
IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011)

Regular Paper

Decidability of Reachability for Right-shallow

Context-sensitive Term Rewriting Systems

Yoshiharu Kojima,†1,†2 Masahiko Sakai,†1

Naoki Nishida,†1 Keiichirou Kusakari†1

and Toshiki Sakabe†1

The reachability problem for an initial term, a goal term, and a rewrite system
is to decide whether the initial term is reachable to goal one by the rewrite
system or not. The innermost reachability problem is to decide whether the
initial term is reachable to goal one by innermost reductions of the rewrite
system or not. A context-sensitive term rewriting system (CS-TRS) is a pair
of a term rewriting system and a mapping that specifies arguments of function
symbols and determines rewritable positions of terms. In this paper, we show
that both reachability for right-linear right-shallow CS-TRSs and innermost
reachability for shallow CS-TRSs are decidable. We prove these claims by
presenting algorithms to construct a tree automaton accepting the set of terms
reachable from a given term by (innermost) reductions of a given CS-TRS.

1. Introduction

The reachability problem for two given terms s, t, and a reduction of a rewrite
system R is to decide whether s is reachable to t by the reduction of R or not.
Decision procedures of the problem for ordinary reductions of term rewriting
systems (TRSs) are applicable to security protocol verification 7) and to solving
other problems of TRSs. Since it is known that this problem is undecidable for
general TRSs, efforts have been made to find subclasses of TRSs in which the
reachability is decidable or undecidable 1),4),5),9),13)–18), as shown in Fig. 1.

A context-sensitive TRS 12) (CS-TRS) is a pair of TRSs and a mapping from
a function symbol to a set of natural numbers, where the mapping is used to
specify that arguments are rewritable or not. CS-TRS is used in evaluating if

†1 Graduate School of Information Science, Nagoya University
†2 Research Fellow of the Japan Society for the Promotion of Science

linear

right-linear
∧ finite path overlapping

right-linear
∧ right-shallow

linear

Undecidable

Decidable

2000

1999

right-ground

linear
∧ right-ground

1990

1986

∧ right-shallow

2008

1996

∧ right-shallow

context-sensitive
∧ linear

Result

2006

1983
ground

linear

∧ right-shallow

context-sensitive
∧ right-linear

shallow

Innermost

2008

∧ right-shallow

2009

∧ right-shallow

2008
shallow

Result
context-sensitive

1996

∧ shallow

context-sensitive
∧ linear

Fig. 1 Major subclasses of TRS in which reachability is decidable or undecidable.

· · · then · · · else · · · or case structures.
We have already shown that reachability is decidable for linear right-shallow

CS-TRSs 10). However, linear right-shallow is not a large enough class to express
practical programs (e.g., multiplication).

In this paper, we show that reachability is decidable for right-linear right-
shallow CS-TRSs. Right-linear right-shallow, however, is still not enough to
express practical programs precisely, but we can express programs closer to the
precise one.

Innermost reduction is a strategy that rewrites innermost redexes, and is known
as good at representing call-by-value computation widely used in most program-
ming languages. Therefore, the languages that adopt call-by-value computation
and if · · · then · · · else · · · structures (e.g., C languages) have computation
models defined by the innermost reduction of CS-TRSs. For innermost reduction
of TRSs and CS-TRSs, some decidable classes of reachability are known 6),8),10),11).
However, these classes do not have a large enoughe similarly to the case of the
ordinary reduction of CS-TRSs.

12 c© 2011 Information Processing Society of Japan

13 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

In this paper, we also show that reachability for innermost reduction (innermost
reachability) is decidable for shallow CS-TRSs.

We show the results of this paper by presenting two algorithms. The first algo-
rithm constructs a tree automaton (TA) recognizing the set of terms reachable
from a given term and a given right-linear right-shallow CS-TRS. This algorithm
is based on the procedure for linear right-shallow CS-TRSs 10), and we introduce
the idea in Refs. 14) and 17) to adopt the procedure to left-non-linear CS-TRSs
as well. The second algorithm constructs a tree automaton with constraints be-
tween brothers (TACBB) that recognize the set of terms innermost reachable
from a given term and a shallow CS-TRS. The second algorithm is achieved
by introducing the TACBB ANF that accepts the set of normal forms to check
whether each subterm is rewritable or unrewritable

2. Preliminary

We use the usual notations of rewrite systems 2) and tree automata 3). Let F

be a set of function symbols with fixed arity and X be an enumerable set of
variables. The arity of function symbol f is denoted by ar(f). Function symbols
with ar(f) = 0 are constants. The set of terms, defined in the usual way, is
denoted by T (F,X). A term is linear if no variable occurs more than once in
the term. The set of variables occurring in t is denoted by Var(t). A term t is
ground if Var(t) = ∅. The set of ground terms is denoted by T (F).

A position in a term t is defined, as usual, as a sequence of positive integers,
and the set of all positions in a term t is denoted by Pos(t), where the empty
sequence ε is used to denote root position. The depth of a position p is defined
as the length of p and denoted as |p|. The height |t| of a term t is defined as
max({|p| | p ∈ Pos(t)}). A term t is shallow if the depths of variable occurrences
in t are all 0 or 1. The subterm of t at position p is denoted by t|p, and t[t′]p
represents the term obtained from t by replacing the subterm t|p by t′. If a term
s is a subterm of t and s �= t, s is a proper subterm of t. We denote s � t

(s � t) such that a term s is a (proper) subterm of t. A context C is a term that
contains the symbol �, and C[t]p represents the term obtained by replacing � in
the position p of C by t.

A substitution σ is a mapping from X to T (F,X) whose domain Dom(σ) =

{x ∈ X | x �= σ(x)} is finite. The term obtained by applying a substitution σ to
a term t is written as tσ. The term tσ is an instance of t.

A rewrite rule is an ordered pair of terms in T (F,X), written as l → r, such
that l �∈ X and Var(l) ⊇ Var(r). We say that variables in Var(l) \ Var(r) are
erasing. A term rewriting system (over F) (TRS) is a finite set of rewrite rules.
Rewrite relation −→

R
induced by a TRS R is as follows: s −→

R
t if and only if

s = s[lσ]p, and t = s[rσ]p for some rule l → r ∈ R, with substitution σ and
position p ∈ Pos(s). We call lσ a redex. We sometimes write −→

R
p by presenting

the position p explicitly.
A rewrite rule l → r is left-linear (resp. right-linear, linear, right-shallow,

shallow) if l is linear (resp. r is linear, l and r are linear, r is shallow, l and
r are shallow). A TRS R is left-linear (resp. right-linear, linear, right-shallow,
shallow) if every rule in R is left-linear (resp. right-linear, linear, right-shallow,
shallow).

Let → be a binary relation on a set T (F). We say s ∈ T (F) is a normal form
(with respect to →) if there exists no term t ∈ T (F) such that s → t. If each
proper subterm of redex is a normal form, we say the rewriting is innermost. We
denote the innermost reduction of the relation → as →in. We use ◦ to denote
the composition of two relations. We write ∗−→ for the reflexive and transitive
closure of →. We also write n−→ for the relation → ◦ · · · ◦ → composed of n

→’s. The set of reachable terms from a term in T with respect to the relation
→ is defined by →[T] = {t | s ∈ T, s ∗−→ t}. The reachability problem (resp.
innermost reachability problem) with respect to → is the problem that decides
whether s ∗−→ s′ (resp. s ∗−→in s′) or not, for given terms s and s′.

A mapping μ : F → P(N) is said to be a replacement map (or F -map) if
μ(f) ⊆ {1, . . . , ar(f)} for all f ∈ F . A context-sensitive term rewriting system
(CS-TRS) is the pair R = (R,μ) of a TRS and a replacement map. The set of μ-
replacing positions Posμ(t) (⊆ Pos(t)) is recursively defined: Posμ(t) = {ε} if t is
a constant or a variable, otherwise Posμ(f(t1, . . . , tn)) = {ε} ∪ {ip | i ∈ μ(f), p ∈
Posμ(ti)}. The rewrite relation induced by a CS-TRS R is defined: s ↪−→R t if and
only if s −→

R
p t and p ∈ Posμ(t). If a term t has no redex at Posμ(t), we say t is a

context-sensitive normal form. We denote the set of a context-sensitive normal
form of R as CS-NFR. If each proper subterm of redex is a context-sensitive

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

14 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

normal form or not in a μ-replacing position, we say the rewriting with CS-TRS
is innermost.

A tree automaton (TA) is a quadruple A = (F,Q,Qf ,Δ) where F is a finite
set of function symbols, Q is a finite set of states, Qf (⊆ Q) is a set of final states,
and Δ is a finite set of transition rules of the forms f(q1, . . . , qn) → q or q1 → q

where f ∈ F with ar(f) = n, and q1, . . . , qn, q ∈ Q. We sometimes omit F if it
is not necessary to specify explicitly. We can regard Δ as a (ground) TRS over
F ∪ Q. The rewrite relation induced by Δ of A is called a transition relation
denoted by −→

Δ
or −→A . We denote |α| as the length of a transition sequence α (if

α is s n−→ t, then |α| = n). We say that a term s (∈ T (F)) is accepted by q ∈ Q if
s ∗−→

Δ
q, and if q ∈ Qf , we also say that s is accepted by A. The set of all terms

accepted by A is denoted by L(A). We say A recognizes L(A). A set of terms T

is regular if there exists a TA that recognizes T . We use a notation L(A, q) or
L(Δ, q) to represent the set {s | s ∗−→

Δ
q, s ∈ T (F)}. A TA A is deterministic if

s ∗−→
Δ

q and s ∗−→
Δ

q′ implies q = q′ for any s ∈ T (F). A TA A is complete if there
exists q ∈ Q such that s ∗−→

Δ
q for any s ∈ T (F). A state q ∈ Q of A is accessible

if L(A, q) �= ∅, and if every state in Q is accessible, A is reduced.
A tree automaton with constraints between brothers (TACBB) is a extended TA

in which transition rules have constraints between brothers. Constraints between
brothers are recursively defined: �, ⊥, equality i = j, and disequality i �= j

are constraints between brothers where i, j ∈ N, and if c1 and c2 are constraints
between brothers, then a conjunction c1 ∧ c2 and a disjunction c1 ∨ c2 are also
constraints between brothers. A term f(t1, . . . , tn) satisfies the constraints be-
tween brothers c if c is true by assigning true to �, equality i = j if ti = tj , and
disequality i �= j if ti �= tj , and false to ⊥, equality i = j if ti �= tj , and disequality
i �= j if ti = tj . Each transition rule is of the form f(q1, . . . , qn) c−→ q or q1

�−→ q

where c is a constraint between brothers. A term f(t1, . . . , tn) can reach to a
state q by the transition rule f(q1, . . . , qn) c−→ q Δ of a TACBB if ti

∗−→
Δ

qi for
1 ≤ i ≤ n and f(t1, . . . , tn) satisfies c.

The following properties on TA and TACBB are known 3).

Theorem 1 All of the following holds for TAs and TACBBs:
(1) For a given TA (TACBB) A, there exists a deterministic complete reduced

TA (TACBB) A′ that recognizes L(A).
(2) The class of recognizable tree languages is closed under union, intersection,

and complementation.
(3) The membership problem and the emptiness problem are decidable.

3. Decidability of Reachability for Right-linear Right-shallow CS-
TRSs

In this section, we prove that reachability for right-linear right-shallow CS-
TRSs is decidable. To this end, we show the algorithm Pcs that constructs a tree
automaton recognizing the set of terms reachable by a right-linear right-shallow
CS-TRS from an input term.

The algorithm Pcs is based on the algorithm in Ref. 9). In Ref. 9), if a term
t matches both a rewrite rule and a transition rule, then we produce transition
rules to accept the term obtained by the rewriting. For example, if we have the
rewrite rule a → b and the transition rule a → q, then we produce the transition
rule b → q. However this algorithm can only deal with linear right-shallow TRSs.
Therefore, we introduce the ideas in Refs. 14) and 17) to deal with the left-non-
linear system, and the idea in Ref. 10) to deal with context-sensitive TRSs.

In Refs. 14) and 17), to deal with left-non-linear TRSs, we use subsets of the set
of states of input automata as the set of states of output automata. In Ref. 10),
to deal with context-sensitive TRSs, each state q of input automata is divided
to 〈q, a〉 and 〈q, i〉�1. We merge and modify these ideas to deal with right-linear
right-shallow CS-TRSs. We show an example of automata construction in the
following where it can be seen that the automaton obtained by Pcs recognizes
the set of terms reachable from an input term correctly.

Example 2 Let R = {a → b, b → d, c → d, f(x, x) → g(x, c), g(x, x) →
h(x)}, μ(f) = {1}, μ(g) = {1, 2}, μ(h) = ∅, and A = 〈Q,Qf ,Δ〉 where
Q = {qa, qb, qc, qf(a,b)}, Qf = {qf(a,b)}, Δ = {a → qa, b → qb, c →
qc, f(qa, qb) → qf(a,b)}, and hence L(A) = {f(a, b)}. Pcs output the automa-
ton A∗ = 〈Q∗, Q

f
∗ ,Δ∗〉 that recognizes ↪−→R [{f(a, b)}].

�1 In Ref. 10), divided states are denoted as q̃ and q.

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

15 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

The set of states Q∗ is the set {〈P, a〉, 〈{p}, i〉} where P ⊆ Q, P �= ∅, and
p ∈ Q, Qf

∗ is {〈P f , a〉 | P f ⊆ Q,P f ∩ Qf �= ∅} and the set of transition rules Δ∗
is

Δ∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a → 〈{qa}, x〉,
b → 〈{qb}, x〉,
b → 〈{qa}, a〉,
c → 〈{qc}, x〉,
d → 〈P1, a〉,

f(〈{qa}, x〉, 〈{qb}, i〉) → 〈{qf(a,b)}, x〉,
g(〈{qb}, a〉, 〈{qc}, a〉) → 〈{qf(a,b)}, a〉,

h(〈{qb, qc}, a〉) → 〈{qf(a,b)}, a〉}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where P1 ⊆ {qa, qb, qc} and x ∈ {a, i}. We obtain L(A∗) =
{f(a, b), f(b, b), f(d, b), g(b, c), g(d, c), g(b, d), g(d, d), h(d)} = ↪−→R [L(A)] �

Here we describe Example 2. First, we obtain Q∗ by augmenting parameter a or
i to each state and taking subset of Q for the first components of the states. From
the set of transition rules Δ∗, it can be seen that 〈{qa}, i〉, 〈{qb}, i〉, 〈{qc}, i〉,
and 〈{qf(a,b)}, i〉 only accept the terms accepted by qa, qb, qc and qf(a,b), and
〈{qa}, a〉, 〈{qb}, a〉, 〈{qc}, a〉, and 〈{qf(a,b)}, a〉 accept the terms reachable by R
from the terms accepted by qa, qb, qc, and qf(a,b), that is a, b, c, and f(a, b),
respectively. From μ(f) = {1}, the state in the second argument of f in the
transition rule must have i as its second component. In this way, A∗ does not
accepts the terms obtained by rewriting the second argument of f . Moreover, we
have L(A∗, 〈{qb, qc}, a〉) = (L(A∗, 〈{qb}, a〉)∩L(A∗, 〈{qc}, a〉)). Indeed, the state
〈{qb, qc}, a〉 accepts only d, and the term reachable from b and c is only d, too.
Since the term that is reachable from f(a, b) and matches f(x, x) is only f(b, b),
we produce the transition rule g(〈{qb}, a〉, 〈{qc}, a〉) → 〈{qf(a,b)}, a〉 from the
rewrite rule f(x, x) → g(x, c). Since the term that is reachable from f(a, b) and
matches g(x, x) is only g(d, d), we produce the transition rule h(〈{qb, qc}, a〉) →
〈{qf(a,b)}, a〉 from the rewrite rule g(x, x) → h(x).

Concrete definition of the algorithm Pcs is the following.
Algorithm Pcs:

Input A term t and a right-shallow CS-TRS R = (R,μ).

Output The TA A∗ = 〈Q∗, Q
f
∗ ,Δ∗〉 such that L(A∗) = ↪−→R [{t}], if R is right-

linear.
Step 1 (initialize) (1) Prepare a TA A = 〈Q,Qf ,Δ〉 where each state qs

accepts s ∈ {t}∪RS(R), and RS(R) is the set of a proper ground subterm of
the right-hand sides of R. Here we assume Q = {qs | s�s′, s′ ∈ {t}∪RS(R)},
Qf = {qt}, and L(ARS, qs) = {s} for all qs.

(2) Let
• k := 0,
• Q∗ := {P (⊆ Q) | P �= ∅} × {a} ∪ {{q} | q ∈ Q} × {i},
• Qf

∗ = {P f (⊆ Q) | P f ∩ Qf �= ∅} × {a}, and
• Δ0 := {f(〈{q1}, i〉, . . . , 〈{qn}, i〉) → 〈{q}, i〉 | f(q1, . . . , qn) → q ∈ Δ}

∪

⎧⎪⎨
⎪⎩f(〈{q1}, xi〉, . . . , 〈{qn}, xn〉) → 〈{q}, a〉

∣∣∣∣∣
f(q1, . . . , qn) → q ∈ Δ,

xi =

{
a · · · if i ∈ μ(f),

i · · · otherwise

⎫⎪⎬
⎪⎭

Step 2 Let Δk+1 be the set of transition rules produced by augmenting tran-
sition rules of Δk by the following inference rules. Let C be the context that
has no variable:
(1) If there exists σ : X → T (F) such that xiσ

∗−−→
Δk

〈Pi, xi〉 for all 1 ≤ i ≤ n,
we apply the following inference rule:

C[x1, . . . , xn] → g(r1, . . . , rm) ∈ R,C[〈P1, x1〉, . . . , 〈Pn, xn〉] ∗−−→
Δk

〈{q}, a〉
g(〈P ′

1, x
′
1〉, . . . , 〈P ′

m, x′m〉) → 〈{q}, a〉 ∈ Δk+1

Let Ij = {i | xi = rj}. Each P ′
j and x′j is determined as follows:

• P ′
j =

⎧⎪⎪⎨
⎪⎪⎩

{qrj} · · · if rj �∈ X,

Pi · · · if rj ∈ X ∧ ∃i ∈ Ij .xi = i, and⋃
i∈Ij

Pi · · · if rj ∈ X ∧ ∀i ∈ Ij .xi = a.

• x′j =

{
i · · · if j �∈ μ(g) ∧ (rj ∈ X ⇒ ∃i ∈ Ij .xi = i)), and
a · · · otherwise.

(2) If there exists σ : X → T (F) such that xiσ
∗−−→
Δk

〈Pi, xi〉 for all 1 ≤ i ≤ n,
we apply the following inference rule:

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

16 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

C[x1, . . . , xn] → xi ∈ R,C[〈P1, x1〉, . . . , 〈Pn, xn〉] ∗−−→
Δk

〈{q}, a〉
〈P ′, a〉 → 〈{q}, a〉 ∈ Δk+1

Let I = {j | xj = xi}. P ′ is determined as follows:

• P ′ =

⎧⎨
⎩

Pi · · · if ∃i ∈ I.xi = i, and⋃
i∈I

Pi · · · if ∀i ∈ I.xi = a.

Step 3 For all states 〈P 1 ∪P 2, a〉 ∈ Q∗ where P 1 �= P 2, we add new transition
rule to Δk+1 as follows:
(1) f(〈P1, x1〉, . . . , 〈Pn, xn〉) → 〈P 1 ∪ P 2, a〉 ∈ Δk+1 where

• Pi =

⎧⎪⎨
⎪⎩

P j
i · · · if xj

i = i for some j ∈ {1, 2} and
L(Δk, 〈P 1

i , x1
i 〉) ∩ L(Δk, 〈P 2

i , x2
i 〉) �= ∅, and

P 1
i ∪ P 2

i · · · if x1
i = x2

i = a

• xi =

{
a· · · if x1

i = x2
i = a, and

i· · · if otherwise.
if f(〈P j

1 , xj
1〉, . . . , 〈P j

n, xj
n〉) → 〈P j , a〉 ∈ Δk for j ∈ {1, 2}.

Note that if L(Δk, 〈P 1
i , x1

i 〉) ∩ L(Δk, 〈P 2
i , x2

i 〉) = ∅ and xj
i = i for some

j ∈ {1, 2}, then the transition rule is not produced.
(2) 〈P ′

1 ∪ P ′
2, a〉 → 〈P1 ∪ P2, a〉 ∈ Δk+1 if 〈P ′

1, a〉 → 〈P1, a〉 ∈ Δk, and,
〈P ′

2, a〉 → 〈P2, a〉 ∈ Δk or P ′
2 = P2.

Step 4 If Δk+1 = Δk then stop and set Δ∗ := Δk; Otherwise k := k + 1 and
go to Step 2.

Example 3 Let us follow how the algorithm Pcs works. We input the right-
linear right-shallow CS-TRS R of Example 2 and the term f(a, b).

In the initializing step, at (1) of Step 1, we construct the automaton A of
Example 2, and at (2) of Step 1, we have Q∗ = {〈P, a〉, 〈{p}, i〉} where P ⊆ Q,
P �= ∅, and p ∈ Q, Qf

∗ = {〈Pf , a〉} where Pf ⊆ Q and Pf ∩ Qf �= ∅, and
Δ0 = {a → 〈{qa}, x〉, b → 〈{qb}, x〉, f(〈{qa}, x〉, 〈{qb}, i〉) → 〈{qf(a,b)}, x〉} where
x ∈ {a, i}.

In the saturation step at k = 0, we produce the transition rules {b →
〈{qa}, a〉, d → 〈{qb}, a〉, d → 〈{qc}, a〉, g(〈{qb}, a〉, 〈{qa}, a〉) → 〈{qf(a,b)}, a〉} at
Step 2.

At k = 1, we produce the transition rules {d → 〈{qa}, a〉, h(〈{qb, qc}, a〉) →
〈{qf(a,b)}, a〉} at Step 2 and {b → 〈{qa, qb}, a〉, d → 〈{qb, qc}, a〉} at Step 3.

At k = 2, we produce the transition rules {d → 〈{qa, qb}, a〉, d →
〈{qa, qc}, a〉, d → 〈{qa, qb, qc}, a〉} at Step 3.

The saturation steps stop at k = 3, and we have Δ∗ = Δ3. �

The algorithm Pcs eventually terminates at some k, because rewrite rules in
R and states in Q∗ are finite and hence possible transitions rules are finite.
Apparently Δ0 ⊂ · · · ⊂ Δk = Δk+1 = · · · .

Here we have two remarks.
Our first remark is that the state in which the second parameter is a does

not always occur at rewritable positions. In Example 3, we have both μ(h) = ∅
and the transition rule h(〈{qb, qc}, a〉) → 〈qf(a,b), a〉. However, this causes no
problem. Indeed, the rewriting h(b) ↪−→R h(c) is forbidden but h(c) is reachable
from g(b) as g(b) ↪−→R g(c) ↪−→R h(c).

Our second remark is that the former part of the input for Pcs is a term while
it is an arbitrary tree automaton in Refs. 14), 17), and 10). Otherwise, Pcs may
output an incorrect automaton as shown in the following example:

Example 4 Let R be {a → b, a → d, c → d, f(x, x) → g(x)}, μ(f) = μ(g) =
{1}, and A = 〈Q,Qf ,Δ〉 where Q = {q1, q2, q

f}, Qf = {qf}, Δ = {a → q1, b →
q2, c → q2, f(q1, q2) → qf}, and hence L(A) = {f(a, b), f(a, c)}. Thus, ∗↪−→R [L(A)]
is the set {f(a, b), f(b, b), f(d, b), f(a, c), f(b, c), f(d, c), g(b)}.

Then, Pcs output the automaton A∗ of which transition rules in Δ∗
are {a → 〈{q1}, x〉, b → 〈{q2}, i〉, b → 〈P, a〉, c → 〈{q2}, x〉, d →
〈P, a〉, f(〈{q1}, x〉, 〈{q2}, i〉) → 〈{qf}, x〉, g(〈{q2}, a〉) → 〈{qf}, a〉} where P ∈
{{q1}, {q2}, {q1, q2}} and x ∈ {a, i}. Hence, A∗ accepts the terms g(d) that is
not in ∗↪−→R [L(A)]. �

As for Example 4, preparing another state that accepts only b to construct
a correct automaton is enough. However, guaranteeing the termination of a
procedure if a new state is added in the procedure is difficult.

In the following, we show the correctness of Pcs.
First, we show several propositions that are trivially derived from the definition

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

17 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

of Pcs.

Proposition 5 Let t ∈ T (F). For qt ∈ Q, t ∗−−→
Δ0

〈{qt}, i〉 iff t ∗−→
Δ

qt.

Proof: Direct consequence of the construction of Δ, and Δ0. �

Proposition 6 Let t ∈ T (F). For any k, if t ∗−−→
Δk

〈P, i〉 ∈ Q∗, then t ∗−−→
Δ0

〈P, i〉.
Moreover, P is of the form {q}.

Proof: The first claim follows from the fact that the transition rules in which
right-hand-sides is the state having i are not added at Step 2 or Step 3. The
second claim follows from the construction of states. �

Proposition 7 Let t ∈ T (F). Then, t ∗−−→
Δ0

〈P, i〉 ∈ Q∗ iff t ∗−−→
Δ0

〈P, a〉 ∈ Q∗.

Proof: Direct consequence of the construction of Δ0. �

Proposition 8 Let t ∈ T (F). For any k, If t ∗−−→
Δk

〈P, i〉, then t ∗−−→
Δk

〈P, a〉.

Proof: Let t ∗−−→
Δk

〈P, i〉, then t ∗−−→
Δ0

〈P, i〉 from Proposition 6. This proposition
follows from Proposition 7 and Δ0 ⊆ Δk. �

Next we show several technical lemmas. Lemmas 9, 10, 12, and 14 below are
necessary to prove Lemmas 15 and 19 that are key lemmas to prove completeness
and soundness. Lemmas 11 and 13 are auxiliary lemmas for Lemmas 12 and 14,
respectively.

Lemma 9 Let s, t ∈ T (F), s ∗−−→
Δ0

〈P, x〉, and t ∗−−→
Δ0

〈P ′, x′〉. Then, P = P ′ iff
s = t.

Proof: First we have s ∗−−→
Δ0

〈P, i〉, t ∗−−→
Δ0

〈P ′, i〉, P = {q}, and P ′ = {q′} for
some q, q′ ∈ Q from Proposition 6 and Proposition 7. Then, we have s ∗−→

Δ
qs = q

and t ∗−→
Δ

qt = q′ from Proposition 5 and the construction of A. Thus, we have
P = P ′ iff s = t. �

Lemma 10 If α : t[t′]p ∗−−→
Δ∗

〈P, a〉 and p ∈ Posμ(t), then there exists 〈P ′, a〉
such that t′ ∗−−→

Δ∗
〈P ′, a〉 and t[〈P ′, a〉]p ∗−−→

Δ∗
〈P, a〉.

Proof: We show this lemma by induction on |α|. Let p ∈ Posμ(t).
(1) If p = ε, then t = t′, and hence t′ ∗−−→

Δ∗
〈P, a〉 follows.

(2) Consider the case p = ip′ for some i ∈ N. Then α can be represented
as t[t′]p ∗−−→

Δ∗
〈P ′, a〉 −−→

Δ∗
〈P, a〉 or t[t′]p = f(. . . , ti−1, ti[t′]p′ , ti+1, . . .) ∗−−→

Δ∗
f(. . . , 〈Pi−1, xi−1〉, 〈Pi, xi〉, 〈Pi+1, xi+1〉, . . .) −−→Δ∗

〈P, a〉.
In the former case, this lemma holds from the induction hypothesis.
In the latter case, since ip′ = p ∈ Posμ(t), we have i ∈ μ(f). Hence xi = a

follows from the construction of Δ∗.
From the induction hypothesis, there exists 〈P ′, a〉 ∈ Q∗ such that
t′ ∗−−→

Δ∗
〈P ′, a〉 and ti[〈P ′, a〉]p′ ∗−−→

Δ∗
〈Pi, a〉. Thus we have t[〈P ′, a〉]p =

f(. . . , ti−1, ti[〈P ′, a〉]p′ , ti+1, . . .) ∗−−→
Δ∗

f(. . . , 〈Pi−1, xi−1〉, 〈Pi, a〉, 〈Pi+1,

xi+1〉, . . .) −−→Δ∗
〈P, a〉. �

Lemma 11 If 〈P ′
1, a〉 ∗−−→

Δ∗
〈P1, a〉 and 〈P ′

2, a〉 ∗−−→
Δ∗

〈P2, a〉, then we have 〈P ′
1 ∪

P ′
2, a〉 ∗−−→

Δ∗
〈P1 ∪ P2, a〉.

Proof: We can assume 〈P ′
1, a〉 n−−→

Δ∗
〈P1, a〉 and 〈P ′

2, a〉 n−−→
Δ∗

〈P ′′
2 , a〉 ∗−−→

Δ∗
〈P2, a〉

without loss of generality.
First, we prove the claim that 〈P ′

1∪P ′
2, a〉 ∗−−→

Δ∗
〈P1∪P ′′

2 , a〉. If n = 0, the claim
trivially holds. If n = 1, the claim holds from (2) of Step 3 of Pcs. If n > 1, the
claim holds by repeating the process for n = 1.

Moreover, we can show the claim that 〈P1 ∪ P ′′
2 , a〉 ∗−−→

Δ∗
〈P1 ∪ P2, a〉 similarly

to the previous claim. �

Lemma 12 If t ∗−−→
Δ∗

〈P j , a〉 for 1 ≤ j ≤ m, then we have t ∗−−→
Δ∗

〈
⋃

1≤j≤m

P j , a〉.

Proof: The proof for m = 1 is trivial. We show the proof for m = 2 by induction
on |t|. By applying the proof for m = 2 repeatedly, we can show this lemma.

Let t = f(t1, . . . , tn). Then, each transition sequence is represented as
f(t1, . . . , tn) ∗−−→

Δ∗
f(〈P j

1 , xj
1〉, . . . , 〈P j

n, xj
n〉) −−→Δ∗

〈P j
r , a〉 ∗−−→

Δ∗
〈P j , a〉 for j ∈ {1, 2}.

From Lemma 11, we have 〈P 1
r ∪ P 2

r , a〉 ∗−−→
Δ∗

〈P 1 ∪ P 2, a〉. Therefore, we show
that f(t1, . . . , tn) ∗−−→

Δ∗
〈P 1

r ∪ P 2
r , a〉.

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

18 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

From (1) of Step 3 of Pcs, we have the transition rule f(〈P1, x1〉, . . . , 〈Pn, xn〉) →
〈P 1

r ∪ P 2
r , a〉 ∈ Δ∗ where

• Pi =

{
P j

i · · · if xj
i = i for some j ∈ {1, 2}, and

P 1
i ∪ P 2

i · · · if x1
i = x2

i = a.

• xi =

{
a· · · if x1

i = x2
i = a, and

i· · · otherwise.
Here we show that ti

∗−−→
Δ∗

〈Pi, xi〉 for 1 ≤ i ≤ n.
• For i such that xi = i, Pi is P 1

i or P 2
i and hence we have ti

∗−−→
Δ∗

〈Pi, xi〉.
• For i such that xi = a, Pi is P 1

i ∪ P 2
i and hence we have ti

∗−−→
Δ∗

〈Pi, xi〉 from
the induction hypothesis.

Thus, we have the transition f(t1, . . . , tn) ∗−−→
Δ∗

f(〈P1, x1〉, . . . , 〈Pn, xn〉) −−→
Δ∗

〈Pr, a〉 ∗−−→
Δ∗

〈P, a〉. �

Lemma 13 If 〈P1, a〉 ∗−−→
Δ∗

〈P, a〉, then there exists P ′
1 ⊆ P1 such that 〈P ′

1, a〉 ∗−−→
Δ∗

〈P ′, a〉 for all P ′ ⊆ P where P ′ �= ∅.

Proof: By the induction on |P | + |P1|, we show the proof for the case of
〈P1, a〉 −−→

Δ∗
〈P, a〉. If 〈P1, a〉 = 〈P, a〉, then this lemma holds trivially. If

|〈P1, a〉 ∗−−→
Δ∗

〈P, a〉| > 1, then we can prove this lemma by applying the proof
for 〈P1, a〉 −−→Δ∗

〈P, a〉.
Let P ′ = P\P ′′. We show that if P ′

1 exists such that 〈P ′
1, a〉 ∗−−→

Δ∗
〈P ′, a〉

where P ′
1 ⊆ P1. If |P | = 1, then the claim holds trivially. If |P | > 1, we can

assume that the transition rule 〈P1, a〉 −→ 〈P, a〉 ∈ Δ∗ is produced by the rules
〈P j

1 , a〉 → 〈P j , a〉 ∈ Δ∗ where j ∈ {1, 2}, P 1 ∪ P 2 = P , and P 1
1 ∪ P 2

1 = P1 by (2)
of Step 3 of Pcs. Note that we have |P j |+ |P j

1 | < |P |+ |P1| for j ∈ {1, 2} because
if |P j | + |P j

1 | = |P | + |P1| then we have P 1 = P 2 and P 1
1 = P 2

1 , and hence the
rule 〈P1, a〉 −→ 〈P, a〉 ∈ Δ∗ is the same as 〈P j

1 , a〉 → 〈P j , a〉 ∈ Δ∗ for j ∈ {1, 2}.
For each j, we also have the transition rule 〈P ′j

1 , a〉 −→ 〈P j\P ′′, a〉 ∈ Δ∗ for
some P ′j

1 ⊆ P j
1 from the induction hypothesis.

Thus, we obtain 〈P ′1
1 ∪P ′2

1 , a〉 −−→
Δ∗

〈(P 1∪P 2)\P ′′, a〉 = 〈P ′, a〉 where P ′1
1 ∪P ′2

1 ⊆
P 1

1 ∪ P 2
1 = P1 by (2) of Step 3 of Pcs. �

Lemma 14 If t ∗−−→
Δ∗

〈P, a〉, then t ∗−−→
Δ∗

〈P ′, a〉 for any P ′ ⊆ P .

Proof: We can assume that the transition t ∗−−→
Δ∗

〈P, a〉 is represented
as t = f(t1, . . . , tn) ∗−−→

Δ∗
f(〈P1, x1〉, . . . , 〈Pn, xn〉) −−→

Δ∗
〈Pr, a〉 ∗−−→

Δ∗
〈P, a〉.

From Lemma 13, there exists P ′
r ⊆ Pr such that 〈P ′

r, a〉 ∗−−→
Δ∗

〈P ′, a〉 for
all P ′ ⊆ P . Therefore, we show that we have t = f(t1, . . . , tn) ∗−−→

Δ∗
f(〈P1, x1〉, . . . , 〈Pn, xn〉) −−→

Δ∗
〈P ′

r, a〉. Let P ′
r = Pr\P ′′

r . We show the claim by
induction on Σn

i=1|Pi|+ |Pr| and |t|. If |Pr| = 1, then the claim holds trivially. If
|Pr| > 1, the transition rule f(〈P1, x1〉, . . . , 〈Pn, xn〉) −→ 〈Pr, a〉 is produced from
the transition rules f(〈P j

1 , x1〉, . . . , 〈P j
n, xn〉) −→ 〈P j

r , a〉 where j ∈ {1, 2} by (1) of
Step 3 of Pcs and Pr, Pi’s, and xi’s are represented as follows:
• Pr = P 1

r ∪ P 2
r ,

• Pi =

{
P j

i · · · if xj
i = i for some j ∈ {1, 2}, and

P 1
i ∪ P 2

i · · · if x1
i = x2

i = a.

• xi =

{
a· · · if x1

i = x2
i = a, and

i· · · otherwise.
Here, we show that t ∗−−→

Δ∗
〈P j

i , xj
i 〉 for j ∈ {1, 2} and 1 ≤ i ≤ n.

• For i such that xi = a, we have xj
i = a and P j

i ⊆ Pi. Thus, we have
t ∗−−→

Δ∗
〈P j

i , xj
i 〉 from the induction hypothesis.

• For i such that xi = i, we have L(Δ∗, 〈P 1
i , x1

i 〉) ∩ L(Δ∗, 〈P 2
i , x2

i 〉) �= ∅, and,
x1

i = i or x2
i = i. From Lemma 9, ti is the only term accepted by 〈P j

i , i〉
where j is 1 or 2, and from L(Δ∗, 〈P 1

i , x1
i 〉) ∩ L(Δ∗, 〈P 2

i , x2
i 〉) �= ∅, we have

ti
∗−−→
Δ∗

〈P j
i , xi〉 for both j = 1 and j = 2.

Thus, we have f(t1, . . . , tn) ∗−−→
Δ∗

f(〈P j
1 , xj

1〉, . . . , 〈P j
n, xj

n〉) −−→
Δ∗

〈P j
r , a〉 for both

j = 1 and j = 2.
Moreover, we have Σn

i=1|P j
i | + |P j

r | < Σn
i=1|Pi| + |Pr| for both j = 1 and j = 2

because if it does not hold, then the rule for j = 1 or j = 2 become the same one
as the rule f(〈P1, x1〉, . . . , 〈Pn, xn〉) → 〈P, a〉. Hence, we have t ∗−−→

Δ∗
〈P j

r \P ′′
r 〉 for

both j = 1 and j = 2 from the induction hypothesis.
Thus, we have t ∗−−→

Δ∗
〈P 1

r ∪ P 2
r \P ′′

r , a〉 from Lemma 12. �
The following lemma is a key lemma for completeness of Pcs.

Lemma 15 Let R be right-shallow CS-TRS. Then s ∗−−→
Δ∗

〈P, a〉 and s
∗↪−→R t

implies t ∗−−→
Δ∗

〈P, a〉.

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

19 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

Proof: We present the proof in the case of s ↪−→R t because the proof in the case
of s = t is trivial and in the case of s

∗↪−→R t′ ↪−→R t, we can prove it by applying the
proof for s ↪−→R t repeatedly. Let s ∗−−→

Δ∗
〈P, a〉 and s = s[lσ]p ↪−→R s[rσ]p = t for

some rewrite rule l → r ∈ R, where p ∈ Posμ(s). We have a transition sequence
s[lσ]p ∗−−→

Δ∗
s[〈P ′, a〉]p ∗−−→

Δ∗
〈P, a〉 for some 〈P ′, a〉 ∈ Q∗ by Lemma 10.

From Lemma 14, we have lσ ∗−−→
Δ∗

〈{q}, a〉 for all q ∈ P . Therefore, we prove
that rσ ∗−−→

Δ∗
〈{q}, a〉 for all q ∈ P , because if we can prove this, we have

s[rσ]p ∗−−→
Δ∗

s[〈P ′, a〉]p ∗−−→
Δ∗

〈P, a〉 from Lemma 12.
(1) Consider the case where the rewrite rule is of the form C[x1, . . . , xn] →

g(r1, . . . , rm) where C has no variable. The diagram of this case is
shown in Fig. 2. Here, C[x1, . . . , xn]σ ∗−−→

Δ∗
〈{q}, a〉 is represented

in C[x1, . . . , xn]σ ∗−−→
Δ∗

C[〈P1, x1〉, . . . , 〈Pn, xn〉] −−→
Δ∗

〈{q}, a〉 for some
〈Pi, xi〉 ∈ Q∗ for 1 ≤ i ≤ n. Since we have C[x1, . . . , xn] → g(r1, . . . , rm) ∈
R, C[〈P1, x1〉, . . . , 〈Pn, xn〉] ∗−−→

Δ∗
〈{q}, a〉, and σ : X → T (F) such

that xiσ
∗−−→
Δ∗

〈Pi, xi〉 for all 1 ≤ i ≤ n, Δ∗ has the transition rule
g(〈P ′, x′1〉, . . . , 〈P ′

m, x′m〉) → 〈{q}, a〉 ∈ Δ∗ such that

• P ′
j =

⎧⎪⎪⎨
⎪⎪⎩

{qrj} · · · if rj �∈ X,

Pi · · · if rj ∈ X ∧ ∃i ∈ Ij .xi = i, and⋃
i∈Ij

Pi · · · if rj ∈ X ∧ ∀i ∈ Ij .xi = a.

• x′j =

{
i · · · if j �∈ μ(g) ∧ (rj ∈ X ⇒ ∃i ∈ Ij .xi = i)), and
a · · · otherwise.

where Ij = {i | xi = rj}.
Here, we show that rjσ

∗−−→
Δ∗

〈P ′
j , x

′
j〉 for 1 ≤ j ≤ m.

(a) For j such that rj �∈ X, we have P ′
j = {qrj}. From the shallowness

of R, we have rjσ = rj . Moreover, we have rj
∗−→
Δ

qrj from the
construction of Δ and hence we have rj

∗−−→
Δ0

〈qrj , x〉 for x ∈ {a, i}
from Proposition 5 and Proposition 7.

(b) For j such that rj ∈ X and there exists i ∈ Ij such that xi = i,
we have rjσ = xiσ and hence rjσ

∗−−→
Δ∗

〈Pi, i〉. If j �∈ μ(g), we have
x′i = i and hence rjσ

∗−−→
Δ∗

〈P ′
j , x

′
i〉 = 〈Pi, i〉. If j ∈ μ(g), we have

x′j = a and hence rjσ
∗−−→
Δ∗

〈P ′
j , x

′
j〉 = 〈Pi, a〉 from Proposition 8.

(c) For j such that rj ∈ X and there exists no i ∈ Ij such that xi = i,

C[〈P1, x1〉, . . . , 〈Pn, xn〉] 〈{q}, a〉

g(r1, . . . , rm)σ g(〈P ′
1, x

′
1〉, . . . , 〈P ′

m, x′m〉)

Δ∗
C[x1, . . . , xn]σ↪−−−−→

∗
Δ∗

∗
Δ∗

R Δ∗

Fig. 2 The diagram of the proof of lemma 15.

since we have rjσ = xi′σ
∗−−→
Δk

〈Pi′ , xi′〉 = 〈Pi′ , a〉 for all i′ ∈ Ij ,

rjσ
∗−−→
Δ∗

〈P ′
j , x

′
j〉 = 〈

⋃
i′∈Ij

Pi′ , a〉 follows from Lemma 12.

Therefore we have g(r1, . . . , rm)σ ∗−−→
Δ∗

g(〈P ′
1, x

′
1〉, . . . , 〈P ′

m, x′m〉) −−→
Δ∗

〈{q}, a〉.
By applying the above statement for all q ∈ P , this lemma holds.

(2) In the case where the rewrite rule is of the form C[x1, . . . , xn] → xi, we can
prove this lemma similarly to the previous case.

�
The following lemma shows completeness of Pcs.

Lemma 16 If R is right-shallow CS-TRS, then L(A∗) ⊇ ↪−→R [L(A)].

Proof: Let s
∗↪−→R t and s ∗−→

Δ
q ∈ Qf . Since we have s ∗−−→

Δ0
〈{q}, i〉 from

Proposition 5, we also have s ∗−−→
Δ0

〈{q}, a〉 from Proposition 7. Hence t ∗−−→
Δ∗

〈{q}, a〉 ∈ Qf
∗ follows by Lemma 15. �

To prove the soundness of Pcsin, we define the following measures of transition
and order. These are necessary to prove soundness of Pcs.

Definition 17 Let ||t ∗−−→
Δ∗

P || be the sequence of integers defined as follows�1:

�1 Sometimes we have k − 1 < 0 in this definition. Δk for k < 0 is undefined but we assume
it as an empty set.

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

20 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

||t ∗−−→
Δ∗

〈P, x〉|| =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k.||t ∗−−→
Δ∗

〈P ′, x′〉|| · · · if t ∗−−→
Δ∗

〈P ′, x′〉, and −−−−−−→
Δk\Δk−1

〈P, x〉,

k.||ti ∗−−→
Δ∗

〈Pi, xi〉|| · · ·
if t = f(t1, . . . , tn) ∗−−→

Δ∗
f(〈P1, x1〉, . . . , 〈Pn, xn〉)

−−−−−−→
Δk\Δk−1

〈P, x〉 and

∀j �= i.||ti ∗−−→
Δ∗

〈Pi, xi〉|| ≥lex ||tj ∗−−→
Δ∗

〈Pj , xj〉||

Definition 18 Let � and � be the order for transition sequences as follows:

α � β iff

{
(1) β occurs in α, or
(2) α does not occur in β and ||α|| ≥lex ||β||.

α � β iff

{
(1) β occurs in α and α does not occur in β, or
(2) α does not occur in β and ||α|| >lex ||β||.

Note that � is well-founded, α � β implies α � β, and if α � β then β �� α. The
minimal components in the order � are the transitions of the form a −−→

Δ0
〈P, x〉

where a is a constant.
The following lemma is a key lemma for soundness of Pcs.

Lemma 19 Let R be a right-linear right-shallow CS-TRS. Then, α : t ∗−−→
Δ∗

〈P, a〉 implies that there exists s and q ∈ P such that s
∗↪−→R t and s ∗−−→

Δ0
〈{q}, a〉.

Proof: We show this lemma by induction on α with respect to �. Since we have
t ∗−−→

Δ∗
〈{q}, a〉 for all q ∈ P from Lemma 14, we show the proof in the case where

P is of the form {q}.
(1) Consider the case where α is represented as t = g(t1, . . . , tm) ∗−−→

Δ∗
g(〈P ′

1, x
′
1〉, . . . , 〈P ′

m, x′m〉) −−−−−−→
Δk\Δk−1

〈{q}, a〉.
(a) If k = 0, the transition rule g(〈P ′

1, a〉, . . . , 〈P ′
m, a〉) → 〈{q}, a〉 is pro-

duced at Step 1, and hence each P ′
j is of the form {qj} and we have

j ∈ μ(g) iff x′j = a. For j ∈ μ(g), we have x′j = a and hence
there exists sj such that sj

∗↪−→R tj and sj
∗−−→
Δ0

〈P ′
j , a〉 = 〈{qj}, a〉

from the induction hypothesis. For j �∈ μ(g), we have x′j = i

and tj
∗−−→
Δ0

〈P ′
j , i〉 from Proposition 6. We take sj = tj for

j �∈ μ(g). Finally, we obtain g(s1, . . . , sm) ∗−→R g(t1, . . . , tm) = t and

g(s1, . . . , sm) ∗−−→
Δ0

g(〈P ′
1, x

′
1〉, . . . , 〈P ′

m, x′m〉) −−→
Δ0

〈{q}, a〉. Thus, this
lemma holds in the case k = 0.

(b) If k > 0, the transition rule g(〈P ′
1, x

′
1〉, . . . , 〈P ′

m, x′m〉) → 〈{q}, a〉 ∈
Δk\Δk−1 is produced at (1) of Step 2. The diagram of this case
is shown in Fig. 3. From the production of the transition rule, we
have C[x1, . . . , xn] → g(r1, . . . , rm) ∈ R where C has no variable
and C[〈P1, x1〉, . . . , 〈Pn, xn〉] ∗−−−→

Δk−1
〈{q}, a〉, and σ′ : X → T (F)

such that xiσ
′ ∗−−−→

Δk−1
〈Pi, xi〉 for all 1 ≤ i ≤ n, and each 〈P ′

j , x
′
j〉 is

represented as follows:

• P ′
j =

⎧⎪⎪⎨
⎪⎪⎩

{qrj} · · · if rj �∈ X,

Pi · · · if rj ∈ X ∧ ∃i ∈ Ij .xi = i, and⋃
i∈Ij

Pi · · · if rj ∈ X ∧ ∀i ∈ Ij .xi = a.

• x′j =

{
i · · · if j �∈ μ(g) ∧ (rj ∈ X ⇒ ∃i ∈ Ij .xi = i)), and
a · · · otherwise.

where Ij = {i | xi = rj}. In the following, we show that there ex-
ists the substitution σ such that g(r1, . . . , rm)σ ∗↪−→R g(t1, . . . , tm) and
α′ : g(r1, . . . , rm)σ ∗−−→

Δ∗
g(〈P ′

1, x
′
1〉, . . . , 〈P ′

m, x′m〉) −−−−−−→
Δk\Δk−1

〈{q}, a〉
where α′ � α.
(i) For j �∈ μ(g) such that rj �∈ X, we have P ′

j = {qrj} and x′j = i.
Since tj

∗−−→
Δ0

〈{qrj}, i〉 is from Proposition 7, we have tj = rj

from Proposition 5 and the construction of A.
(ii) For j ∈ μ(g) such that rj �∈ X, we have P ′

j = {qrj} and x′j = a.
Hence, we have sj

∗↪−→R tj and sj
∗−−→
Δ0

〈P ′
j , x

′
j〉 = 〈{qrj}, a〉 from

the induction hypothesis. Since we have sj
∗−−→
Δ0

〈{qrj}, i〉 from
Proposition 7, we have sj = rj from Proposition 5 and the
construction of A.

(iii) For j such that rj ∈ X, j �∈ μ(g), and there exists i ∈ Ij such
that xi = i, we have tj

∗−−→
Δ∗

〈P ′
j , x

′
j〉 = 〈Pi, i〉. Hence, we have

tj
∗−−→
Δ0

〈P ′
j , x

′
j〉 from Proposition 7, and let rjσ = tj .

(iv) For j such that rj ∈ X, j ∈ μ(g), and there exists i ∈ Ij

such that xi = i, we have tj
∗−−→
Δ∗

〈P ′
j , x

′
j〉 = 〈Pi, a〉. Since

we have 〈Pi, i〉 = 〈Pi, xi〉 where Pi is of the form {qi} from

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

21 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

Proposition 6, there exists a sj such that sj
∗↪−→R tj and sj

∗−−→
Δ0

〈P ′
j , x

′
j〉 from the induction hypothesis. Let sj be rjσ.

(v) For j such that rj ∈ X and there exists no i ∈ Ij such that
xi = i, we take rjσ = tj .

Note that σ is well defined from the right-linearity of R and we
have α′ � α because α does not occur in α′, and we have (rjσ

∗−−→
Δ∗

〈P ′
j , x

′
j〉) � (tj ∗−−→

Δ∗
〈P ′

j , x
′
j〉) for all 1 ≤ j ≤ m.

Next, we define a substitution σ′′ : Var(f(l1, . . . , ln)) → T (F) as
follows:

xσ′′ =

{
xσ · · · if there exists rj such that rj = x

xσ′ · · · otherwise.
Here, we show that we have xiσ

′′ ∗−−→
Δ∗

〈Pi, xi〉 for all 1 ≤ i ≤ n.
(i) For i such that there exists j such that xi = rj and i′ ∈ Ij

such that xi′ = i, we have xi′σ
′ ∗−−→

Δ0
〈Pi′ , i〉 = 〈P ′

j , i〉 from
Proposition 5. Thus we have xiσ

′ = xiσ
′′ from Lemma 9 and

hence xiσ
′′ ∗−−−→

Δk−1
〈Pi, xi〉.

(ii) For i such that there exists j such that xi = rj and no i′ ∈ Ij

such that xi′ = i, we have Pi ⊆ P ′
j and hence xiσ

′′ ∗−−→
Δ∗

〈Pi, xi〉
from Lemma 12.

(iii) For i such that there exists no j such that xi = rj , we have
xiσ

′′ = xiσ
′ ∗−−−→

Δk−1
〈Pi, xi〉 from the construction of the rule.

Thus, we have β : C[x1, . . . , xn]σ′′ ∗−−→
Δ∗

C[〈P1, x1〉, . . . , 〈Pn, xn〉] ∗−−−→
Δk−1

〈{q}, a〉.
Note that β � α′ because transition rules in Δk\Δk−1 are not applied
at β except for the transitions xiσ

′′ ∗−−→
Δ∗

〈Pi, xi〉 where there exists
j such that xi = rj . However, since xiσ

′′ is a proper subterm of
g(r1, . . . , rm)σ′′, α′ does not occur in β.
Finally, we have the term s such that s

∗↪−→R C[x1, . . . , xn]σ′′ ∗↪−→R t and
s ∗−−→

Δ0
〈{q}, a〉 from the induction hypothesis.

(2) If the last transition rule is of the form 〈P ′, a〉 → 〈P, a〉, this lemma holds
similarly to the previous case. �

The following lemma shows soundness of Pcs.

∗
Δ∗

C[〈P1, x1〉, . . . , 〈Pn, xn〉]∗
Δ∗

g(r1, . . . , rm)σ

g(t1, . . . , tm) 〈{q}, a〉g(〈P ′
1, x

′
1〉, . . . , 〈P ′

m, x′m〉)∗
Δ∗ Δk\Δk−1

C[x1, . . . , xn]σ

∗ R

↪−−
−−
→

R

↪−−
−−
→

∗ R

↪−−
−−
→

s

∗ Δ0

∗
Δk−1

I.H.

I.H.

Fig. 3 The diagram of the proof of Lemma 19.

Lemma 20 If R be right-linear and right-shallow, then L(A∗) ⊆ ↪−→R [L(A)].

Proof: Let t be t ∗−−→
Δ∗

〈P, x〉 ∈ Qf
∗ where P contains the state qf ∈ Qf . Then,

we have t ∗−−→
Δ∗

〈{qf}, x〉 from Lemma 14. If x = i, we have t ∗−−→
Δ0

〈{qf}, i〉 ∈ Qf
∗

from Proposition 6. If x = a, there exists the term s such that s
∗↪−→R t and

s ∗−−→
Δ0

〈{qf}, a〉 from Lemma 19 and we have s ∗−−→
Δ0

〈{qf}, i〉 from Proposition 7.
Thus, we have s ∗−→

Δ
qf from Proposition 5. �

The following theorem is proved by Lemma 16 and 20.

Theorem 21 For any right-linear right-shallow CS-TRS R, we can construct a
TA recognizing the set of terms that is reachable from a term. Thus, context-
sensitive reachability is decidable for right-linear right-shallow TRSs.

4. Decidability of Innermost Reachability for Shallow CS-TRSs

In this section, we show that innermost reachability for shallow CS-TRSs is
decidable. Similarly to the previous section, we show the algorithm Pcsin that
constructs the tree automaton accepting the set of terms reachable by innermost
reduction of a shallow CS-TRS from an input term. The algorithm Pcsin is
a modification of the algorithm Pcs by the idea in Ref. 11). States of output
automata obtained by Pcsin have three components, while the one by Pcs has
two components. Since we must check whether each proper subterm of redex
is a context-sensitive normal form or not in the innermost case, we augment

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

22 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

the parameter that shows whether the state accepts the context-sensitive normal
form or not. Therefore, first we show the construction of a deterministic complete
reduced tree automata accepting the set of context-sensitive normal forms, and
then we show Pcsin.

4.1 Tree Automata Accepting Context-sensitive Normal Forms
In this subsection, we give an algorithm to construct a deterministic complete

reduced tree automata recognizing the set of context-sensitive normal forms for
shallow CS-TRS R. However, in general, ordinary tree automata cannot recog-
nize the set of context-normal forms for shallow CS-TRS. Therefore we use tree
automata with constraints between brothers (TACBB) 3).

The procedure is similar to the ones for TRSs 3). The steps of the algorithm to
construct TACBB ANF are as follows:
(1) Construct the TACBB Al that recognizes the set of terms having a redex

lσ at a μ-replacing position for each l → r ∈ R and determinize it.
(2) Construct the union of all Al’s and convert the TA into complete and

reduced TA A.
(3) We output a TA recognizing the complement of L(A) as ANF.
The steps (2) and (3) are obviously possible from Theorem 1. Now we show
the details of step (1).

Each component of Al is as follows.
• Ql = {u◦, u⊥} ∪ {ut | t � l, t �∈ X}.
• Qf

l = {u◦}
• Δl consists of the following transition rules:

(i) f(u⊥, . . . , u⊥) �−→ u⊥ for each f ∈ F ,
(ii) f(ut1 , . . . , utn

) �−→ uf(t1,...,tn) for each f ∈ F and state uf(t1,...,tn).
(iii) f(us1 , . . . , usn

) c−→ u◦ where f(s1, . . . , sn) is the term obtained by re-
placing all variables in l = f(l1, . . . , ln) by ⊥, and c is the conjunction of
all equalities i = j where li = lj ∈ X.

(iv) f(u1, . . . , un) → u◦ for each f ∈ F if exactly one uj such that j ∈ μ(f)
is u◦ and the other ui’s are u⊥.

Each state ut is associated with a proper non-variable subterm t of l. From
the shallowness of R, t in ut has no variable.

We obtain the following lemmas for Al.

Lemma 22 L(Al, ut) is equal to the singleton set that consists of t� l, (that is,
L(Al, ut) = {t ∈ T (F)}.)

Proof:
(⊇) By induction on the height |t| of t, we prove the claim that t ∗−−→

Δl
ut for

the proper non-variable subterm t of l. We can represent t as f(t1, . . . , tn)
where n ≥ 0. From the construction of (ii) of Δl, we have the transition rule
f(ut1 , . . . , utn

) �−→ uf(t1,...,tn)

From the induction hypothesis, we have ti
∗−−→
Δl

uti
for all 1 ≤ i ≤ n. Thus, we

have tσ = f(t1, . . . , tn)σ ∗−−→
Δl

f(ut1 , . . . , utn
) −−→

Δl
ut.

(⊆) We show that if α : t ∗−−→
Δl

uf(t1,...,tn) then we have t = f(t1, . . . , tn) by
induction on |α|. From the construction of Δl, the last transition rule applied
in α is represented as f(ut1 , . . . , utn

) c−→ uf(t1,...,tn).
From the induction hypothesis, we have ti

∗−−→
Δl

uti
, for all 1 ≤ i ≤ n.

Thus, we have f(t1, . . . , tn) = f(l1, . . . , ln)σ. �

Lemma 23 L(Al) = {t[s]p | t ∈ T (F), s is a ground instance of l, p ∈ Posμ(t)}.

Proof:
(⊇) Let l = f(l1, . . . , ln). First, we show that s = f(l1, . . . , ln)σ ∗−−→

Δl
u◦. For

li �∈ X,li is ground from shallowness of l and li
∗−−→
Δl

uli . For li ∈ X, we
have liσ

∗−−→
Δl

u⊥. From (iii) of construction of Δl, we have the transition rule
f(us1 , . . . , usn

) c−→ u◦ where si = li for i �∈ X and si = ⊥ for i ∈ X, and c

is the conjunction of all equalities i = j where li = lj ∈ X. Since we have
liσ = ljσ for li = lj ∈ X, s satisfies c. Thus, we have s ∗−−→

Δl
u◦ and from (i)

and (iv) of construction of Δl, we have t[s]p ∗−−→
Δl

t[u◦]p −−→
Δl

u◦.
(⊆) Let l = f(l1, . . . , ln) and t ∗−−→

Δl
u◦, then we have t ∗−−→

Δl

t[f(us1 , . . . , usn
)]p −−→

Δl
t[u◦]p ∗−−→

Δl
u◦ where si = li for li �∈ X, si = ⊥

for li ∈ X, and p ∈Posμ(t) from (iii) and (iv) of the construction of Δl.
From Lemma 22, we have t|pi = li �∈ X. Moreover, since the transition
t[f(us1 , . . . , usn

)]p −−→
Δl

t[u◦]p has the constraint c that is the conjunction of
all equalities i = j where li = lj ∈ X, we have t|pi = t|pj for li = lj ∈ X.
Hence t|p is a ground substitution of l. Thus we have t = t[s]p for some
ground instance s of l. �

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

23 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

The method of determinization is the so called “subset construction.” The
claim “t ∗−−→

Ad
S iff S = {q | t ∗−→A q}” holds where Ad is determinized from A by

subset construction.
Therefore, the following lemma holds.

Lemma 24 Let s be a proper subterm of l, us and S′′ be a state and a subset
of the set of states of TACBB Al respectively, and Ad

l be a determinized TACBB
from Al by subset construction. Then, t ∗−−→

Ad
l

{us} ∪ S′ iff t = s.

Proof: From Lemma 22 and shallowness of l, t ∗−−→Al
qs iff t = s.

Thus, this lemma holds from the above claim. �
As shown in Lemma 23, the TACBB Al recognizes the set of terms having a

redex lσ at a μ-replacing position. Now we obtain the following lemma.

Lemma 25 For a CS-TRS R, we can construct a deterministic complete reduced
TACBB ANF that recognizes CS-NFR.

Proof: By step (1) of the algorithm, we obtain a TACBB Al for each l → r ∈ R,
and we can determinize them. Let the determinized TACBB from Al be Ad

l =
〈Qd

l , Q
df
l ,Δd

l 〉.
We can obtain a TACBB A′ = 〈F,Q′, Q′f ,Δ′〉 that recognizes the following

set: ⋃
l→r∈R

L(A′
l).

Let R = {li → ri | 1 ≤ i ≤ m}. The concrete construction of the TACBB
A′ = 〈Q′, Q′f ,Δ′〉 is as follows:
• Q′ = {〈u1, . . . , un〉 | ui ∈ Qd

li
},

• Q′f = {〈u1, . . . , un〉(∈ Q′) | ∃i.ui ∈ Qdf
li
}

• f(〈u11, . . . , u1m〉, . . . , 〈un1, . . . , unm〉) c−→ 〈u1, . . . , um〉 ∈ Δ′ where
f(u1i, . . . , umi) ci−→ ui ∈ Δd

li
and c = c1 ∧ · · · ∧ cm.

This is the construction of the union of all A′
l’s. Since this construction preserves

determinacy of TACBB, the constructed TACBB A′ is deterministic.
Converting A′ to complete one is not so difficult. By adding the new state

qe and new transition rules such that f(q1, . . . , qn) c−→ qe where q1, . . . , qn ∈ Q′

and c = � if f(q1, . . . , qn), which does not occur in any transition rule of Δ′,
otherwise c is equivalent to ¬(c1 ∨ · · · ∨ ck) where f(q1, . . . , qn) cj−→ q ∈ Δ′ for
some q ∈ Q′.

Since the emptiness problem of TACBB is decidable from Theorem 1, we can
check whether each state is accessible or not and hence we can construct a reduced
TACBB A′′ by erasing the inaccessible state of A′.

Finally, since A′′ is deterministic and complete, we can easily obtain the TA
A′′′ that accepts complementation of A′′ by replacing the final state.

From Lemma 23, L(A′′) is the set of terms having redex at a μ-replacing
position. Thus we can obtain the deterministic, complete, and reduced TACBB
ANF recognizing CS-NFR by the algorithm. �

We show an example of ANF in Appendix A.1.1.
For the constructed TA ANF, the following proposition holds from Lemmas 24

and 25.

Proposition 26 Let t ∈ T (F), u ∈ QNF, and t ∗−−−→
ΔNF

u. If t is a proper subterm
of some l of l → r ∈ R where R = (R,μ) is a shallow CS-TRS, then u accepts
no term other than t.

Proof: Let Ad
l be the deterministic TACBB obtained in step (1) of the algorithm.

From Lemma 22, Lemma 24, and shallowness of R, we have t ∗−−→
Δl

S ∈ Qd
l where

S contains ut ∈ Ql and there exists no term other than t accepted by ut. Thus,
from the construction of ΔNF, there exists no term accepted by u other than t.

�

Proposition 27 If f(u1, . . . , un) c−→ u ∈ ΔNF and u ∈ Qf
NF, then i ∈ μ(f)

implies ui ∈ Qf
NF.

Proof: Let f(u1, . . . , un) c−→ u ∈ ΔNF, u ∈ Qf
NF, and assume ui �∈ Qf

NF for some
i ∈ μ(f). Since ANF is a reduced TACBB from Lemma 25, there exists ground
terms t1, . . . , tn such that tj

∗−−−→
ΔNF

uj for each j (1 ≤ j ≤ n). Hence we have
f(t1, . . . , tn) ∗−−−→

ΔNF
f(u1, . . . , un) −−−→

ΔNF
u.

Here f(t1, . . . , tn) ∈ CS-NFR and ti �∈ CS-NFR is from Lemma 25. Since ti is

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

24 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

not a context-sensitive normal form and i ∈ μ(f), the term f(t1, . . . , tn) is not a
context-sensitive normal form, which contradicts f(t1, . . . , tn) ∈ CS-NFR. �

4.2 An Algorithm to Construct the Set of Reachable Terms by
Context-Sensitive Innermost Reduction

In this section, we show the concrete definition of Pcsin to construct a TACBB
that recognizes the set of reachable terms by innermost reduction of a shallow
CS-TRS. Pcsin is a modification of Pcs. The main difference between Pcsin and
Pcs is the number of components of each state of output automata. States of
output TA by Pcsin have an extra component that is a state of ANF. Since ANF

is TACBB, output automata by Pcsin are also TACBB.
Algorithm Pcsin:

Input A term t and a shallow CS-TRS R = (R,μ) that has no erasing variable.
Output A TA A∗ = 〈Q∗, Q

f
∗ ,Δ∗〉 such that L(A∗) = ↪−→R in[L(A)].

Step 1 (initialize) (1) Prepare a TACBB ANF obtained by the algorithm
in previous section and a TA A = 〈Q,Qf ,Δ〉 where each state qs accepts
s ∈ {t} ∪ RS(R), RS(R) is the set of the proper ground subterm of the
right-hand sides of R. Here we assume Q = {qs | s � s′, s′ ∈ {t} ∪ RS(R)},
Qf = {qt}, and L(ARS, qs) = {s} for all qs.

(2) Let
• k := 0,
• Q∗ = {P (⊆ Q)} × {a} × QNF ∪ {{q} | q ∈ Q} × {a} × QNF,
• Qf

∗ = {P (⊆ Q) | P ∩ Qf �= ∅} × {a} × QNF, and
• Δ0 as follows:

(a) f(〈{q1}, i, u1〉, . . . , 〈{qn}, i, un〉) c−→ 〈{q}, i, u〉 ∈ Δ0 where
f(q1, . . . , qn) → q ∈ Δ and f(u1, . . . , un) c−→ u ∈ ΔNF, and

(b) f(〈{q1}, x1, u1〉, . . . , 〈{qn}, xn, un〉) c−→ 〈{q}, a, u〉 ∈ Δ0 where
f(q1, . . . , qn) → q ∈ Δ, f(u1, . . . , un) c−→ u ∈ ΔNF, and if i ∈ μ(f)
then xi = a, otherwise xi = i.

Step 2 Let Δk+1 be the set of transition rules produced by augmenting transi-
tion rules of Δk by the following inference rules.
(1) If there exists σ : X → T (F) such that f(l1, . . . , ln)σ ∗−−→

Δk

f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) −−→Δk
〈{q}, a, u〉 and we have ui ∈ Qf

NF or xi = i

for all 1 ≤ i ≤ n, then we apply the following inference rules:

f(l1, . . . , ln) → g(r1, ..., rm) ∈ R, f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈{q}, a, u〉 ∈ Δk

g(〈P ′
1, x

′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) c′−→ 〈{q}, a, u′〉 ∈ Δk+1

Let Ij = {i | li = rj}. Each P ′
j , x

′
j , u′

j , c′, and u′ is determined as follows:

• – P ′
j =

⎧⎪⎪⎨
⎪⎪⎩

{qrj} · · · if rj �∈ X,

Pi · · · if rj ∈ X ∧ ∃i ∈ Ij .xi = i, and⋃
i∈Ij

Pi · · · if rj ∈ X ∧ ∀i ∈ Ij .xi = a.

– x′j =

{
i · · · if j �∈ μ(g) ∧ (rj ∈ X ⇒ ∃i ∈ Ij .xi = i)), and
a · · · if otherwise.

– u′
j =

{
ui · · · if rj ∈ X ∧ (j ∈ μ(g) ⇒ ∀i ∈ Ij .xi = a)
v ∈ QNF · · · otherwise

• c′ = c1 ∧ c2 ∧ c3 that is a satisfiable constraint, where
– c1 =

∧
ri=rj∈X,¬∃k∈Ij .xk=i

i = j

– c2 is obtained from c by replacing equality and disequality between i

and j in c as follows. Let i′ and j′ be as li = ri′ and lj = lj′ .
∗ If ui �= uj , we replace i = j in c by ⊥ and i �= j by �.
∗ If ui = uj ∈ QNF\Qf

NF, we consider the following two cases:
· In the subcase of Pi = Pj , we replace i = j in c by � and i �= j

by ⊥.
· In the subcase of Pi �= Pj , we replace i = j in c by ⊥ and i �= j

by �.
∗ If ui = uj ∈ Qf

NF, we consider the following two cases:
· In the subcase of li �= lj and li, lj ∈ X, we replace i = j in c by

i′ = j′ and i �= j by i′ �= j′.
· Otherwise, we replace i = j in c by � and i �= j by ⊥.

∗ If i > n or j > n, then replace i = j and i �= j by ⊥.
– g(u′

1, . . . , u
′
m) c3−→ u′ ∈ ΔNF.

Note that c′ is not unique because we may choose more than one constraint
for c3, and also that the role of c2 is to preserve the constraints for variables
in the rewrite rule applied at the inference rule.

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

25 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

(2) If there exists σ : X → T (F) such that f(l1, . . . , ln)σ ∗−−→
Δk

f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) ∗−−→
Δk

〈{q}, a, u〉 and ui ∈ Qf
NF or xi = i for

all 1 ≤ i ≤ n, we apply the following inference rule:

f(l1, ..., ln) → x ∈ R, f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈{q}, a, u〉 ∈ Δk

〈P ′, a, u〉 �−→ 〈{q}, a, u〉 ∈ Δk+1

Let I = {i | li = x}. P ′ is determined as the follows:

• P ′ =

⎧⎨
⎩

Pi · · · if ∃i ∈ I.xi = i, and⋃
i∈I

Pi · · · if ∀i ∈ I.xi = a.

Step 3 For all states 〈P 1 ∪ P 2, a, u〉 ∈ Q∗ where P 1 �= P 2, we add the new
transition rules to Δk+1 as follows:�1

(1) f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c′−→ 〈P 1 ∪ P 2, a〉 ∈ Δk+1 where

• Pi =

⎧⎪⎨
⎪⎩

P j
i · · · if xj

i = i for some j ∈ {1, 2} and
L(Δk, 〈P 1

i , x1
i , ui〉) ∩ L(Δk, 〈P 2

i , x2
i , ui〉) �= ∅

P 1
i ∪ P 2

i · · · if x1
i = x2

i = a

• xi =

{
a· · · if x1

i = x2
i = a

i· · · otherwise

• c′ = c1 ∧ c2.
if f(〈P j

1 , xj
1, u1〉, . . . , 〈P j

n, xj
n, u1〉) cj−→ 〈P j , a, u〉 ∈ Δk for j ∈ {1, 2}.

Note that if L(Δk, 〈P 1
i , x1

i , ui〉) ∩ L(Δk, 〈P 2
i , x2

i , ui〉) = ∅ and xj
i = i for

some j ∈ {1, 2}, then the transition rule is not produced.
(2) 〈P ′

1 ∪ P ′
2, a, u〉 �−→ 〈P1 ∪ P2, a, u〉 ∈ Δk+1 if 〈P ′

1, a, u〉 �−→ 〈P1, a, u〉 ∈ Δk,
and, 〈P ′

2, a, u〉 �−→ 〈P2, a, u〉 ∈ Δk or P ′
2 = P2.

Step 4 If Δk+1 = Δk then stop and set Δ∗ = Δk. Otherwise, k := k + 1, and
go to Step 2. �
We show an example that shows how Pcsin works in Appendix A.1.2. This

procedure Pcsin eventually terminates at some k and apparently Δ0 ⊂ · · · ⊂
Δk = Δk+1 = · · · similarly to Pcs.

In the following, we show the correctness of Pcsin.

�1 This step is almost the same as the step of Pcs because we do not need to be concerned

about third components of states in each transition rule f(〈P j
1 , xj

1, u1〉, . . . , 〈P j
n, xj

n, un〉) cj−→
〈P j , a, u〉.

First, we show several propositions. Since Propositions 28–31 below are similar
to the case of Pcs, we abbreviate their proofs.

Proposition 28 Let s ∈ T (F), Then s ∗−→
Δ

qs ∈ Q iff s ∗−−→
Δ0

〈{qs}, i, u〉 for some
u ∈ QNF.

Proposition 29 Let t ∈ T (F). For any k, if t ∗−−→
Δk

〈P, i, u〉, then t ∗−−→
Δ0

〈P, i, u〉.
Moreover, P is of the form {q}.

Proposition 30 Let t ∈ T (F). Then, for any k, t ∗−−→
Δ0

〈P, a, u〉 iff t ∗−−→
Δ0

〈P, i, u〉.

Proposition 31 Let t ∈ T (F). Then, t ∗−−→
Δk

〈P, i, u〉 implies t ∗−−→
Δk

〈P, a, u〉.

Proposition 32 If the rule f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈P, i, u〉 is in Δ∗,
then it is also in Δ0. Moreover, xi = i for all 1 ≤ i ≤ n.

Proof: Such rules are introduced at Step 1 and hence the claim follows from the
construction of Δ0. �

Proposition 33 If the rule f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈P, a, u〉 is in Δ∗,
then i ∈ μ(f) implies xi = a.

Proof: From the construction of the transition rule. �
Next we show several technical lemmas. These are necessary to prove com-

pleteness and soundness of Pcsin. We abbreviate the proofs of Lemma 35 and
39–40 since their proofs are similar to the case of Pcs.

Lemma 34 For any k, if α : t ∗−−→
Δk

〈P, x, u〉, then t ∗−−−→
ΔNF

u.

Proof: We show the proof by induction on |α|. If the last transition rule applied
in α is of the form 〈P ′, x, u〉 �−→ 〈P, x, u〉, then we have t ∗−−−→

ΔNF
u from the

induction hypothesis. Otherwise, let the last transition rule applied in |α| is
f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈P, x, u〉.

If f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈P, x, u〉 ∈ Δk, then we have

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

26 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

f(u1, . . . , un) c′−→ u ∈ ΔNF where c is of the form c = c′′ ∧ c′ for some c′. Thus, if
t satisfies c then c′ is also satisfied. Since we have t|i ∗−−−→

ΔNF
ui from the induction

hypothesis, we have t ∗−−−→
ΔNF

f(u1, . . . , un) −−−→
ΔNF

u. �

Lemma 35 Let s, t ∈ T (F), s ∗−−→
Δ0

〈P, x, u〉, and t ∗−−→
Δ0

〈P ′, x′, u′〉. Then,
P = P ′ iff s = t.

Proof: Similar to the proof of Lemma 9. �

Lemma 36 Let α : t ∗−−→
Δ∗

t[〈P, a, u〉]p ∗−−→
Δ∗

〈P ′, a, u′〉 and p ∈ Posμ(s). Then
u′ ∈ Qf

NF implies u ∈ Qf
NF.

Proof: We show this lemma by induction on |α|(> 0).
(1) Consider the case where the last transition rule applied in α is (of the form)

f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈P, a, u′〉 ∈ Δ∗. Then α can be represented
as t ∗−−→

Δ∗
t[〈P, a, u〉]p ∗−−→

Δ∗
f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) −−→Δ∗

〈P, a, u′〉.
In this case, the position p can be represented as ip′ for 1 ≤ i ≤ m. From the
construction of the transition rule f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈P, a, u′〉,
we have the transition rule f(u1, . . . , un) c′−→ u′ ∈ ΔNF for c′. Therefore, from
i ∈ μ(g) and Proposition 27, we have ui ∈ Qf

NF and hence we also have u ∈ Qf
NF

from the induction hypothesis.
(2) In the case where the last transition rule applied in α is (in the form of)
〈P ′, a, u′〉 c−→ 〈P, a, u〉 ∈ Δk, we have u′ = u from the construction of Δ0 or
the second inference rule of Step 2. Hence this lemma holds by the induction
hypothesis. �

Lemma 37 If j �∈ μ(g) and g(. . . , 〈P ′
j , x

′
j , u

′
j〉, . . .) c−→ 〈P, x′, u′〉 ∈ Δk, then

u′
j ∈ Qf

NF or x′j = i.

Proof:
(1) If k = 0, then x′j = i from the construction of Δ0

(2) Consider the case of k > 0. We can assume g(. . . , 〈P ′
j , x

′
j , u

′
j〉, . . .) c−→

〈P, x′, u′〉 ∈ Δk\Δk−1 without loss of generality. This rule is introduced by
(1) of Step 2 or (1) of Step 3. In the latter case, if x′j = a, then we have

g(. . . , 〈P ′′
j , a, u′

j〉, . . .) c′−→ 〈{q}, x′, u′〉 ∈ Δk for any q ∈ P where this rule is
in Δ0 or produced by (1) of Step 2. Therefore, if we prove the former case,
we can also prove the latter case. In the former case, x′j = a implies x′ = a

from Proposition 32, and there exist f(l1, . . . , ln) → g(r1, . . . , rm) ∈ R and
f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈P, a, u〉 ∈ Δk−1 where ui ∈ Qf

NF or xi = i

for all 1 ≤ i ≤ n. If j �∈ μ(g) and x′j = a, then there exists some i such that
ui = u′

j and xi′ = a for all i′ such that li′ = rj . Hence we have ui = u′
j ∈ Qf

NF.
�

Lemma 38 Let α : t[t′]p ∗−−→
Δ∗

t[〈P, a, u〉]p ∗−−→
Δ∗

〈P ′, a, u′〉. If u ∈ QNF \ Qf
NF

and p ∈ Posμ(t), then there exists v′ ∈ QNF such that t[t′]p ∗−−→
Δ∗

t[〈P, a, v〉]p ∗−−→
Δ∗

〈P ′, a, v′〉 for any v ∈ QNF.

Proof: We prove this lemma by induction on |α|(> 0).
(1) Consider the case where the last transition rule applied in α is (of the

form) g(〈P ′
1, x

′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) c−→ 〈P ′, x′, u′〉 ∈ Δ∗. Then α can be

represented as t[t′]p ∗−−→
Δ∗

t[〈P, x, u〉]p ∗−−→
Δ∗

g(〈P ′
1, x

′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) −−→

Δ∗
〈P ′, x′, u′〉. Let p = jp′ where 1 ≤ j ≤ n.
If the rule g(〈P ′

1, x
′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) c−→ 〈P, x′, u〉 is in Δ0, the

rule is produced at (2) of Step 1 of Pcsin. Therefore, for any
u′′

j ∈ QNF, there exists the constraints c′′ and u′′ ∈ QNF such that
g(〈P ′

1, x
′
1, u

′
1〉, . . . , 〈P ′

j , x
′
j , u

′′
j 〉, . . . , 〈P ′

n, x′n, u′
n〉) c′′−→ 〈P, x, u′′〉 ∈ Δ0 where t sat-

isfies c′′ from the completeness of ANF. Hence this lemma holds from the
induction hypothesis.
Consider the case where the rule g(〈P ′

1, x
′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) c−→ 〈P, x′, u〉

is in Δk\Δk−1 for k > 0. In this case, j ∈ μ(g) from p ∈ Posμ(s), and
we have x′j = a from x = a and Proposition 33. For αj : (t|j)[t′]p′ ∗−−→

Δ∗
(t|j)[〈P, a, u〉]p′ ∗−−→

Δ∗
〈P ′

j , x
′
j , u

′
j〉, we have (t|j)[t′]p′ ∗−−→

Δ∗
(t|j)[〈P, a, v〉]p′ ∗−−→

Δ∗
〈P ′

j , a, v
′
j〉 for some v′

j ∈ QNF from the induction hypothesis. Note that we
have u′

j �∈ Qf
NF from u �∈ Qf

NF and Lemma 36. Thus, we prove there exists the
transition rule g(〈P ′

1, x
′
1, u

′
1〉, . . . , 〈P ′

j , a, v
′
j〉, . . . , 〈P ′

n, x′n, u′
n〉) c′−→ 〈P ′, x, v′〉 ∈

Δ∗.
Here, there are two cases in which the rule g(〈P ′

1, x
′
1, u

′
1〉, . . . , 〈P ′

j , a, u
′
j〉, . . . , 〈P ′

n,

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

27 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

x′n, u′
n〉) c′−→ 〈P ′, x, u〉 ∈ Δ∗ is produced in (1) of Step 2 or (1) of Step 3

of Pcsin. In the former case, there exist f(l1, . . . , ln) → g(r1, . . . , rm) ∈ R

and f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c′−→ 〈P ′, a, u′′〉 ∈ Δk−1 where ui ∈ Qf
NF or

xi = i for all 1 ≤ i ≤ n, and the constraint c is of the form c1 ∧ c2 where
g(. . . , u′

j , . . .)
c2−→ u ∈ ΔNF.

In the subcase rj �∈ X, we have g(. . . , 〈P ′
j , a, v

′
j〉, . . .) c′−→ 〈P ′, a, v′〉 ∈ Δk \Δk−1

for any v′
j and c′ is of the form c1 ∧ c′2 where g(. . . , v′

j , . . . ,)
c′2−→ v′ ∈ ΔNF.

Moreover, from the completeness of ΔNF, we have c′2 that is satisfied by t[t′]p.
In the remaining subcase rj ∈ X, we have li = rj such that xi = i for some i;
otherwise we have u′

j = ui from j ∈ μ(g) and xi = a for any i such that li = rj .
Hence we have ui ∈ Qf

NF. This contradicts u′
j = ui and u′

j �∈ Qf
NF. Thus, we

have the transition rule g(. . . , 〈P ′
j , a, v

′
j〉, . . .) c′−→ 〈P ′, a, v′〉 for any v′

j and s[s′]p
satisfies c′ by the same reason in the case of rj �∈ X.
If the transition rule is produced at (1) of Step 3, we have
g(. . . , 〈P ′′

j , a, uj〉, . . .) c′′−→ 〈{q}, a, u′〉 where c is of the form c′′ ∧ c′′′ for any
q ∈ P and some c′′′. From the former case, we have g(. . . , 〈P ′′

j , a, vj〉, . . .) c′−→
〈{q}, a, v′〉 for each q and c′ that is satisfied by t[t′]p. Thus, we have
g(. . . , 〈P ′

j , a, vj〉, . . .) c′−→ 〈P, a, v′〉.
(2) In the case where the last transition rule applied in α is (of the form)
〈P ′, x′, u′〉 → 〈P, x, u〉 ∈ Δk, we have u′ = u from the construction of any of
Δ0, (2) of Step 2, or (2) of Step 3. Hence this lemma holds from the induction
hypothesis. �

Lemma 39 If α : t[t′]p ∗−−→
Δk

〈P, a, u〉 and p ∈ Posμ(t), then there exists
〈P ′, a, u′〉 such that t′ ∗−−→

Δk
〈P ′, a, u′〉 and t[〈P ′, a, u′〉]p ∗−−→

Δk
〈P, a, u〉.

Proof: Similar to the proof of Lemma 10. �
Proofs of the following Lemmas 40– 43 are similar to the ones of Lemma 11–

14, because we do not need to consider the third components of the states.

Lemma 40 If 〈P ′
1, a, u〉 ∗−−→

Δ∗
〈P1, a, u〉 and 〈P ′

2, a, u〉 ∗−−→
Δ∗

〈P2, a, u〉, then we
have 〈P ′

1 ∪ P ′
2, a, u〉 ∗−−→

Δ∗
〈P1 ∪ P2, a, u〉.

Proof: Similar to Lemma 11. �

Lemma 41 If 〈P1, a, u〉 ∗−−→
Δ∗

〈P, a, u〉, then there exists P ′
1 ⊆ P1 such that

〈P ′
1, a, u〉 ∗−−→

Δ∗
〈P ′, a, u〉 for all P ′ ⊆ P .

Proof: Similar to of Lemma 13. �

Lemma 42 If t ∗−−→
Δ∗

〈P j , a, u〉 for 1 ≤ j ≤ m, then we have t ∗−−→
Δ∗

〈
⋃

1≤j≤m

P j , a, u〉.

Proof: Since the proof of this lemma is similar to the proof of Lemma 12, we
describe a concrete proof in Appendix A.2.1. The difference between proofs of
this lemma and Lemma 12 is in the constraints. However, since the constraint
of the transition rule produced at (1) of Step 3 of Pcsin is simple, the difference
does not cause difficulty. �

Lemma 43 If t ∗−−→
Δ∗

〈P, a, u〉, then t ∗−−→
Δ∗

〈P ′, a, u〉 for any P ′ ⊆ P .

Proof: Since the proof of this lemma is similar to the proof of Lemma 14, we
describe a concrete proof in Appendix A.2.2. The difference between proofs of
this lemma and Lemma 14 is in the constraints. However, since the constraint
of the transition rule produced at (1) of Step 3 of Pcsin is simple, the difference
does not cause difficulty. �

The following lemma is a key lemma to prove completeness of Pcsin.

Lemma 44 Let R be shallow CS-TRS. Then s ∗−−→
Δ∗

〈P, a, u〉 and s
∗↪−→R in t imply

t ∗−−→
Δ∗

〈P, a, u′〉 for some u′ ∈ QNF.

Proof: Since the proof of this lemma is similar to the proof of Lemma 15 and
the proof of this lemma is long, here we show the outline of this proof and the
detail about constraints of transition rules which is the most important point.
We the other points at Appendix A.3.

Similarly to Lemma 15, we show the proof in the case where s ↪−→R in t, and
from Lemmas 39, 42, and 43. This proof is sufficient to prove the transition
f(l1, . . . , ln)σ ∗−−→

Δ∗
f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) −−→Δ∗

〈{q}, a, u〉 and the rewrite
rule f(l1, . . . , ln) → g(r1, . . . , rm) ∈ R, we have the transition g(r1, . . . , rm)σ ∗−−→

Δ∗

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

28 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

g(〈P ′
1, x

′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) −−→

Δ∗
〈{q}, a, u′〉.

Similarly to the proof of Lemma 15, we have the transition rules
g(〈P ′

1, x
′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) c′−→ 〈{q}, a, u′〉 (see (1) of Appendix A.3) and

each component of states is determined as the definition of Pcsin. Moreover, we
have rjσ

∗−−→
Δ∗

〈P ′
1, x

′
1, u

′
1〉 for each j similarly to the proof of Lemma 15.

However, we must show that the term g(r1, . . . , rm)σ satisfies the constraint
c′, which is the point that the proof of Lemma 15 does not have. Here,
we show that if f(l1, . . . , ln)σ satisfies the constraint c of the transition rule
f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) −−→

Δ∗
〈{q}, a, u〉, then there exists c′ satisfied by

g(r1, . . . , rm)σ. In the following, we assume the constraints c1, c2, and c3 are the
same as the definition of Pcsin.
(1) g(r1, . . . , rm)σ trivially satisfies c1 because we have riσ = rjσ for ri = rj ∈

X obviously.
(2) Here, we show the claim that if f(l1, . . . , ln)σ satisfies c then g(r1, . . . , rm)σ

satisfies c2. We describe the constraints replaced by equality, disequality,
or ⊥.
• For i and j such that ui �= uj , we have liσ �= ljσ from Lemma 34 and

the determinacy of ANF. Thus, i = j is not satisfied by f(l1, . . . , ln)σ,
and hence, there is no problem replacing i = j in c by ⊥ in c2.

• For i and j such that ui = uj ∈ QNF\Qf
NF, we have xi = xj = i and

hence liσ
∗−−→
Δ0

〈Pi, xi, ui〉 and ljσ
∗−−→
Δ0

〈Pj , xj , uj〉 from Proposition 29.
Therefore, we have Pi = Pj iff liσ = ljσ from Lemma 35. Thus, i �= j

is not satisfied by f(l1, . . . , ln)σ if Pi = Pj and i = j is not satisfied by
f(l1, . . . , ln)σ if Pi �= Pj , and therefore there is no problem replacing
i �= j in c by ⊥ in c2 if Pi = Pj and i = j in c by ⊥ in c2 if Pi �= Pj .

• For i and j such that ui = uj ∈ Qf
NF, we consider the following three

cases. Let i′ and j′ be as li = ri′ and lj = rj′ .
– If li �= lj and li, lj ∈ X, then we have liσ = ljσ iff ri′σ = rj′σ. Thus,

we have f(l1, . . . , ln)σ satisfies i = j in c iff g(r1, . . . , rm)σ satisfies
i′ = j′ in c2, and f(l1, . . . , ln)σ satisfies i �= j in c iff g(r1, . . . , rm)σ
satisfies i′ �= j′ in c2.

– If li = lj ∈ X, then we have liσ = ljσ and ri′σ = rj′σ. Thus, there
is no problem to replace i �= j in c by ⊥ in c2.

– If li �∈ X, then we have li = ljσ from Lemma 34 and Proposition 26.
Thus, there is no problem replacing i �= j in c by ⊥ in c2.

• For i and j such that i > 0 or j > 0, the constraints i = j or i �= j is not
satisfied by f(l1, . . . , ln)σ and therefore, there is no problem replacing
these constraints by ⊥.

Moreover, we have a constraint c3 that is satisfied by g(r1, . . . , rm)σ from
the completeness of ΔNF. Thus, we have a constraint c′ that is satis-
fied by g(r1, . . . , rm)σ and hence we have the transition g(r1, . . . , rm)σ ∗−−→

Δ∗
g(〈P ′

1, x
′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) −−→

Δ∗
〈{q}, a, u′〉. �

The following lemma shows the completeness of Pcsin.

Lemma 45 Let R be shallow. Then L(A∗) ⊇ ↪−→
R in[L(A)].

Proof: Let s
∗↪−→R in t and s ∗−→

Δ
q ∈ Qf . Since s ∗−−→

Δ0
〈{q}, i, u〉 ∈ Qf

∗ from
Proposition 28, we have s ∗−−→

Δ0
〈{q}, a, u〉 ∈ Qf

∗ by Proposition 30. Hence t ∗−−→
Δ∗

〈{q}, a, u′〉 ∈ Qf
∗ for some u′ ∈ QNF by Lemma 44. �

Next we define the measure and order of transition in order to prove the sound-
ness. These definitions are similar to the case of Pcs.

Definition 46 Let ||t ∗−−→
Δ∗

〈P, x, u〉|| be the sequence of integer defined as fol-
lows:
||t ∗−−→

Δ∗
〈P, x, u〉|| =⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k.||t ∗−−→
Δ∗

〈P ′, x′, u′〉|| · · · if t ∗−−→
Δ∗

〈P ′, x′, u′〉 −−−−−−→
Δk\Δk−1

〈P, x, u〉

k.||ti ∗−−→
Δ∗

〈Pi, xi, ui〉|| · · ·

if t = f(t1, . . . , tn) ∗−−→
Δ∗

f(. . . , 〈Pi, xi, ui〉, . . .)
−−−−−−→
Δk\Δk−1

〈P, x, u〉, and

∀i �= j.||ti ∗−−→
Δ∗

〈Pi, xi, ui〉||
≥lex ||tj ∗−−→

Δ∗
〈Pj , xj , uj〉||

The order � and � for transition sequences is defined similarly to Definition 18.
The following lemma is the key lemma to prove soundness of Pcsin.

Lemma 47 Let Δ∗ be generated from a shallow CS-TRS R. Then α : t ∗−−→
Δ∗

〈P, x, u′〉 implies that both s
∗↪−→R in t and β : s ∗−−→

Δ0
〈{q}, x, u〉 for some term s,

q ∈ P , and u ∈ QNF.

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

29 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

Proof: Similarly to Lemma 44, we describe some points of the proof in Ap-
pendix A.3.2. Here we show the proof in the case of the last transition rule in α

is in Δk\Δk−1 for k > 0 and |P | = 1. We abbreviate the proof in the case for
k = 0 or |P | > 0 because it is similar to the proof of Lemma 19.

Assume that t = g(t1, . . . , tm) and the last transition rule in α is
g(〈P ′

1, x
′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) c′−→ 〈{q}, x, u′〉 ∈ Δk\Δk+1. Since this rule

is introduced at (1) of Step 2, there exist f(l1, . . . , ln) → g(r1, . . . , rm) ∈ R,
f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈{q}, a, u〉 ∈ Δk−1 where ui ∈ Qf

NF or xi = i

for all 1 ≤ i ≤ n, σ′ : X → T (F) such that liσ
′ ∗−−−→

Δk−1
〈Pi, xi, ui〉, and

〈P ′
j , x

′
j , u

′
j〉, c′, and u′ are given as the definition of Pcsin. Then, we have the sub-

stitution σ such that g(r1, . . . , rm)σ ∗↪−→R g(t1, . . . , tm) and α′ : g(r1, . . . , rm)σ ∗−−→
Δ∗

g(〈P ′
1, x

′
1, v

′
1〉, . . . , 〈P ′

m, x′m, v′
m〉) −−→

Δk
〈{q}, a, v′〉 for some v′, where α′ � α simi-

larly to the proof of Lemma 19 (see Appendix A.3.2).
Note that the substitution σ is well-defined because for all rj ∈ X such that

there exists i such that li = rj and xi = i, we have the term sj(= tj for j �∈ μ(g))
such that sj

∗↪−→R tj and sj
∗−−→
Δ0

〈P ′
j , x

′
j , u

′
j〉. Since there is no term other than

sj that transits to 〈P ′
j , x

′
j , u

′
j〉, all sj ’s are the same for such j. For all rj ∈ X

such that there is no i such that li = rj and xi = i, the constraint c′ (c1 in the
procedure) has the equality that implies all tj ’s are the same for such j.

Next we show that g(r1, . . . , rm)σ satisfies c1 and c2 of c′ defined as the defini-
tion of Pcsin.

Obviously, g(r1, . . . , rm)σ satisfies c1 because riσ = rjσ for all ri = rj ∈ X.
Moreover, it is not so difficult to show that g(r1, . . . , rm)σ satisfies c2. This is
because for all rjσ �= tj , there exists i such that li = rj and xi = i and we have
u′

j = ui from Lemma 34 and the determinacy of ANF. In this case, we have
ui = u′

j �∈ Qf
NF and hence there is no equality or disequality that contain such

j. From the completeness of ΔNF, we have c′3 that is satisfied by g(r1, . . . , rm)σ.
Thus we have the transition rule g(〈P ′

1, x
′
1, v

′
1〉, . . . , 〈P ′

m, x′m, v′
m〉) c′′−→ 〈{q}, a, v′〉

where g(r1, . . . , rm)σ satisfies c′′.
On the other hand, we have f(l1, . . . , ln)σ ↪−→R g(r1, . . . , rm)σ. Here, we show

that we can construct β :f(l1, . . . , ln)σ ∗−−→
Δ∗

f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) −−−→Δk−1

〈{q}, a, v〉 and hence β � α. For li �∈ X, liσ = li
∗−−−→
Δk−1

〈Pi, xi, ui〉 from Step 2

of Pcsin. For li ∈ X and there exists h such that lh = li and xh = i, since there
is no term other than lhσ that transits to 〈Ph, xh, uh〉 from Lemma 35, we have
liσ = liσ

′ and hence liσ
∗−−−→
Δk−1

〈Pi, xi, ui〉. For li ∈ X such that there is no k such
that lh = li and xh = i, we have liσ

∗−−→
Δ∗

〈Pi, xi, ui〉 from Lemma 42. In the fol-
lowing, we show that if g(r1, . . . , rm)σ satisfies c′′ then f(l1, . . . , ln)σ satisfies c.

For an � in c2, the constraint c has an equality or disequality. We consider the
following three cases:
• Consider the case where � in c2 is obtained by replacing i �= j in c where

ui �= uj . In this case, we have li �= liσ and hence f(l1, . . . , ln)σ satisfies i �= j.
• Consider the case where � in c2 is obtained by replacing i = j or i �= j in

c where ui = uj ∈ QNF\Qf
NF. Then, we have xi = xj = i. In this case, if

Pi = Pj then we have i = j but f(l1, . . . , ln)σ satisfies it from Proposition 29
and Lemma 35, and if Pi �= Pj then we have i �= j but f(l1, . . . , ln)σ satisfies
it.

• Consider the case where � in c2 is obtained by replacing i = j in c where
ui = uj ∈ Qf

NF.
– If li = lj ∈ X, we have i = j in c but f(l1, . . . , ln)σ satisfies it trivially.
– If li �= lj and li, lj ∈ X, then c does not have equality or disequality

replaced by � in c2.
– If li �∈ X, we have i = j in c but we have li = ljσ from Lemma 34 and

Proposition 26.
Moreover, we have i = j or i �= j in c for i′ = j′ or i′ �= j′ in c2. These kinds of

constraints are satisfied by f(l1, . . . , ln)σ similarly to the statement in Lemma 44.
Since ui ∈ Qf

NF or xi = i for all i, liσ is a normal form or i �∈ μ(f) for each i from
Lemma 34 and the procedure. Hence we have f(l1, . . . , ln)σ ↪−→R in g(r1, . . . , rm)σ.
Here α � α′ � β follows. Thus, we have s

∗↪−→R in f(l1, . . . , ln)σ ↪−→R in

g(r1, . . . , rm)σ ∗↪−→R in g(t1, . . . , tm) = t and s ∗−−→
Δ0

〈{q}, a, u〉 for some u by the
induction hypothesis. �

If a CS-TRS has an erasing variable, we cannot prove Lemma 47 as the
above proof. Assume that the transition rule g(〈P ′

1, x
′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) c′−→

〈{q}, a, u′〉 ∈ Δk+1 is produced from f(l1, . . . , ln) → g(r1, . . . , rm) ∈ R and
f(〈P1, x1, u1〉, . . . , 〈Pm, xm, um〉) c−→ 〈{q}, a, u〉 ∈ Δk−1. If we have the equality

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

30 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

or the disequality between i and j such that li, lj ∈ X, li is the erasing variable,
and there exists j′ such that lj = rj′ , then the equality or the disequality is not
preserved to the produced rule.

The following lemma shows soundness of Pcsin.

Lemma 48 If R be shallow, then L(A∗) ⊆ ↪−→R in[L(A)].

Proof: Let t ∗−−→
Δ∗

〈P, x, u′〉 ∈ Qf
∗ then we have s

∗↪−→R in t and s ∗−−→
Δ0

〈{q}, x, u〉 ∈ Qf
∗

for some q ∈ P from Lemma 47. Since s ∗−−→
Δ0

〈{q}, i, u〉 from Proposition 30, we
have s ∗−→

Δ
q ∈ Qf from Proposition 28. �

Finally we obtain the following theorems from Lemma 45 and 48.

Theorem 49 For any shallow CS-TRS R, we can construct a TACBB recog-
nizing the set of terms that is innermost reachable from a term. Thus, innermost
reachability is decidable for shallow CS-TRSs.

However, in general, we cannot always construct a TACBB recognizing the
innermost reachable set from a regular set of terms for a CS-TRS, while we can
construct a TACBB in the case of the ordinary TRS 6).

Theorem 50 There exists a regular set L and a shallow CS-TRS R such that
∗↪−→R [L] cannot be recognized by any TACBB.

Proof: Let ar(a) = 0, ar(f) = ar(h) = ar(i) = 1, ar(g) = 2, L = {f(t) |
t ∈ T ({h, a})}, R = (R,μ) where R = {f(x) → g(x, x), h(x) → i(x)}, and
μ(f) = μ(h) = μ(i) = ∅, μ(g) = {1, 2}. Then, we have ∗↪−→R [L] ∩ T (g, h, i, a) =
{g(t1, t2) | t1, t2 ∈ T ({h, i, a}), |t1| = |t2|}. Since ∗↪−→R [L] ∩ T (g, h, i, a) cannot be
recognized by any TACBB, T (g, h, i, a) is regular, and TACBB is closed under
intersection, there exists no TACBB that recognizes ∗↪−→R [L]. �

5. Conclusion

In this paper, we proved that both reachability for right-linear right-shallow
CS-TRSs and innermost reachability for shallow CS-TRSs are decidable.

One of our future works is to construct a TA that recognizes the set of reachable

terms from a regular set for a right-linear right-shallow CS-TRS. We described
this problem in Section 3, but that does not mean that it is impossible to con-
struct a correct TA. Since we have not found a TA and right-linear right-shallow
CS-TRSs of which reachable sets cannot be recognized by any TA, this problem
is still open.

Another future work is to find other subclasses that reachability, innermost
reachability, or reachability of other strategies is decidable for TRSs or CS-
TRSs. One of the candidates is reachability for right-linear finite pass overlapping
CS-TRSs where it is known that reachability is decidable for ordinary TRSs in
Ref. 17). However, the class is complex and hence we think this is not easy. In-
nermost reachability for right-linear right-shallow TRSs is also a candidate. In
the case of this class, to recognize the set of normal forms, we need TA with
equality or disequality constraints. This automata has more complex constraints
than that of TACBB and sometimes more complex constraints than constraints
nests. Therefore, we think that this problem is much more complex than the
result of this paper. Moreover, outermost reachability is a candidate. Outermost
reduction is a strategy that rewrites outermost redexes. Today, no class is known
such that outermost reachability is decidable.

Acknowledgments We would like to thank the anonymous referees for their
helpful comments and remarks. This work is partly supported by MEXT. KAK-
ENHI #10J08166, #20300010, #20500008, and #21700011.

References

1) Togashi, A. and Noguchi, S.: Some decision problems and their time complexity
for term rewriting systems, IEICE Trans. Inf. Syst., Vol.66, pp.1177–1184 (1983).

2) Baader, F. and Nipkow, T.: Term Rewriting and All That, Cambridge University
Press (1998).

3) Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S. and Tommasi, M.: Tree Automata Techniques and Applications (Nov.
18th, 2008), available from 〈http://tata.gforge.inria.fr/〉.

4) Dauchet, M., Heuillard, T., Lescanne, P. and Tison, S.: Decidability of the con-
fluence of finite ground term rewrite systems and of other related term rewrite
systems, Information and Computation, Vol.88, No.2, pp.187–201 (1990).

5) Durand, I. and Sénizergues, G.: Bottom-Up Rewriting Is Inverse Recognizability
Preserving, Proc. 18th International Conference on Term Rewriting and Applica-

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

31 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

tions (RTA’07), Baader, F. (ed.), Lecture Notes in Computer Science, Vol.4533,
pp.107–121, Paris, France, Springer (2007).

6) Gascón, A., Godoy, G. and Jacquemard, F.: Closure of Tree Automata Languages
under Innermost Rewriting, Electronic Notes in Theoretical Computer Science,
Vol.237, pp.23–38 (2009).

7) Genet, T. and Klay, F.: Rewriting for Cryptographic Protocol Verification, 17th
International Conference on Automated Deduction, CADE’17, McAllester, D.A.
(ed.), Lecture Notes in Computer Science, Vol.1831, pp.271–290, Pittsburgh, USA
(2000).

8) Godoy, G. and Huntingford, E.: Innermost-Reachability and Innermost-Joinability
are Decidable for Shallow Term Rewrite Systems, Proc. 18th International Confer-
ence on Term Rewriting and Applications (RTA’07), Baader, F. (ed.), Lecture
Notes in Computer Science, Vol.4533, pp.184–199, Paris, France, Springer (2007).

9) Jacquemard, F.: Decidable Approximations of Term Rewriting Systems, Rewriting
Techniques and Applications, 7th International Conference (RTA’96), Ganzinger,
H. (ed.), Lecture Notes in Computer Science, Vol.1103, pp.362–376, New Brunswick,
NJ, USA (1996).

10) Kojima, Y. and Sakai, M.: Innermost Reachability and Context Sensitive Reacha-
bility Properties are Decidable for Linear Right-Shallow Term Rewriting Systems,
Rewriting Techniques and Applications, 19th International Conference (RTA’08),
Voronkov, A. (ed.), Lecture Notes in Computer Science, Vol.5117, pp.187–201,
Hagenberg, Austria, Springer (2008).

11) Kojima, Y., Sakai, M., Nishida, N., Kusakari, K. and Sakabe, T.: Context-sensitive
Innermost Reachability is Decidable for Linear Right-shallow Term Rewriting Sys-
tems, IPSJ Trans. Programming, Vol.2, No.3, pp.20–32 (2009).

12) Lucas, S.: Context-sensitive computations in functional and functional logic pro-
grams, Journal of Functional and Logic Programming, Vol.1998, No.1 (1998).

13) Mitsuhashi, I., Oyamaguchi, M. and Jacquemard, F.: The Confluence Problem
for Flat TRSs, Proc. 8th International Conference on Artificial Intelligence and
Symbolic Computation (�AISC’06), Calmet, J., Ida, T. and Wang, D., (eds.), Lecture
Notes in Artificial Intelligence, Vol.4120, pp.68–81, Beijing, China, Springer (2006).

14) Nagaya, T. and Toyama, Y.: Decidability for Left-Linaer Growing Term Rewrit-
ing Systems, Rewriting Techniques and Applications, 10th International Conference
(RTA’99), Narendran, P. and Rusinowitch, M., (eds.), Lecture Notes in Computer
Science, Vol.1631, pp.256–270, Trento, Italy (1999).

15) Oyamaguchi, M.: The Reachability Problem for Quasi-Ground Term Rewriting
Systems, Journal of Information Processing, Vol.9, No.4, pp.232–236 (1986).

16) Oyamaguchi, M.: The Reachability and Joinability Problems for Right-Ground
Term-Rewriting Systems, Journal of Information Processing, Vol.13, No.3, pp.347–
354 (1990).

17) Takai, T., Kaji, Y. and Seki, H.: Right-Linear Finite Path Overlapping Term

Rewriting Systems Effectively Preserve Recognizability, Rewriting Techniques and
Applications, 11th International Conference (RTA’00), Bachmair, L. (ed.), Lecture
Notes in Computer Science, Vol.1833, pp.246–260, Norwich, UK (2000).

18) Takai, T., Seki, H., Fujinaka, Y. and Kaji, Y.: Layered Transducing Term Rewrit-
ing System and Its Recognizability Preserving Property, IEICE Trans. Inf. Syst.,
Vol.86, No.2, pp.285–295 (2003).

Appendix

A.1 Examples for Section 4
A.1.1 An Example of TACBB Accepting the Set of Context-

sensitive Normal Forms
Let CS-TRS R = (R,μ) be as R = {a → b, a → c, f(x, b) → g(x, a), g(x, x) →

h(x, x)} and μ(f) = ∅, μ(g) = {1, 2}, μ(h) = {1, 2}. We construct the TACBB
ANF such that L(ANF) = CS-NFR by the algorithm shown in Section 4.1.

First, we construct a deterministic TACBB Aa, Af(x,a), and Ag(x,x) at the first
step of the algorithm.

The set of final states of Aa is Qf
a = {U◦} and the set of transition rules is Δa =

{a �−→ U◦, b �−→ U⊥, c �−→ U⊥, f(U,U) �−→ U⊥, g(U⊥, U⊥) �−→ U⊥, g(U1, U2) �−→
U◦, h(U⊥, U⊥) �−→ U⊥, h(U1, U2) �−→ U◦} where U,U1, U2 ∈ {U⊥, U◦} and one of
U1 and U2 is U◦.

The set of final states of Af(x,a) is Qf
f(x,b) = {U◦} and the set of transition

rules is Δf(x,b) = {a �−→ U⊥, b �−→ Ub, c
�−→ U⊥, f(U,Ub) �−→ U◦, f(U,U ′) �−→

U⊥, g(U ′
1, U

′
2)

�−→ U⊥, g(U1, U2) �−→ U◦, g(U⊥, U⊥) �−→ U⊥, h(U ′
1, U

′
2)

�−→
U⊥, h(U1, U2) �−→ U◦} where U,U1, U2 ∈ {U⊥, U◦, Ub}, U ′, U ′

1, U
′
2 ∈ {U⊥, Ub},

and one U1 or U2 is U◦.
The set of final states of Ag(x,x) is Qf

g(x,x) = {U◦} and the set of transition
rules is Δg(x,x) = {a �−→ U⊥, b �−→ Ub, c

�−→ U⊥f(U) �−→ U⊥, g(U⊥, U⊥) 1=2−−→
U◦, g(U1, U2) �−→ U◦, g(U⊥, U⊥) �−→ U⊥, h(U⊥, U⊥) �−→ U⊥, h(U1, U2) �−→ U◦}
where U,U1, U2 ∈ {U⊥, U◦} and one U1 or U2 is U◦.

At the second step, we construct the TACBB A′ accepting all unions of Aa,
Af(x,a), and Ag(x,x).

The set of final states of A′ is Q′f = {〈U1, U2, U3〉} where U1, U2, U3 ∈ {U⊥, U◦}
and one U1, U2, or U3 is U◦.

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

32 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

The set of transition rules of A′ is Δ′ = {a �−→ 〈U◦, U⊥, U⊥〉, b �−→
〈U⊥, Ub, U⊥〉, c �−→ 〈U⊥, U⊥, U⊥〉, f(U,Ub) �−→ 〈U⊥, U◦, U⊥〉, f(U,U ′) �−→
〈U⊥, U⊥, U⊥〉, g(〈U⊥, U ′

1, U⊥〉, 〈U⊥, U ′
2, U⊥〉) 1=2−−→ 〈U⊥, U⊥, U⊥〉, g(〈U⊥, U ′

1, U⊥〉,
〈U⊥, U ′

2, U⊥〉) 1 �=2−−→ 〈U⊥, U⊥, U◦〉, g(U1, U2) −→ 〈U⊥, U⊥, U◦〉, h(U⊥, U⊥) �−→
U⊥, h(U1, U2) �−→ U◦}, where U ′, U ′

1, U
′
2 ∈ {U⊥, U◦} and one of U1 and U2 is

U◦. We abbreviate the conversion to complete and reduced TACBB because the
number of transition rules becomes huge. Let A′′ be the TACBB obtained by
converting A′ to a complete and reduced TACBB.

Finally, at the third step of the algorithm, we obtain ANF from A′′ by replacing
the final state. We show the set of final states and the set of transition rules of
ANF in the following. However, since ANF originally obtained from the algorithm
is huge, we show a minified one. If we minify TACBB obtained by the algorithm,
Proposition 26 may not hold. Therefore, we should not minify the TACBB
obtained by the algorithm. In the case of following TACBB, Proposition 26
holds.

The set of states is QNF = {ub, u⊥, u◦}, the set of final states is Qf
NF = {ub, u⊥},

and the set of transition rules is ΔNF = {a �−→ u◦, b �−→ ub, c
�−→ u⊥, f(u◦, ub) �−→

u◦, f(u1, u2) �−→ u⊥, g(u3, u3) 1=2−−→ u◦, g(u3, u3) 1 �=2−−→ u⊥, g(u◦, u◦) �−→
u◦, g(u1, u4) �−→ u◦, h(u1, u1) �−→ u⊥, h(u1, u4) �−→ u⊥} where u1, u4 ∈ QNF,
u2 ∈ {u◦, u⊥}, u3 ∈ Qf

NF, and u1 �= u4.
�

A.1.2 An Example of TACBB Obtained by Pcsin

Let CS-TRS R be the CS-TRS of A.1.1. We input the term f(a, b) and
the shallow CS-TRS R to Pcsin. Here, we have ↪−→R [{f(a, b)}] = {f(a, b),
g(a, a), g(b, a), g(a, b), g(b, b), g(c, a), g(c, b), g(a, c), g(b, c), g(c, c), h(b, b), h(c, c)}.

In the initializing step, at (1) of Step 1 of Pcsin, we have the TA A = 〈Q,Qf ,Δ〉
where Q = {qa, qb, qf(a,b)}, Qf = {qf(a,b)}, and Δ = {a → qa, b → qb, f(qa, qb) →
qf(a,b)}, and TACBB ANF as a previous subsection. At (2) of Step 1, we have
Q∗ = {〈P, a, u〉, 〈{p}, i, u〉} where P ⊆ Q, P �= ∅, p ∈ Q, and u ∈ QNF Qf

∗ =
{〈P f , a, u〉} where P f ∩ Qf �= ∅ and u ∈ QNF, and Δ0 is as follows:

Δ0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a �−→ 〈{qa}, x, u◦〉,
b �−→ 〈{qb}, x, ub〉,

f(〈{qa}, i, u◦〉, 〈{qb}, i, ub〉) �−→ 〈{qf(a,b), x, u◦}〉
f(〈{qa}, i, u1〉, 〈{qb}, i, u2〉) �−→ 〈{qf(a,b), x, u⊥}〉

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where x ∈ {a, i}, u1 ∈ QNF, and u2 ∈ {u◦, u⊥}.
In the saturation step, at k = 0, we produce the transition rules⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b �−→ 〈{qa}, x, ub〉,
c �−→ 〈{qa}, x, u⊥〉,

g(〈{qa}, a, u3〉, 〈{qa}, a, u3〉) 1=2−−→ 〈{qf(a,b)}, a, u◦〉
g(〈{qa}, a, u3〉, 〈{qa}, a, u3〉) 1 �=2−−→ 〈{qf(a,b)}, a, u⊥〉
g(〈{qa}, a, u◦〉, 〈{qa}, a, u◦〉) �−→ 〈{qf(a,b)}, a, u◦〉
g(〈{qa}, a, u1〉, 〈{qa}, a, u4〉) �−→ 〈{qf(a,b)}, a, u◦〉

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

where x ∈ {a, i}, u1, u4 ∈ QNF, u3 ∈ Qf
NF, and u1 = u4 at Step 2.

At k = 1, we produce the transition rules{
h(〈{qa}, a, u3〉, 〈{qa}, a, u3〉) 1=2−−→ 〈{qf(x,b)}, a, u⊥〉

}
where x ∈ {a, i} and u3 ∈ Qf

NF, and {b �−→ 〈{qa, qb}, x, ub〉} at Step 3 where
x ∈ {a, i}.

The saturation step at k = 2, and we have Δ∗ = Δ1. TA A∗ = 〈Q∗, Q
f
∗ ,Δ∗〉

holds that L(A∗) = ↪−→R [{f(a, b)}].
A.2 Concrete Proofs of Lemma 42 and 43
A.2.1 Lemma 42

Proof: Similarly to the proof of Lemma 12, we give the proof for m = 2 by
induction on |t|.

Let t = f(t1, . . . , tn). Then, each transition sequence is represented as
f(t1, . . . , tn) ∗−−→

Δ∗
f(〈P j

1 , xj
1, u1〉, . . . , 〈P j

n, xj
n, un〉) −−→

Δ∗
〈P j

r , a, u〉 ∗−−→
Δ∗

〈P j , a, u〉
for j ∈ {1, 2}. From Lemma 40, we have 〈P 1

r ∪ P 2
r , a, u〉 ∗−−→

Δ∗
〈P 1 ∪ P 2, a, u〉.

Thus, we show that f(t1, . . . , tn) ∗−−→
Δ∗

〈P 1
r ∪ P 2

r , a, u〉.
From (1) of Step 3 of Pcs, we have the transition rule f(〈P1, x1, u1〉, . . . , 〈Pn, xn,

un〉) c′−→ 〈P, a, u〉 ∈ Δ∗ where

• Pi =

{
P j

i · · · if xj
i = i for some j ∈ {1, 2} and

P 1
i ∪ P 2

i · · · if x1
i = x2

i = a

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

33 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

• xi =

{
a· · · if x1

i = x2
i = a

i· · · otherwise

• c′ = c1 ∧ c2.
Here we have ti

∗−−→
Δ∗

〈Pi, xi, ui〉 for 1 ≤ i ≤ n similarly to the proof of Lemma 12.
Moreover, since t satisfies both c1 and c2, t also satisfies c′. Thus, we have the

transition f(t1, . . . , tn) ∗−−→
Δ∗

f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) −−→
Δ∗

〈Pr, a, u〉 ∗−−→
Δ∗

〈P, a, u〉. �
A.2.2 Lemma 43

Proof: We show this lemma by induction on |t|. We can assume that
the transition t ∗−−→

Δ∗
〈P, a, u〉 is represented as t = f(t1, . . . , tn) ∗−−→

Δ∗
f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) −−→

Δ∗
〈Pr, a, u〉 ∗−−→

Δ∗
〈P, a, u〉. From Lemma 41,

there exists P ′
r ⊆ Pr such that 〈P ′

r, a, u〉 ∗−−→
Δ∗

〈P ′, a, u〉 for all P ′ ⊆ P . Therefore,
we show that we have t = f(t1, . . . , tn) ∗−−→

Δ∗
f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) −−→Δ∗

〈P ′
r, a, u〉. Let P ′

r = Pr\P ′′
r . We show the claim by the induction on

Σn
i=1|Pi| + |Pr|.

If |Pr| = 1, then the claim holds trivially. If |Pr| > 1, the transition rule
f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→ 〈Pr, a, u〉 is produced from the transition rules
f(〈P j

1 , x1, u1〉, . . . , 〈P j
n, xn, un〉) −→ 〈P j

r , a, u〉 where j ∈ {1, 2} from (1) of Step 3
of Pcs and Pr, Pi’s, xi’s, and c′ are represented as the follows:
• Pr = P 1

r ∪ P 2
r ,

• Pi =

{
P j

i · · · if xj
i = i for some j ∈ {1, 2} and

P 1
i ∪ P 2

i · · · if x1
i = x2

i = a

• xi =

{
a· · · if x1

i = x2
i = a

i· · · otherwise

• c = c1 ∧ c2

Here, we have t ∗−−→
Δ∗

〈P j
i , xj

i , ui〉 for j ∈ {1, 2} and 1 ≤ i ≤ n similarly to the
proof of Lemma 14. Since t satisfies c = c1 ∧ c2, t also satisfies both c1 and c2.
Thus, we have f(t1, . . . , tn) ∗−−→

Δ∗
f(〈P j

1 , xj
1, u1〉, . . . , 〈P j

n, xj
n, un〉) −−→

Δ∗
〈P j

r , a, u〉
for both j = 1 and j = 2.

Thus, similarly to the proof of Lemma 14, we have t ∗−−→
Δ∗

〈P 1
r ∪ P 2

r \P ′′
r , a, u〉

from Lemma 42. �

A.3 Supplement of Proofs of Lemma 44 and 47
A.3.1 Lemma 44

(1) Here we show that if we have the transition f(l1, . . . , ln)σ ∗−−→
Δ∗

f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) −−→
Δ∗

〈{q}, a, u〉 and the rewrite rule
f(l1, . . . , ln) → g(r1, . . . , rm) ∈ R, we have f(l1, . . . , ln)σ ↪−→R

in

g(r1, . . . , rm)σ. and the transition rule g(〈P ′
1, x

′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) c′−→

〈{q}, a, v′′〉 ∈ Δ∗ such as the definition of Pcsin.
For i ∈ μ(f), liσ is a context-sensitive normal form and hence we have
uj ∈ Qf

NF from Lemma 34. For i such that i �∈ μ(f), we have xi = i or
uj ∈ Qf

NF from Lemma 37.
Since f(l1, . . . , ln) → g(r1, . . . , rm) ∈ R, f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) c−→
〈{q}, a, u′′〉 ∈ Δ∗ where ui ∈ Qf

NF or xi = i, and σ such that
f(l1, . . . , ln)σ ∗−−→

Δ∗
f(〈P1, x1, u1〉, . . . , 〈Pn, xn, un〉) ∗−−→

Δ∗
〈P, a, u〉, there exist

transition rules g(〈P ′
1, x

′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) c′−→ 〈{q}, a, v′′〉 ∈ Δ∗ such

as the definition of Pcsin

(2) Here, we show that rjσ
∗−−→
Δk

〈P ′
j , x

′
j , u

′
j〉.

(a) For j such that rj ∈ X and there exists i such that li = rj and xi = i,
we have rjσ

∗−−→
Δ∗

〈Pi, i, ui〉 = 〈P ′
j , i, ui〉. We can take u′

j = ui and
we also have rjσ

∗−−→
Δ∗

〈P ′
j , a, u

′
j〉 from Proposition 31.

(b) For j such that rj ∈ X and xi = a for all i such that li = rj , then
let i1, . . . , ik be all the numbers such that lih

= rj for 1 ≤ h ≤ k.
In this case, we have lih

σ ∗−−→
Δ∗

〈Pih
, xih

, uih
〉 for all ih. Note that

all uih
’s are equal from the determinacy of ΔNF. Hence, we have

rjσ
∗−−→
Δ∗

〈Pi1 ∪ · · · ∪ Pik
, a, u′

j〉 = 〈P ′
j , x

′
j , u

′
j〉 where u′

j is equal to all
uih

’s from Lemma 43.
(c) For j such that rj �∈ X, we have P ′

j = {qrj} and rjσ = rj

since R is right-shallow so we can take the arbitrary state in QNF

as u′
j . Since rj

∗−→
Δ

qrj , we have rj
∗−−→
Δ0

〈{qrj}, i, v′′〉 for some
v′′ ∈ QNF from Proposition 28. Moreover, since we also have
rj

∗−−→
Δ0

〈{qrj}, a, v′′〉 by Proposition 30, we obtain rjσ = rj
∗−−→
Δ∗

〈{qrj}, x′j , v′′〉 = 〈{q′j}, x′j , u′
j〉 where u′

j = v′′.
Thus, we have g(r1, . . . , rm)σ ∗−−→

Δ∗
g(〈P ′

1, x
′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉). More-

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

34 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

over, since g(r1, . . . , rm)σ satisfies c′, we have g(r1, . . . , rm)σ ∗−−→
Δ∗

g(〈P ′
1, x

′
1, u

′
1〉, . . . , 〈P ′

m, x′m, u′
m〉) −−−→

Δk+1
〈{q}, a, u′〉

�
A.3.2 Lemma 47
In the following, we show that we have substitution σ such that

g(r1, . . . , rm)σ ∗↪−→R g(t1, . . . , tm) and α′ : g(r1, . . . , rm)σ ∗−−→
Δ∗

g(〈P ′
1,

x′1, v
′
1〉, . . . , 〈P ′

m, x′m, v′
m〉) −−→

Δk
〈{q}, a, v′〉, where α′ � α.

(1) For j such that rj ∈ X, j �∈ μ(g), and there exists i such that li = rj

and xi = i, we have tj
∗−−→
Δ∗

〈P ′
j , x

′
j , u

′
j〉 = 〈Pi, i, ui〉. Hence, we have

tj
∗−−→
Δ0

〈P ′
j , x

′
j , u

′
j〉 from Proposition 29, and let rjσ = tj .

(2) For j such that rj ∈ X, j ∈ μ(g), and there exists i such that li = rj

and xi = i, we have tj
∗−−→
Δ∗

〈P ′
j , x

′
j , u

′
j〉 = 〈Pi, a, u〉 where u is an arbitrary

state in QNF. Since Pi is of the form {qi} from Proposition 29, there exists
some sj such that sj

∗↪−→R in tj and sj
∗−−→
Δ0

〈P ′
j , x

′
j , v

′
j〉 for some v′

j from the
induction hypothesis. Let sj be rjσ.

(3) For j such that rj ∈ X and there exists no i such that li = rj and xi = i,
we take rjσ = tj .

(4) For j �∈ μ(g) such that rj �∈ X, we have P ′
j = {qrj} and x′

j = i, and u′
j

is an arbitrary state in QNF. Since tj
∗−−→
Δ0

〈{qrj}, i, u′
j〉 by Proposition 29,

we have tj = rj from Proposition 28 and the construction of ΔRS.
(5) For j ∈ μ(g) such that rj �∈ X, we have P ′

j = {qrj} and x′
j = i, and u′

j is an
arbitrary state in QNF. Here, we have sj

∗↪−→R in tj and sj
∗−−→
Δ0

〈P ′
j , x

′
j , v

′
j〉 =

〈{qrj}, a, v′
j〉 for some v′

j ∈ QNF from the induction hypothesis. Since
sj

∗−−→
Δ0

〈{qrj}, i, v′
j〉 by Proposition 30, we have sj = rj from Proposition 28

and the construction of Δ.
�

(Received February 14, 2011)
(Accepted May 20, 2011)

Yoshiharu Kojima was born in 1986. He was received his B.E.
and M.E. degrees from Nagoya University. Now he is a student of
the Graduate School of Information Science, Nagoya University,
and a research fellow of the Japan Society for the Promotion of
Science. His research interest is term rewriting systems.

Masahiko Sakai completed graduate course of Nagoya Uni-
versity in 1989 and became assistant professor, where he obtained
a D.E. degree in 1992. From April 1993 to March 1997, he was
an associate professor in JAIST, Hokuriku. In 1996 he stayed at
SUNY at Stony Brook for six months as a visiting research pro-
fessor. From April 1997, he was an associate professor in Nagoya
University. Since December 2002, he has been a professor. He

is interested in term rewriting system, verification of specification and software
generation. He received the Best Paper Award from IEICE in 1992 and 2011.
He is a member of IEICE and JSSST.

Naoki Nishida graduated with his D.E. degree from the Grad-
uate School of Engineering at Nagoya University in 2004. He be-
came a research associate in the Graduate School of Information
Science at Nagoya University in 2004. From April 2007, he has
been an assistant professor, and he was a visiting researcher in
DSIC at Universitat Politècnica de València from July 2011 to
December 2011. He received the Best Paper Award from IEICE

in 2011. He is interested in program inversion, theorem proving, term rewriting,
and program verification. He is a member of IEICE and JSSST.

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

35 Decidability of Reachability for Right-shallow Context-sensitive Term Rewriting Systems

Keiichirou Kusakari received his B.E. from Tokyo Institute
of Technology in 1994, received M.E. and the Ph.D. degrees from
Japan Advanced Institute of Science and Technology in 1996 and
2000. From 2000, he was a research associate at Tohoku Univer-
sity. He transferred to Nagoya University’s Graduate School of
Information Science in 2003 as an assistant professor and became
an associate professor in 2006. His research interests include term

rewriting systems, program theory, and automated theorem proving. He is a
member of IEICE, IPSJ and JSSST.

Toshiki Sakabe was born in 1949. He received his B.E., M.E.
and D.E. degrees from Nagoya University in 1972, 1974 and 1978,
respectively. He was a research associate at Nagoya University
during 1977–1985, and an associate professor at Mie University
and Nagoya University during 1985–1987 and 1987–1993, respec-
tively. He has been a professor of Nagoya University since 1993.
His research interests are in the field of theoretical foundations of

software including algebraic specifications, rewriting computation, program ver-
ification, model checking and so on. He is a member of IPSJ, IEICE, JSAI and
JSSST.

IPSJ Transactions on Programming Vol. 4 No. 4 12–35 (Sep. 2011) c© 2011 Information Processing Society of Japan

