the data to estimate the 3D posture sequence while

tracking. Our proposed method for sampling makes

sure that the selected data spread around randomly in

the human body segments and the number of the voxels

in the sampling model is

It is easy to obtain the bounding box of a volumetric

model Z and we enlarge it to be a cube as it can be

divided equally into eight cubes. For each cube Ci, the

volume ratio between the voxels in the cube and the

cube is used to determine the following process: split

or pick samples. In this paper, the process of division

will be repeated until the ratio is above 75%. About

2% percent of the voxels in the intersection of Z and

the cube are selected while the division of the cube is

stopped.

4. Pose extraction

In this section, we describe the motion tracking ap-
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(a) (b) (c) (d)

Fig. 2 The template models used for motion tracking and

surface estimation. From left to right: the seg-

mented visual hull, the sample of (a), the mesh sur-

face and the skeleton model.

proach that seeks for 3D optimal kinematic chains fit-

ting to each body segment. Various of particles are

produced to seek for the optimal one with global opti-

mization and local matching. Self-collision detection is

used to guide to produce “real-life” particles.

4. 1 Motion representation

Twists representation and exponential coordinates as

given in [13], [14] are employed for expressing the rigid

motion of the sample model. It is then restricted to

move with articulated constraints in high dimensional

configuration spaces of 42 DOF. DOF of the global

translation and rotation are treated as six. Wrist, knee

and ankle joints are defined with two degrees of free-

dom. Shoulder, hip, neck and upper body joints are

given three degrees of freedom. Then we define the state

of the sample by a vector χ = (t1, t2, t3, θ1, θ1, . . . , θ39)

that consists of the three parameters of the global trans-

lation and 39 rotate angles. The global translation is

expressed by the following 4×4 matrix

TG =

⎛⎜⎜⎜⎝
0 0 0 t1

0 0 0 t2

0 0 0 t3

0 0 0 0

⎞⎟⎟⎟⎠ (1)

For the joint angle θi, the rotate axis ωi and correspond-

ing joint Ji are known from the skeleton model. The

rotation R(θi) is given by

R(θi) =

(
eω̂iθi (I − eω̂iθi)(ωi × Ji) + ωiω

T
i Jiθi

0 1

)
(2)

where ω̂i is the matrix representation of ωi as described

in [15]. The rigid transformation of body segment i is

represented by

Ti =
∏

j∈k(i)

R(θj) + TG (3)

(a) (b) (c) (d)

Fig. 3 The sample model (b) of the visual hull (a) to be

tracked is compared with the template sample to ex-

tract the posture (c). The deformed surface (d) is

generated based on the motion data.

4. 2 Self-intersection detection

If a segmented mesh surface with an underlying skele-

ton model is given, any human motions can be repre-

sented by a configuration vector χ = {t; θ} that consists
of the three parameters of the global translation t and

the rotate angles for all the human body segments. In

this paper, wrist, knee and ankle joints are defined with

two degrees of freedom. Shoulder, hip, neck and upper

body joints are given three degrees of freedom there-

fore the total degrees of freedom of the human body is

42. The human pose will be decided if the value of χ is

given. It is theoretically right that every random chosen

of χ is corresponding to a 3D posture but not always

a “real” human motion as there is no self-intersection

constraints for the state. In this section, a human self-

intersection detection method is proposed to move the

“bad” particles in which some body segments collide

with each other.

A simple approach is presented to eliminate the unex-

pected human motion with self-intersection. The sam-

ple template volumetric model and the skeleton are uti-

lized to remove the unexpected particles. We take the

cylinder to represent each body limb based on the skele-

ton. The self-intersection weight is defined as following

wself−inter(S(χ)) = min
i

1

N

∑
voxj �∈Si(χ)

p(voxj , Ci),

(4)

where Si(χ) is the body segment i and N is the number

of the volumetric model S(χ). The value of p(voxj , Ci)

is 1 if voxj is in the cylinder Ci, otherwise 0. In the

process of producing new particles, we remove the self-

crossed ones according to wself−inter .

5. Motion estimation with local memo-
rization

In this section, we describe the motion tracking ap-
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(a) Deformed surface by LBS (b) Estimated surface

Fig. 4 The template is deformed as an initial surface, and

the deformed one is projected to compare with the

images to estimate the details.

proach that seeks for 3D optimal kinematic chains fit-

ting to each body segment. As introduced in section 1.,

it is easy to dive into local minimization while tracking

human motion in high dimensional spaces, especially for

fast motion clips. There are two main reasons. One is

that the solution relies on the distribution of the ini-

tial particles. The other one is that it produces the

new particles for the next layer according the fitness

of the whole human body so that it may cause the lo-

cal misaligned problem. We propose an approach not

only annealing to generate the new particles according

to their distribution but also combining some particles

with local optimization for different limbs that avoids

the local minimization problem effectively.

We utilize the 3D data directly to estimate the human

postures. As shown in Fig. 2, the template volumetric

model (a) is decomposed into 15 body segments and

about 2% number of voxels (b) are selected for motion

estimation. The mesh model (c) is deformed to gener-

ate a sequence of surfaces by the extracted motion data

and the silhouettes constraints that will be introduced

in section 6..

The voxel in the target sample are labeled due to

the index of the nearest voxel in the template sample.

The reliability of the correspondences rely on the sim-

ilarity of the two model. A distance function is pro-

vided here to measure the “fitness” for each body seg-

ment. The self-intersection problem has been avoid as

introduced in section 4. 2. Now the problem is that

we want the body segment i of the reference is also

near to the same part of the target but usually it can-

not be confirmed. Therefore we use a punitive way to

calculate the distance. Assume V ox1 and V ox2 are

the same body segment in the reference and the tar-

get respectively, V ox1 = vox1,1, vox1,2, . . . , vox1,n1 and

V ox2 = vox2,1, vox2,2, . . . , vox2,n2 , a punitive value is

given in the function

(a) (b) (c) (d)

Fig. 5 Surface estimation.

Dst(V ox1, V ox2) = α+

1

n1

n1∑
i=1

min
j

‖ vox1,i − vox2,j ‖
(5)

α =

{
c1 n2 = 0

c2
‖n1−n2‖

n1n2

∑n2

j=1 mini ‖ vox1,i − vox2,j ‖ else

(6)

In our program, we choose c1 = 30(cm) and c2 = 2

to punish the wrong labeling.Then we deform the tem-

plate sample in Fig. 2(a) to match the target measuring

by a difference function D(S(χ), S∗) between the de-

formed sample S(χ) and the target model S∗ as shown

in Fig. 3(a)

D(S(χ), S∗) =
1

15

15∑
j=1

Dst(Sj(χ), S
∗
j ), (7)

where Sj(χ) is the body segment j andNj is the number

of voxels of it.

The measurements of the quality of particles are com-

bined in a simple way by

w(X,Z) = exp−D(S(χ), S∗), (8)

where S(χ) and S∗ are the sample models of X and Z.

We also take the idea of annealing particle filter to guar-

antee the particles to the global optimal solution of the

likelihood according to the distribution of the weight

function. The modification is that we produce new par-

ticles by taking local fitness into consideration in the

process. We use Dst(Sj(χ), S
∗
j ) as the value of local

fitness for each body limb in equation (7), sort them for

each body segment and produce new particles by mean

combination and articulated combination method.

Assume χi captures well for the body segment i, i =

1, 2, . . . , 15, the mean combination method just take the

mean values of the useful part of all the particles as

described in [5]. In addition, we proposed the articu-

lated combination method by taking the positions of

the joints into account. We can get a new skeleton in
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Fig. 6 The distance between the deformed reference model

and the target.

which the joint belongs to the body segment i based on

the value of χi, and the χ∗ is obtained by approaching

to the skeleton approximatively. In our experiments, it

was found that setting the layer M = 10 with the par-

ticle number N = 100 worked well for human motion

tracking.

6. Surface estimation

Blend skinning approaches such as linear blend skin-

ning are widely used in shape reconstruction when 3D

skeleton poses are provided. We also use the method

proposed by Baran et al. [10] to estimate the skin

weights for the vertices of the surface.

6. 1 Linear blend skinning

It makes the skin attachment estimation easier as the

template model has been segmented into 15 body parts.

We replace the heat contribution weight of the nearest

bone to the vertex i belonging to the body limb j by the

nearest distance from the vertex to the nearest joint in

the body segment j as we have segmented the human

body into 15 parts. The weights are given by solving

the following equation

(H − L)wi = Hpi (9)

pi is a vector with pij = 1 if the vertex j is in the body

segment i and pij = 0 otherwise. H is the diagonal

matrix with Hjj = 1/d(j)2 where d(j) is the nearest

distance from the vertex j to the bone in the body seg-

ment i. The vertex j can be updated as following

v∗j =

15∑
i=1

wi
jTivj (10)

where Ti is the rigid transformation of the body segment

i. It linearly interpolates the vertices if the skin attach-

ment is calculated. The picture shown in Fig.5(a) is the

deformed surface using the extracted human motion.
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Fig. 7 The matching error between the project images of

the reconstructed surface and the original images.

6. 2 Silhouette constraints

Vlasic [1] and Gall [2] took the 3D models generated

by skinning methods as initial model and iteratively de-

formed it to recover the surface details. Our process

of surface estimation is similar to theirs. We deform

the template surface by linear blend skinning method

as shown in Fig. 4(a). Non-rigid transformation should

also be taken into consideration to recover the surface

details. It is intuitive to take the surface points from

the visual hulls as constraints. Unfortunately, the vi-

sual hull suffer from the noises caused by not only the

qualities of the silhouettes but also the reconstruction

method, therefore, we turn to deform the mesh surface

to match the 2D silhouettes instead of the visual hull.

We project the reconstructed model to the original im-

ages from different views, estimated the corresponding

vertices by silhouette constraints. The refined surface

are generated by solving a least-squares optimization

problem as follows

argmin
v

{‖ LV − δ ‖ +α ‖ CsilV − qsil ‖, (11)

where L is the Laplacian matrix and δ are the differen-

tial values of the deformed mesh surface with vertices V .

Csil is a parameter matrix to express the constraints of

the silhouette rims and qsil are the corresponding con-

fined points as described in [1], [2]. In our work, we it-

erate eight times to refine the mesh surface and set the

parameter of α = 0.01. We use the deformed surface

by linear blend skinning for 3D motion estimation of

the next frame. The process is repeated and the time-

varying sequence with underlying skeleton chains can

be reconstructed.

6. 3 Pose refinement and the reference sur-

face estimation

It is hard to ensure the accuracy of the extracted hu-
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Fig. 8 The top: the generated surfaces projected to the original images. The

bottom: the segmented surfaces.

man posture for each frame for some reasons. Noise

exists in the visual hull that is reconstructed by volume

intersection method as shown in Fig. In addition, only

near 2% of the number of the voxels in the visual hull is

selected so that the result of the extracted motion is due

to the quality of the selected sample models. In other

hand, the extracted motion will be utilized for the next

frame so it is important to remove the error.

7. Experimental results

The initial template surface G is utilized to estimate

the reference surface Gt of the frame t in order to avoid

the accumulative problem. In the first step we calcu-

late the transformation between G and the deformed

model G∗
t generated as introduced in section 6. 2. For

each body segment i, the problem is to get the optimal

solution Ti between the template body segment Gi and

G∗i
t that minimize the following least squares criterion

which has been described in [16] [17]∑
vi
j∈Gi,v∗i

j ∈Gi

‖v∗ij − Tiv
i
j‖2. (12)

We take the segmented volumetric sample model to

match the target again by iterative closest points (ICP)

registration to smooth the error caused by mesh defor-

mation and the optimal solution of equation 12. The

extracted transformation for each body limb provides

a good initial estimation for the ICP algorithm. The

template surface is deformed to generate the reference

surface for the frame t by the LBS method. It is seen

in Fig. 5 that the refined surface (b) matches better

with the original image than the deformed surface (a)

by LBS. Fig. 5 (c)(d) show the generated surfaces by

non-rigid deformation of (a)(c) respectively.

We use the public dataset provided by Gall et al. [2]

and NHK lab to carry out our experiments. The pur-

pose of our approach is to extract 3D articulated kine-

matic chains directly from a time-varying volume se-

quence. In our program, the property of binary repre-

sentation of volumetric model makes it easy to compare

models and compute distances.

The distance for each body segment and the mean

value of the whole body between the deformed refer-

ence model and the target is estimated due to equation

57. We show the distances of the head, hands and feet

as it is harder to track the pose for these body segments

than others. All the distances are less than 3cm and the

mean distance is about 2cm so that the error can be

erased by non-rigid deformation effectively. This result

shows the ability of our proposed method for ensuring

the global optimization and local matching.

We project the reconstructed surfaces to generate 2D

images and compare them with the original images. The

matching error for the deformed surface and the refined

reference model increase as shown in Fig. 7 since these

two kinds of models are all generated based on the tem-

plate model of the initial frame and the extracted hu-

man motion by LBS method. The non-rigid changes

will increase. The mean matching error is about 7% af-

ter non-rigid deformation and do not increase obviously

for about 45 frames. The refined surfaces fit better with

the original images. Unfortunately, the matching error
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is still increase. The reason is that the error between

the reference model and the images increase although

we refine the reference surface which is utilized for the

next frame. The quality of the reference model have

effect on the final results. In Fig. 8 we show the recon-

structed surfaces.

8. Conclusion

We proposed a model-based motion tracking method

to estimate the articulated motion property for a vol-

ume sequence directly in the 3D space. Several postures

that match well for different human body segments are

selected to produce a new particle which captures well

with the whole human body. Although the accuracy re-

lies on the quality of visual hulls, our tracking method

works well for fast human motion tracking in high di-

mensional configuration spaces as compared to other

methods such as the APF algorithm. We generate the

deformed surface using the motion capture data by LBS

method and then match it to 2D silhouettes constraints

to produce a sequence of surfaces with the same topol-

ogy. The posture and surface are refined again by reg-

istration method.
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