最適抽出可能性に基づく1次元低い超平面や超曲面のあてはめ

~ ランダムサンプリングは大域的最適解の夢をみるか?~

藤木 淳† 赤穂昭太郎† 日野 英逸†† 村田 昇††

† 産業技術総合研究所 〒 305-8568 茨城県つくば市梅園 1-1-1 つくば中央第 2

†† 早稲田大学,〒 169−8555 東京都新宿区大久保 3−4−1

あらまし 本稿では N 次元空間のデータに N-1 次元超平面や N-1 次元超曲面をあてはめる問題について考察す る.まず N 次元空間のデータへの N-1 次元超平面あてはめを考える.このあてはめにおいてデータ点と超平面の L_p 距離の最小 k 乗偏差推定する基準であてはめた場合, $0 かつ <math>0 < k \le 1$ ならば最適抽出可能であること を示す.次に N 次元空間のデータへの L_2 距離に基づく N-1 次元超曲面あてはめを考える.このあてはめは特徴写 像を介して M 次元特徴空間における M-1 次元超平面あてはめ問題に帰着させるのが一般的であるが,この特徴写 像によって入力空間の L_2 距離は特徴空間における重み附き L_2 距離で局所的に近似できるので,本稿では特徴空間に おける M 次元空間のデータへの L_2 距離の最小 k 乗偏差推定基準によるあてはめ手法を提案する.これらあてはめ問 題が最適抽出可能である場合,全探索すなわち多項式オーダーの組合せ最適化によって(近似問題の)大域的最適解 が求まる.しかし全探索数は一般に厖大であるため,本稿では組合せ最適化をランダムサンプリングで近似する.ま た同様なランダムサンプリングの手法である最小二乗中央値推定を拡張した最小二乗 α 百分位点推定も提案し,これ ら提案手法と,RANSAC との関係について議論する.また実験によって最小 k 乗偏差推定と最小二乗 α 百分位点推

キーワード あてはめ, L_p ノルム, 最小 k 乗偏差推定, 最小二乗 α 百分位点推定, 大域的最適解, 最適抽出, 組合 せ最適化, ランダムサンプリング

1. はじめに

次元削減による観測データの構造抽出はデータ解析 の基本かつ重要な手順であり, 主成分分析 (principal component analysis; PCA) が頻繁に用いられる. PCA はデータの真値がユークリッド座標枠においてア フィン空間上に分布するという仮定の下で有効な手法で あり, L₂距離に基づく PCA は次元削減後のデータの分 散を最大化する部分空間を求めているが,これは三平方 の定理から分散を最小化する部分空間を削減することと 等価である.この削減する部分空間を決定する手法は劣 成分分析 (minor component analysis; MCA) [30] とも呼ばれる.L₂距離に基づく MCA はデータと部分 空間のL2距離を誤差とみなし,その2乗和を最小とす る最小2乗(least squares; LS)基準を用いるが,こ れは誤差が等方正規分布に従う場合の最尤推定量であ る.また,データの次元を1次元削減することによって データ構造を捉える回帰 (regression)も頻繁に行なわ れる.通常の回帰は誤差を含む目的変数が誤差のない 説明変数の1次関数で表現できると仮定して,残差か ら作られる誤差関数を最小化してデータ構造を抽出す る.通常は残差の2乗和を最小化するLS回帰が行なわ れているが,残差の絶対値和を最小化する最小絶対偏

差 (least absolute deviations; LAD)回帰 [4] や残 差の最大値の最小化するチェビシェフ(Chebyshev)回 帰[4],一般に残差の k 乗和を最小化する最小 k 乗偏差 (least k-th power deviations; L_kPD)回帰 が提案 されている.なお,これまで L_kPD は $1 \leq k \leq 2$ を対 象とした [17], [11], [9], [24] が,本稿では 0 < k ≦ 1 を対 象とする.また近年,説明変数も誤差を含む測定誤差モ デル(measurement error model) も研究されてい る[3],[20].ここで全変数の誤差が独立同一の平均0の 正規分布に従う場合の最尤推定量はデータ点と超平面の L2 距離に対する LS 回帰と等価となり, この回帰はデミ ング (Deming)回帰 [6] または直交 (orthogonal)回 帰と呼ばれ,データ空間よりも1次元低い超平面をデミ ング回帰で求めた結果は L2 距離に基づく PCA の結果 と一致する.つまり通常の回帰は単一変数のみに誤差が 含まれる場合の MCA であり, デミング回帰は全変数に 誤差が含まれる場合の MCA である.これら回帰はデー タ空間に対して1次元低い超平面をあてはめる問題と等 価であるから,逆に言えば,1次元低い超平面や超曲面 をあてはめることは一種の回帰である.そこで本稿では データ空間に対して1次元低い超平面や超曲面をあては めることを超平面回帰や超曲面回帰と呼び,あてはめら れた超平面や超曲面を回帰超平面や回帰超曲面と呼ぶ.

さて,端的に言えば回帰には 3 つの側面がある.1 つ 目は主成分を残すか劣成分を除くかのいずれか,2 つ 目は主成分や劣成分(誤差)から作る評価関数の決め 方,そして 3 つ目はアフィン空間と線型空間のどちら をあてはめるかという側面である.まず第1の側面に ついて主成分を残す手法を PCA,劣成分を除く手法を MCA で明示する.ここで 1 変数にのみ誤差が含まれる 場合の MCA (通常の回帰)は別扱いし,語呂をあわせ て RCA (regressive component analysis)と呼ぶ. 次に第2の側面について各データのもつ誤差の p 乗 Jルムに基づく L_k PD ($0 ; <math>0 < k \le \infty$)を考 察する手法を L_p^k で表現する.ここで D 個の N 次元列 ベクトルデータ $\{x_{[d]}\}_{d=1}^D$ を並べてできるデータ行列を $X = (x_{[1]}, \dots, x_{[D]}), x_{[d]} = (x_{1[d]}, \dots, x_{N[d]})^{\top}$ とする と, L_p^k -MCA で考える行列 J ルムは

$$||X||_{L_p^k} = \left[\sum_{d=1}^D \left(\sum_{n=1}^N |x_{n[d]}|^p\right)^{\frac{k}{p}}\right]^{\frac{1}{k}}$$

となる. 例えばデータとあてはめる超平面との L₂ 距離 の最大値を最小化する手法は L_2^{∞} のように表現する. ここで一般に $||X||_{L_n^k} \neq ||X^\top||_{L_n^k}$ である.そして第 3の側面について,例えば PCA はデータの共分散行列 (covariance matrix)の次元削減なのでアフィン超平 面回帰であるが,パターン認識で用いられる部分空間 法 (subspace method) [23], [28] ではデータの自己相 関行列 (autocorrelation matrix)の次元削減なので 線型超平面回帰である.本稿では,区別の必要がある 場合には線型超平面回帰を"linear"で,アフィン超平面 回帰を "affine" で表す. これら3つの側面から既存手法 を見直すと,まず,RCA は誤差を含む変数が1つであ るため L_1^k に基づく回帰である.ここで L_1^k -RCA は 各データの誤差を並べてできる誤差ベクトルの L_k ノ ルムの和を最小化する手法と一致するので, LS 回帰は L_1^2 -RCA, LAD 回帰は L_1^1 -RCA, チェビシェフ回帰は L_1^{∞} -RCA となる.次に通常の PCA は L_2^2 -affine-PCA または L_2^2 -affine-MCA である.そして通常の部分空間 法では L_2^2 -linear-PCA または L_2^2 -linear-MCA である. L_1 ノルム因子分解 [21] は L_1^1 -linear-MCA であり, R_1 -PCA [7] は L_2^1 -linear-MCA である.なお, PCA-L1 [22] は,厳密には本稿で提案する枠組みには入らない,と いうのもあてはめる超平面への正射影ベクトルのもと の座標系における表現の L_1 ノルムの最大化である L_2^1 linear-PCA ではなく、あてはめる超平面上の正規直交基 底による表現のL1ノルムの和を最大化するからである. そしてこの違いのため回転不変性を持つことになる.な お, 文献 [22] で提案されている PCA-L1 によってあては めた1次元空間の直交補空間に対して再度 PCA-L1を適 用する,という操作の反復によって PCA-L1 によってあ てはまるべき高次元空間を近似的に求める手法は,通常

の PCA とは違い,高次元空間を一度に抽出したときの 最適解とは一致するとは限らず,PCA-L1の場合はその 最適性はまだ保証されていない.

このように線型(アフィン)部分空間を利用した次元 削減は数多く提案されて広く用いられているが,データ の真値や主構造が線型(アフィン)空間上に分布しない場 合には線型(アフィン)部分空間を利用した次元削減手法 は不向きである.そこで非線型主成分分析 (nonlinear PCA; NLPCA)が提案されてきた.NLPCAの考え 方は,非線型構造をもつデータをアフィン空間上に分布 させるために特徴空間 (feature space) と呼ばれる高 次元空間に特徴写像 (feature map)と呼ばれる写像を 行ない,その後に通常のPCAによる線型(アフィン)部 分空間をあてはめる所にある.このときデータの構造は 特徴写像によってアフィン空間に写像される空間に限定 されるためにデータ構造の理解と特徴写像はほぼ等価で あり,データ点にあてはめるべき曲線群や曲面群を決定 することと,特徴写像を定めることは等価となる.よっ て特徴写像が理論的に未知の場合には,写像が先か構 造が先かという鶏と卵の問題が生じるが,2次元データ に対する2次曲線回帰など,コンピュータビジョンにお けるあてはめ問題の場合は特徴写像が理論的に定まり, 鶏と卵の問題は生じないことが多い.ここで,通常の NLPCA は特徴空間における L₂ 距離の LS 基準によるあ てはめ問題であるが,特徴写像は一般に非線型写像であ るから,特徴空間における距離の大小は入力空間におけ る距離の大小を反映しないため,例外値(outlier)を 含むデータに対するあてはめ結果は一般に悪くなる.そ こでコンピュータビジョンでは入力空間における距離の LS 基準に基づいた特徴空間におけるあてはめ手法が研究 され,入力空間が欧氏空間の場合[27],[1],[19],[26],[5], |球面 [13] 及び一次元正規分布 [15] の場合のあてはめ手法 が提案された.またこの手法は核関数で定式化され[12], ガウス核を用いた曲線あてはめも提案された[14].これ ら手法は原則として,入力空間から特徴空間への写像を 観測データ附近でヤコビ行列 (Jacobian matrix)を 用いてアフィン近似することによって入力空間の計量と 特徴空間の計量の関係を近似している.そしてこの近 似によって入力空間における距離を特徴空間における 量で表現している.本稿ではこの手法をヤコビ非線型 主成分分析 (Jacobian NLPCA; JNLPCA)と呼び, JNLPCA を核関数で表現したものをヤコビ核主成分分 析 (Jacobian kernel PCA; JKPCA) と呼ぶ [12]. なお結果的に JNLPCA は入力空間の LS 基準を特徴空 間の重み附き LS 基準で近似していることになる.

本稿では,超平面回帰や,入力空間のL₂距離に基 づく超曲面回帰を考えるために,最適抽出(optimal sampling)可能とう概念を導入する.最適抽出可能と は,N次元空間のデータへの超平面回帰や超曲面回帰 の誤差評価関数の大域的最適解の中に,アフィン回帰の 場合には N 個のデータ点を通るものが,線型回帰の場合には N - 1 個のデータ点(原点とあわせて N 個)を通るものが少なくとも1つ存在することである.ある回帰が最適抽出可能である場合,データ点のサンプリングという多項式オーダーの組合せ最適化によって大域的最適解が得られることになるという利点がある.次に L_p^k -RCA や L_p^k -MCA に基づく(重み附き)超平面回帰が $0 かつ <math>0 < k \le 1$ のときに最適抽出可能であることを示す.なお,k = 0 の場合は超平面や超曲面上の点の数を最大化する回帰となるので最適抽出可能であるが,回帰としては意味があまりないので本稿では割愛する.また,本稿で議論する L_1 等は,誤差を測るノルムのことであり, L_1 正則化などの正則化ではないことに注意しておく.

さて,一般に LS 推定は例外値の影響を強く受けるこ とが知られており,頑健な推定を行なうための M 推定 量が提案された[18].M推定の基本的な考え方は,誤差 分布が正規分布から少々ずれた場合の有効性の低減を抑 えるために例外値の影響を制御した推定量を作る所に ある.例えば平均の推定において誤差がラプラス分布に 従うと仮定すると,最尤推定量は標本平均ではなく標本 中央値となり,この推定は LAD 推定によって得られる, というように直感的には誤差分布が M 推定量から導か れる"正規分布関数と似た"確率分布(M推定量によっ ては正規化できず確率分布と見做せない場合もある)に 従うと仮定した場合の最尤推定と捉えられる.その考え に基づき,M推定量の1つである対数双曲線余弦関数 log cosh 和に基づいた超曲面回帰手法が提案された [16]. そして本稿で提案する L_k PD (0 < k < 2) もまた M 推 定量であり頑健である.また,このような頑健な推定量 の1つとして, 誤差の2乗の中央値(median)を最小に する最小2 乗中央値推定 (least median of squares; LMedS) [25] が知られている. LMedS 推定は中央値 に基づいた推定であるため、その破綻点(break down point)は 50% であり, 例外値が 50% 以上ある場合は 有効に機能しない.そこで本稿では,中央値をα-百分位 点 (α -percentile) に拡張した最小二乗 α 百分位点推 定 (least α -percentile of squares ; L $_{\alpha}$ PS) を提案 する. L_{α}PS への拡張により, 破綻点が 100(1 – α)% と なり,例外値が $100(1-\alpha)$ %以内であれば機能する.

なお、最適抽出可能な L_k PD はサンプリングで大域的 最適解を得ることができるが、一般にその組合せの数は 厖大となる.また LMedS やその拡張の L_{α} PS は評価関 数が微分できない点が多数あり多くの局所最適解があ るのが一般的である.そこで、本稿ではランダムサンプ リングによって大域的最適解の近似解を求めることにす る.同様にランザック (random sample consensus; RANSAC) [10] もランダムサンプリングによって大域 的最適解を求める手法である.RANSAC は回帰超平面 を、超平面が含む正常値の個数によって定める所にあり、 ランダムサンプリングによって得られたデータ点を通る 超平面を多数生成し,正常値の個数が多い超平面を推定 値とする.ここで正常値とは図形との距離が与えられた 閾値以下のものを指し,検出された図形の精度は閾値の 大きさに依存する.

以上を鑑みて,本稿ではランダムサンプリングに基 づく超平面や超曲面のあてはめ手法として L_k PD 及び L_{α} PSを提案する.そして L_k PD や L_{α} PSを2次元画像 上の直線検出及び2次曲線検出に応用し,RANSACと 比較する.これら検出は画像処理におけるデータの1次 元削減手法として重要な問題である.

なお,直線や2次曲線の検出手法としてハフ変換 (Hough transformation; HT)) [8] が良く知られて いるので,本稿では用いないがHTに言及しておく.HT の特徴は超平面や超曲面を表現する助変数の値を助変数 空間のセルへの投票によって定める所にあり,投票の多 いセルに対応する助変数の値を推定値とする.HTにお いて,1つのデータ点は助変数空間において1つの超曲 面に対応するため,1つのデータ点が超曲面が通過する 多数のセルに投票されてしまい,一般に計算量が多くな る.そこでランダム化ハフ変換 (randomized Hough transformation; RHT) [29] が提案された. RHTは, 超平面や超曲面を決定する最小の点集合をランダムサン プリングし,それから決定される助変数を対応するセル に投票することによって計算量を削減する手法である. HT にしろ RHT にしろ,検出された図形の精度は助変 数空間のセルの解像度に依存する.

2. 最適抽出可能性

本節では, N 次元空間のデータへの超平面回帰を考える.ここで以下を仮定する.

仮定:線型回帰の場合は全データが同一の原点を通る N-1次元超平面上にないとし,アフィン回帰の場合は 全データが同一のN-1次元超平面上にないとする.

さて, N 個の変数を並べた列ベクトルを $x \in \mathbb{R}^N$ とする. MCA の場合は全変数が誤差を含み, RCA の場合は第 N 変数のみが目的変数として誤差を含むとする. ここで D 個の観測値の組を $\{x_{[d]}\}_{d=1}^D$ とし, x, $x_{[d]}$ の同次座標をそれぞれ $\tilde{x} = (1, x^{\top})^{\top}$, $\tilde{x}_{[d]} = (1, x_{[d]}^{\top})^{\top}$ とする. 今, 求める線型回帰超平面及びアフィン回帰超平面を

$$\begin{cases} \boldsymbol{p}^{\top}\boldsymbol{x} = 0 & \text{(linear),} \\ p_0 + \boldsymbol{a}^{\top}\boldsymbol{x} = \widetilde{\boldsymbol{p}}^{\top}\widetilde{\boldsymbol{x}} = 0 & \text{(affine)} \\ \boldsymbol{p} \in \mathbb{R}^N, \quad \widetilde{\boldsymbol{p}} = (p_0, \boldsymbol{p}^{\top})^{\top} \in \mathbb{R}^{N+1} \end{cases}$$

とする.ここで

$$\left\{ \begin{array}{ll} \boldsymbol{n} = \boldsymbol{p}, \quad \boldsymbol{z}_{[d]} = \boldsymbol{x}_{[d]}, \quad M = N \qquad (\text{linear}), \\ \boldsymbol{n} = \widetilde{\boldsymbol{p}}, \quad \boldsymbol{z}_{[d]} = \widetilde{\boldsymbol{x}}_{[d]}, \quad M = N + 1 \quad (\text{affine}), \end{array} \right.$$

とおく.

まず RCA について考える. $n \in \mathbb{R}^M$ の第M成分を n_M とし,第M座標向きの単位ベクトルを u_M とする と,d番目のデータの誤差 $e_{[d]}$ は

$$\boldsymbol{n}^{\top} \left(\boldsymbol{z}_{[d]} + e_{[d]} \boldsymbol{u}_M \right) = \boldsymbol{n}^{\top} \boldsymbol{z}_{[d]} + e_{[d]} n_M = 0$$

をみたすので $e_{[d]}=rac{|m{n}^ op z_{[d]}|}{|n_M|}$ となる. よって,重み附き L_1^k -RCA は重み $w_{[d]}>0$ に対し,

$$\underset{\boldsymbol{n}}{\operatorname{argmin}} \sum_{d=1}^{D} \left| w_{[d]}^{\frac{1}{k}} \boldsymbol{n}^{\top} \boldsymbol{z}_{[d]} \right|^{k} \quad \text{subject to} \quad n_{M} = 1$$

を求める問題となる.

次に MCA について考える. d 番目のデータの誤差 $e_{[d]}$ は観測値 $z_{[d]}$ と超平面 $n^{\top}z = 0$ との L_p 距離

$$e_{[d]} = \min_{\boldsymbol{z}} ||\boldsymbol{z}_{[d]} - \boldsymbol{z}||_{L_p}$$
 subject to $\boldsymbol{n}^{\top} \boldsymbol{z} = 0$

となる.まず, $1 \le p \le \infty$ の場合は,ヘルダーの不等式 (Hölder's inequality)により $q = \frac{p}{p-1}$ を用いて

$$|oldsymbol{n}^ opoldsymbol{z}_{[d]}| = |oldsymbol{n}^ op(oldsymbol{z}_{[d]} - oldsymbol{z})| \leq ||oldsymbol{n}||_{L_q} \cdot ||oldsymbol{z}_{[d]} - oldsymbol{z}||_{L_p}$$

が成立するので,
$$e_{[d]}=rac{|m{n}^+m{z}_{[d]}|}{\|m{n}\|_{L_q}}$$
となる.
よって,重み附き $L_p{}^k$ -MCA は

$$\underset{\boldsymbol{n}}{\operatorname{argmin}} \sum_{d=1}^{D} \left| w_{[d]}^{\frac{1}{k}} \boldsymbol{n}^{\top} \boldsymbol{z}_{[d]} \right|^{k} \quad \text{subject to} \quad ||\boldsymbol{n}||_{L_{q}} = 1$$

を求める問題となる.次に0 の場合だが, $<math>||z_{[d]} - z||_{L_p}$ が一定となる図形は凸ではなく尖点をもち, 尖点において超平面 $n^{\top}z = 0$ 上の点と $z_{[d]}$ の L_p 距離は 最小値となる.ここで尖点における $z \ge z_{[d]}$ とで異なる 成分は高々1つであるから,

 $||\boldsymbol{z}_{[d]} - \boldsymbol{z}||_{L_p} = ||\boldsymbol{z}_{[d]} - \boldsymbol{z}||_{L_1}$ at cuspidal points

となり,観測値 $z_{[d]}$ と超平面 $n^{\top}z = 0$ との L_p 距離は L_1 距離と等しい.よって $\frac{1}{q} = \max\{0, \frac{p-1}{p}\}$ のように qを定めれば $1 \le p \le \infty$ の場合と統一できる.

なお,仮定より $\operatorname{rank} \mathcal{Z} = M$, $\mathcal{Z} = \begin{pmatrix} \boldsymbol{z}_{[1]} & \cdots & \boldsymbol{z}_{[D]} \end{pmatrix}$ である.

以上の議論により, L_1^k -RCA, L_p^k -MCA はいずれも

$$\mathcal{E}_{k} = \sum_{d=1}^{D} \left| w_{[d]}^{\frac{1}{k}} \boldsymbol{n}^{\top} \boldsymbol{z}_{[d]} \right|^{k} \tag{1}$$

を最小化する問題であり,違いは n に対する拘束条件が

$$\begin{cases} n_M = 1 & (L_1^k \text{-RCA}) \\ ||\boldsymbol{n}||_{L_q} = 1 & (L_p^k \text{-MCA}) \end{cases}$$
(2)
where $\frac{1}{q} = \max\left\{0, \frac{p-1}{p}\right\}$

となることである.ここで助変数空間における拘束条件

(式 (2))の表す図形を Q は凸である.式 (1)の絶対値を 外すために,助変数 nのなす空間を分割する.この助変 数空間は D 個の超平面 $\Pi_{[d]}: z_{[d]}^{\top} n = 0$ によって,複数 の凸領域である超角錐に分割される.その超角錐が D 個 の超平面それぞれの正領域・負領域のいずれにあるかで

$$s_{[d]} = \begin{cases} -1 & (\boldsymbol{z}_{[d]}^{\top} \boldsymbol{n} = 0 \text{ の負領域}) \\ 1 & (\boldsymbol{z}_{[d]}^{\top} \boldsymbol{n} = 0 \text{ の正領域}) \end{cases}$$

と分類し, $s = (s_{[1]}, \ldots, s_{[D]})^{\top}$ を用いて超角錐を $\mathcal{P}(s)$ と呼ぶ.このとき $\mathcal{P}(s)$ の境界及び内部で

$$\mathcal{E}_{k} = \sum_{d=1}^{D} \left(s_{[d]} w_{[d]}^{\frac{1}{k}} \boldsymbol{n}^{\top} \boldsymbol{z}_{[d]} \right)^{k}$$
subject to $\boldsymbol{n} \in \mathcal{Q} \cap \mathcal{P}(\boldsymbol{s})$

となるので各 s に対する \mathcal{E}_k の最小値の中での最小値が 大域的最適解となる.よって任意のs に対する \mathcal{E}_k の最小 値を与える n が最適抽出可能であることを示せば良い.

さて, 各sに対し助変数nのなす空間を \mathbb{R}^{M} から \mathbb{R}^{D} への線型写像

$$\mathcal{L} = \left(\texttt{diag} \left\{ s_{[1]} w_{[1]}^{\frac{1}{k}}, \dots, s_{[D]} w_{[D]}^{\frac{1}{k}} \right\} \mathcal{Z} \right)^\top$$

で変換する.このとき $\chi = (\chi_{[1]}, \dots, \chi_{[D]})^{\top} = \mathcal{L}n$ とお くと,rank $\mathcal{L} = M$, $D \ge M$ であるから, $n \ge \chi$ は一 対一に対応する.また,線型写像によって凸は凸に写像 されるので $\mathcal{L}(Q)$ は凸の M - 1 次元超曲面を表す.

このとき χ の全成分は非負であり,

$$\mathcal{E}_k = \sum_{d=1}^{D} |\chi_{[d]}|^k = || \boldsymbol{\chi} ||_{L_k}^k$$

subject to $\boldsymbol{\chi} \in \mathcal{L}(\mathcal{Q} \cap \mathcal{P}(\boldsymbol{s}))$

が成立する.よって \mathcal{E}_k は, χ の L_k ノルムが最小となる 点,つまり $\mathcal{L}(\mathcal{Q} \cap \mathcal{P}(s))$ 上の点で原点との L_k 距離が最 小となる点において最小となり,その点に対応する n を 求めれば良い.ここで線型写像によって凸は凸に写像さ れるので, $\mathcal{L}(\mathcal{Q} \cap \mathcal{P}(s))$ はやはり凸である.また,原点か

図 1 凸超曲面と超角錐の交わり

らの L_k 距離が一定となる点の集合は 0 < k < 1, k = 1, k > 1の場合にそれぞれ図 2 のようになるので,原点からの L_k 距離が必ず $\mathcal{L}(\mathcal{Q} \cap \mathcal{P}(s))$ の境界 $\partial \mathcal{L}(\mathcal{Q} \cap \mathcal{P}(s))$ で最小となるためには図 3 のような凹凸関係が成立す

ることが必要であり、そのためには $0 < k \leq 1$ である ことが必要である.逆にこのとき,原点からのL_k距離 が必ず $\partial \mathcal{L}(\mathcal{Q} \cap \mathcal{P}(s))$ で最小となる.よって原点からの L_k 距離が最小となる点は超角錐 $\mathcal{L}(\mathcal{P}(s))$ の境界をなす 超平面 $\{\mathcal{L}(\Pi_{[d]})\}_{d=1}^{D}$ うちのどれか1つの上にあり,その 超平面を $\mathcal{L}(\Pi)$ とすると, $\mathcal{L}(\mathcal{Q} \cap \Pi)$ 上の点で原点からの L_k距離が最小となる点を求めれば良い.ここでやはり $\mathcal{L}(\mathcal{Q} \cap \Pi)$ も凸であるから,最小値を与える点は $\mathcal{L}(\mathcal{Q} \cap \Pi)$ の境界上の点であり, $\mathcal{L}(\Pi)$ とは異なる $\mathcal{L}(\mathcal{P}(s))$ の境界 をなす超平面上にある.このことを繰り返すことにより, $\mathcal{L}(\mathcal{Q} \cap \mathcal{P}(s))$ の頂点うちの少なくとも1つ,すなわち $\mathcal{L}(Q)$ とM-1枚の超平面との交点で原点からの L_k 距 離が最小となることがわかる.この交点における χ に対 応する n は $\mathcal{P}(s)$ をなす M - 1 枚の超平面上にあり, 各 超平面は回帰超平面が観測点を通る条件であることから, \mathcal{E}_k の最小値を与える n は M-1 個 (線型回帰の場合は N-1個,アフィン回帰の場合はN個)の観測点を通る, つまり最適抽出可能である.以上により,0かつ $0 < k \leq 1$ の場合に最適抽出可能である.

7. ヤコビ非線型主成分分析

入力空間である N 次元空間 \mathcal{R} の点列への非線型部分 空間をあてはめる際,この点列を特徴空間である M 次 元リーマン空間 \mathcal{H} に写像し, \mathcal{H} における線型あてはめ に帰着することが多い.通常の非線型主成分分析におい て,最適な線型(\mathcal{P} フィン)部分空間はデータと \mathcal{H} に おける部分空間の欧氏距離の2乗和を最小化するように 推定される.しかし,入力空間に自然な計量が定義され ている場合には, \mathcal{H} における最小2乗推定量は時に悪い 推定結果を与えることが知られている[2].そこで,入 力空間 \mathcal{R} における欧氏距離の2乗和を特徴空間 \mathcal{H} にお ける欧氏距離の重み附き2乗和で近似する手法が提案 され[1],[5],[19],[26],[27],その手法は入力空間が計量 が定義されたリーマン空間の場合に拡張された[12].文 献[12] では,ヒルベルト空間におけるあてはめに拡張で きるように核関数を用いているが,本稿ではその必要は ないので,核関数を用いない表現を使用する.

3.1 入力空間と特徴空間における計量

入力空間を N 次元リーマン空間 R とし, R 上の点 x におけるリーマン計量を G_x とする.またノイズを含む と考えられる観測されたデータ点を $\{x_{[d]}\}_{d=1}^{D}$ とする. JNLPCA では , データ点 $x_{[d]}$ の附近では計量が $G_{x_{[d]}}$ で 一定であると仮定する.つまりリーマン空間は $x_{[d]}$ の 附近で $x_{[d]}$ の接空間(アフィン空間)で近似されると 仮定する.このとき,データ点 $x_{[d]}$ と,その附近にあ る点 $m{x} = m{x}_{[d]} + \deltam{x}$ との距離は $r_{[d]} = \sqrt{(\deltam{x})^{ op}G_{[d]}(\deltam{x})}$ と近似できる.超曲面回帰において,入力空間の点 x は特徴空間である M 次元リーマン空間へ,特徴写像 $\phi: x \mapsto \phi(x)$ によって写像される.このとき,特徴写像 ϕ のヤコビ行列 J_{ϕ} 及び計量テンソル G_{ϕ} は $J_{\phi} = \frac{\partial \phi}{\partial x}$, $G_{\phi} = J_{\phi}^{\top} J_{\phi}$ となり,これら量を用いて特徴写像をデー タ点 $x_{[d]}$ 附近で線型近似すると , $\delta \phi = J_{[d]} \delta x$ となる . ここで $J_{[d]}=J_{oldsymbol{\phi}_{[d]}}$ であり , $oldsymbol{\phi}_{[d]}=oldsymbol{\phi}_{oldsymbol{x}_{[d]}}$ である.この近 似によって,データ点と曲線との距離 $r_{[d]}$ は特徴空間の 量を用いて

$$R_{[d]} = \sqrt{(\delta \phi(\boldsymbol{x}))^{\top} \mathcal{G}_{[d]} \, \delta \phi(\boldsymbol{x})} \tag{3}$$

と近似できる.ここで $\mathcal{G}_{[d]} = (J^+_{[d]})^\top G_{[d]} J_{[d]}$ であり, X^+ は X のムーア-ペンローズ逆行列である.

3.2 特徴空間におけるアフィン空間のあてはめ

本小節では,入力空間におけるデータ点とN-1次元 回帰超曲面との距離を,前小節の線型近似によって近似 する.本稿では, \mathcal{R} における回帰超曲面の集合は,線型 助変数aを用いて $f(x; a) = a^{\top}\phi = 0$ のように表現で きるものとする.例えば,2次元欧氏空間における点列 への2次曲線回帰は, $x = (x,y)^{\top} \in \mathbb{R}^2$ に対して,特徴 写像 $x \mapsto \phi$ を $\phi = (x^2, xy, y^2, x, y, 1)^{\top} \in \mathbb{R}^6$ のように 定めると,6次元空間において $a^{\top}\phi = 0$ という超平面回 帰となる.つまり,本稿の枠組みでは,N次元入力空間 における超曲面回帰ははM次元特徴空間における超平 面回帰に帰着できることとなる.ここで通常のNLPCA では特徴空間の2点間の距離は,特徴空間の座標をデカ ルト座標とみなした欧氏距離で測られるが,JNLPCA で は特徴空間の2点間の距離は式(3)で測られている.

さて, $\hat{\phi}_{[d]}$ を観測データの特徴空間における表現 $\phi_{[d]}$ の真値とし,真値と観測値のずれである誤差を $\delta\phi_{[d]} = \hat{\phi}_{[d]} - \phi_{[d]}$ とおく.ここで真値はM-1次元アフィ ン空間 $f(x; a) = a^{\top}\phi = 0$ 上になるので, $a^{\top}\hat{\phi}_{[d]} = 0$, つまり $a^{\top}\delta\phi_{[d]} = -a^{\top}\phi_{[d]}$ が成立する.よって,観測値 とM-1次元アフィン空間の入力空間の計量を反映した 距離は

$$egin{aligned} R^2_{[d]} &= rgmin\left(\delta oldsymbol{\phi}(oldsymbol{x})
ight)^ op \mathcal{G}_{[d]}\,\delta oldsymbol{\phi}(oldsymbol{x}), \ & ext{ where } \quad oldsymbol{a}^ op \left[\delta oldsymbol{\phi}_{[d]}^ op
ight]oldsymbol{a} &= oldsymbol{a}^ op \left[oldsymbol{\phi}_{[d]} oldsymbol{\phi}_{[d]}
ight]oldsymbol{a} \ & ext{ argmin} \left[\delta oldsymbol{\phi}_{[d]} oldsymbol{\phi}_{[d]}^ op
ight]oldsymbol{a} &= oldsymbol{a}^ op \left[oldsymbol{\phi}_{[d]} oldsymbol{\phi}_{[d]}
ight]oldsymbol{a} \ & ext{ argmin} \left[oldsymbol{\phi}_{[d]} oldsymbol{\phi}_{[d]}^ op
ight]oldsymbol{a} &= oldsymbol{a}^ op \left[oldsymbol{\phi}_{[d]} oldsymbol{\phi}_{[d]}
ight]oldsymbol{a} \ & ext{ where } \quad oldsymbol{a}^ op \left[oldsymbol{\delta} oldsymbol{\phi}_{[d]}^ op
ight]oldsymbol{a} &= oldsymbol{a}^ op \left[oldsymbol{\phi}_{[d]} oldsymbol{\phi}_{[d]}
ight]oldsymbol{a} \ & ext{ argmin} \ & ext{ black for a restrict argmin argument of the text{ argmin}} \ & ext{ argmin} \ & e$$

となり, コーシー・シュワルツの不等式によって

$$R_{[d]}^2 = rac{oldsymbol{a}^ op \left[oldsymbol{\phi}_{[d]}^ op
ight]oldsymbol{a}}{oldsymbol{a}^ op \mathcal{G}_{[d]}^+oldsymbol{a}}$$

となる.ここで特徴空間のおける観測データ ϕ をデカルト座標と考えたときの観測値とM-1次元アフィン空間

の距離 $r_{[d]}$ は $r_{[d]} = \sqrt{\frac{a^{\top} \left[\phi_{[d]}\phi_{[d]}^{\top}\right]a}{a^{\top}a}}$ であるから , $R_{[d]} = w_{[d]}r_{[d]}$, where $w_{[d]} = \sqrt{\frac{a^{\top}a}{2\pi a^{\top}a}}$

$$R_{[d]} = w_{[d]}r_{[d]}, \quad ext{where} \quad w_{[d]} = \sqrt{rac{\omega}{a^{ op}}\mathcal{G}^+_{[d]}a}$$

が成立する.よって L_k PD推定を行なう場合は $\sum_{d=1}^{D} w^k_{[d]} r^k_{[d]}$ を最小にすれば良く,これは重み附き L_k PD推定である.

ここで,重みは変数 a を含むので,一般には重み再計 算法(reweighting)を用い,反復的に重みを推定しな がら,評価関数を最小化することが行なわれているが, 本稿では最適抽出可能性を利用して解く手法を提案する.

4. ランダムサンプリングによる近似

超平面回帰が最適抽出可能をみたす場合,回帰は多項 式オーダーの組合せ最適化(combinatorial optimization)に帰着される.また,超曲面回帰は特徴空間にお いて重み附き超平面回帰に帰着できるため,やはり,回 帰は多項式オーダーの組合せ最適化に帰着される.この 際,超平面や超曲面の助変数の数がM 個の場合,大域 的最適解を求めるための全サンプリング数は $_{DC_{M}}$ 通り となる.しかし,例えば平面上の100点への直線回帰の 場合(D = 100, N = 3)では約100万通り,そして例 えば平面上の100点への2次曲線回帰の場合(D = 100, N = 6)では約1兆通りの厖大な組合せを考えなければ ならない.

そこで計算時間の短縮のため,ランダムサンプリン グによって得られた組合せの中からの最適解によって大 域的最適解を近似することが考えられる.このような 全探索をランダムサンプリングで近似する手法として RANSAC やLMedS が知られている.最適な超曲面(や 超平面)を探すために, RANSAC は観測点のランダム サンプリングによって多数の超曲面を生成し, 全データ がそれぞれの超曲面に対して正常値か例外値を判定する. このとき,正常値とは超曲面との(近似)距離が与えら れた閾値 e 以下のものを指し,さもなくば例外値とする. そして正常値の数が最も多い超曲面を最適な超曲面の 推定値とする.その一方で,LMedS推定は観測点と超 曲面の(近似)距離の中央値(median)が最小となる 超曲面を探索する . LMedS 推定には RANSAC で用い る閾値のような予め定める助変数は不要であるが,破綻 点が 50%, つまり例外値が 50% 以上ある場合に LMedS 推定は適用できないことが知られている.それ故,例外

値が 50% 以上ある場合も適用できるように LMedS 推 定を最小二乗 α 百分位点 (L $_{\alpha}$ PS; least α -percentile of squares) 推定に拡張する(注1). この拡張により,破 綻点は 50% から $(100 - \alpha)$ % となる. この L_{α} PS におい て, α は正常値の割合を規定する助変数と見做すことが できる.なお,RANSACと $L_{lpha}PS$ の一番大きな違いは, RANSAC は与えられた閾値 e 以上の誤差をもつデータ を無視した推定であり, $L_{\alpha}PS$ は大きな誤差をもつ順に (100-α)%のデータを無視した推定である,というこ とである.これら2つの手法とは別に,大きな誤差を もつ観測点の影響(重み)を減少させる推定手法である $L_k PD$ も適用する . L_2 距離に対する $L_k PD$ は $0 < k \leq 1$ において最適抽出可能であるから,ランダムサンプリン グによって近似解を得ることができ,その中に大域的最 」適解が含まれる可能性が十分にある.ここで k を非負の 範囲で小さくすることは, RANSAC において閾値 eを 小さくすることや, $L_{\alpha}PS$ において百分位点 α を小さく することに対応している.これらの関係を明確にするた めに,次節では実験を行なった.

5. 実 験

本稿の実験は全て L₂ ノルムに基づく.まず最小 0.5 乗偏差に基づく直線回帰(0.5-L_kPD)が1-L_kPDやLS (2-LkPD)に比べて頑健であることを示す実験を行な う. 一般に 1-L_kPD は LS に比べて頑健であることは知 られているが, 支点 (leverage point) の影響で推定 結果が悪くなる (図4) ことが知られている [25]. そこ で 1-L_kPD における支点の効果をより軽減するために 0.5-L_kPD による超平面回帰を考える.図4は,平面上の 点列に $0.5-L_kPD$ (緑実線) $1-L_kPD$ (青破線), LS(赤 点線)を適用した結果である.図4において,左上,右上, 左下,右下の順に点を追加しており,(正常値,例外値)の 個数は順に(4,0),(4,1),(7,1),(11,1)である.図4か ら, 0.5-L_kPDは1-L_kPDに比べてより支点の影響を軽 減しており、より頑健な推定であることがわかる.本実 験により k の減少に伴ないより頑健な推定となることが わかる.しかし 0-L_kPD はどんな小さな誤差も許さない ので,kが0に近過ぎると一般に推定が悪くなる.

図 5 は人工データへの 2 次曲線回帰結果である. 放物 線 y = x² 上の点の x 座標を区間 [-3,3] からの一様分布 から生成し, 各点に平均 0, 分散 0.18 のラプラス分布を 曲線の法線方向に添加した人工データに

⁽注1): LMedS 推定は最小二乗 50 百分位点推定 (これを 50-L $_{\alpha}$ PS のように表すことにする)であり,またミニマックス推定は 100-L $_{\alpha}$ PS である.

図 4 L₂ 距離に基づく 0.5-L_kPD (緑実線), 1-L_kPD (青破 線), LS (赤点線)の比較

図 5 入力空間の L₂ 距離に基づく 2 次曲線回帰: 1-L_kPD (左 上),0.5-L_kPD (右上),0.25-L_αPS (左下),RANSAC (右下)

の型の 2 次曲線を回帰した.生成した点のうち,曲線と の最短距離が 0.3 未満のものを正常値,曲線との最短距 離が 0.3 以上のものを例外値と決め,正常値 200 点,例 外値 50 点に対する回帰を行なった.図 5 における赤実 線が回帰結果である.図中の緑点線は特徴空間における LS 推定,青点線は入力空間における LS 推定 (2-L_kPD) である.図 5 上段から,0.5-L_kPD は 1-L_kPD に比べて より支点の影響を軽減しており,より頑健な推定である ことがわかる.次に,L_kPD,L_{α}PS,RANSAC を比較す る.図 5 により,主要な 2 次曲線が単一の場合は,いず れの手法も同等の性能が出ていると考えられる.

最後に実画像からの直線抽出及び2次曲線の抽出を

行なった.図6はRANSAC, 5-L $_{\alpha}$ PS, 0.01-L $_k$ PDによ る直線抽出結果であり、図 7 は RANSAC, 20-L $_{\alpha}$ PS, 0.05-L_kPD による 2 次曲線抽出結果である. なお, 図 7 の下段は2次曲線ではなく楕円に限定した場合のあては め結果であり、ランダムサンプリングによって得られた 2次曲線が $a_1a_3 - a_2^2 > 0$ の場合にのみ採用したものであ る.これら実験において,640×480-pixelsの画像をキャ ニーフィルタ (Canny filter) で変換したエッジ画像か ら直線抽出では 4769 特徴点, 2次曲線抽出では 2918 特 徴点を得た.本実験では直線や2次曲線は20特徴点以上 を含むとし,直線の場合は距離が $\sqrt{5}$ 以下,2次曲線の 場合は近似距離が $\sqrt{20}$ 以下のものを正常値とし,これを RANSAC における閾値として設定した.そして一つ直 線や曲線が推定されると,その推定量に属する正常値を 全て取り除き,残った特徴点から新たな直線や曲線を推 定するという手順を新たな推定量が得られなくなるまで 繰り返した.ここで毎回の推定手順において残っている 特徴点の個数を n 点としたとき,そこから任意に選んだ k 点 (直線の場合は2,2次曲線の場合は5)が少なくと も1回共に20点の正常値から選ばれる確率が1-10⁻⁴ $\log(10^{-4})$ 以上となるように 回以上のランダムサ $\underline{}_{\underline{20}}\mathsf{C}_k$ log ${}_{n}C_{k}$

ンプリングを繰り返した.図6は100点以上の正常値を 含む推定された直線であり,図7は180点以上の正常値 を含む推定された2次曲線である.これからL_αPSは直

図 6 直線抽出法の比較: RANSAC(左), 5-L_αPS (中央), 0.01-L_kPD (右)

図 7 抽出法の比較:2次曲線(上段),楕円(下段); RANSAC(左),20-L_αPS(中央),0.05-L_kPD(右)

線や2次曲線検出に有効であり,RANSACと同等の性 能をもつと言えるが L_k PDは本実験における限り有効と は言えない.おそらくRANSACや L_{α} PSが例外値の影 響を無視して直線附近の局所的構造のみを捉えるのと比 べ, L_k PDは例外値の影響を低減するだけで無視せずに 観測点全体の大域的構造を考慮するためだと考えられる.

6. おわりに

本稿では,1次元低い超平面や超曲面のあてはめ問題 として回帰を捉え,数多く提案されている回帰を分類し, その結果頑健性の高い MCA の多くは最適抽出可能であ ることを証明した.また1次元低い超平面をあてはめる 手法である $L_{\alpha}PS$ 及び L_kPD を提案した.そして L_p 距 離に基づく L_kPD が最適抽出可能である条件を明らかに した.また, $L_{\alpha}PS$ 及び L_kPD に基づくランダムサンプ リングに基づく超曲面回帰手法を提案した.そして提案 手法の有効性を示すために実験を行なった.実験により $L_{\alpha}PS$ は RANSAC と同様に直線や曲線の検出に有効で あることがわかった.しかし L_k PD の有効性は十分とは 言えなかった.L_kPD が直線検出に有効とは言えない理 由は $L_{\alpha}PS$ や RANSAC が直線や曲線附近の局所的な構 造を考えるのに対して LkPD は全データの影響を考慮す るからと考えることができ、よって LkPD はデータに内 在する唯一の主な構造を抽出するのに向いていると考え られる.また,全般的に特徴点の塊や2つの2次曲線の 共通接線の接点附近などの,局所的に直線状に特徴点が 並んでいる場所には交わる2直線と見做せるような双曲 線があてはまる傾向にあることがわかった.現実の環境 では直線と2次曲線が混在することが非常に多いので, 直線と2次曲線を同時にうまくあてはめ分ける仕組みを 今後考える必要がある.

文 献

- [1] S. Akaho, "Curve fitting that minimizes the mean square of perpendicular distances from sample points," SPIE, Vision Geometry II, 1993.
- [2] S. Akaho, "SVM that maximizes the margin in the input space," Chap. 5 of Artificial Intelligence and Computer Science, S. Shannon ed.:139-154, 2005.
- [3] S. Amari and M. Kawanabe, "Information geometry of estimating functions in semi-parametric statistical models," Bernoulli, 3(1):29-54, 1997.
- [4] G. Appa and C. Smith, "On L₁ and Chebyshef estimation," Mathematical Programming, 5(1):73-78, 1973.
- [5] W. Chojnacki, M. j. Brooks, A. van den Hangel and D. Gawley, "On the fitting of surface to data with covariances," IEEE TPAMI, **22**(11), 2000.
- [6] W. E. Deming, Statistical adjustment of data, Wiley, NY, 1943 (Dover Publications edition, 1985).
- [7] C. Ding, D. Zhou, X. He and H. Zha, "*R*₁-PCA: rotational invariant *L*₁-norm principal component analysis for robust subspace factorization," ICML2006.
- [8] R. O. Duda adn P. E. Hart, "Use of the Hough transformation to detect lines and curves in pictures," Comm. ACM, 15:11-15, 1972.
- [9] H. Ekblom, " L_p -methods for robust regression," BIT

NUMERICAL MATHEMATICS, 14:22-32, 1974.

- [10] M. A. Fischer and R. C. Bolles, "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography," Comm. ACM, 24:381-395, 1981
- [11] A. B. Forsythe, "Robust estimation of straight line regression coefficients by minimizing *p*-th power deviations," Technometrics, 14:159-166, 1972
- [12] 藤木淳,赤穂昭太郎,"入力空間での計量に基づいた核主 成分分析,"信学技報 PRMU, **108**(327):69-74, 2008.
- [13] J. Fujiki and S. Akaho, "Curve fitting by spherical least squares on two-dimensional sphere," Subspace 2009 in ICCV2009.
- [14] 藤木淳,赤穂昭太郎,"超球面を射影したヒルベル ト空間における超平面あてはめ,"信学技報 PRMU, 109(182):121-126, 2009.
- [15] 藤木淳,赤穂昭太郎,"一次元正規分布のなす空間への曲 線あてはめ," IBIS 2009.
- [16] 藤木淳,赤穂昭太郎,"頑健なヤコビ核主成分分析を用いた 部分空間あてはめ,"情処研報 2010-CVIM-171(7):1-8, 2010.
- [17] W. M. Gentleman, "Robust estimation of multivariate location by minimizing *p*-th power deviations," Thesis at Princeton Univ., and Memorandum MM 65-1215-16, Bell Tel. Labs., 1965.
- [18] P. J. Huber, "Robust estimation of a location parameter," Ann. Math. Stat., 35:73-101, 1964.
- [19] K. Kanatani and Y. Sugaya, "Unified computation of strict maximum likelihood for geometric fitting," Journal of Mathematical Imaging and Vision, 38(1):1-13, 2010.
- [20] Y. Iba and S. Akaho, "Gaussian process regression with measurement error," IEICE Trans. on Info.& Syst., E93-D(10):2680-2689, 2010.
- [21] Q. Ke and T. Kanade, "Robust L_1 norm factorization in the presence of outlier and missing data by alternative convex programming," CVPR2004.
- [22] N. Kwak, "Principal component analysis based on L1norm maximization," IEEE TPAMI, 30(2), 2008.
- [23] E. Oja, Subspace Methods of Pattern Recognition, Research Studies Press Ltd., 1986.
- [24] W. Rey, "On least *p*-th power methods in multiple regression and location estimations," BIT NUMERI-CAL MATHEMATICS, **15**(2):174-184, 1975.
- [25] R. J. Rousseeuw and A. M. Leroy, *Robust Regression and Outlier Detection*, John Wiley & Sons, NY, 1987.
- [26] P. D. Sampson, "Fitting conic sections to 'very scattered' data: an iterative refinement of the Bookstein algorithm," Comput. Vision, Graphics, and Image Processing, 18:97-108, 1982.
- [27] G. Taubin, "Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applicatons to edge and range image segmentation," IEEE TPAMI, 13(11), 1991.
- [28] S. Watanabe, P. F. Lambert, C. A. Kulikowski, J. L. Buxton and R. Walker, "Evaluation and selection of variables in pattern recognition," Comp. & Info. Sciences II(Julius Tou, ed.), New York: Academic Press, 91-122, 1967.
- [29] L. Xu, E. Oja nad P. Kultanan, "A new curve detection method: Randomized Hough Transform (RHT)," Pattern Recognition Letters, 11(5):331-338, 1990.
- [30] L. Xu, E. Oja nad C. Suen, "Modified Hebbian learning for curve and surface fitting," Neural Networks, 5(3):441-457, 1992.