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複数の直方体を折れる共通の展開図に関する研究

Zachary Abel †1 Erik Demaine †1 Martin Demaine †1

松 井 寛 彰†2 Günter Rote †3 上 原 隆 平†2

本稿では，複数の異なる直方体を折れる共通の展開図を見つける問題を研究する．
2008 年に二つの異なる直方体を折れる展開図が無限に存在することがすでに示され
ている．本稿ではまず三つの異なる直方体，具体的には大きさ 1× 1× 5，1× 2× 3，
0× 1× 11の直方体が折れる展開図（直交多角形）を示す．直方体として体積が 0の
ものを許してはいるものの，これは先行研究における未解決問題に対する解である．
さらに，体積 0の直方体を認めるならば，長い帯状の紙を使って，いくらでも多くの
体積 0の直方体が折れることを示す．次に，直交多角形以外の多角形で複数の異なる
箱が折れる展開図が存在するかどうかを考える．従来の結果では，線が直交している
か 45 度を単位にするものしか考えられてこなかった．本稿では二つの直方体が折れ
る，より一般的な展開図が存在することを示す．

Common Developments of Several Different Orthogonal Boxes

Zachary Abel ,†1 Erik Demaine ,†1

Martin Demaine ,†1 Hiroaki Matsui ,†2

Günter Rote †3 and Ryuhei Uehara †2

We investigate the problem of finding common developments that fold to plu-
ral incongruent orthogonal boxes. It was shown that there are infinitely many
orthogonal polygons that fold to two incongruent orthogonal boxes in 2008. In
this paper, we first show that there is an orthogonal polygon that fold to three
boxes of size 1 × 1 × 5, 1 × 2 × 3, and 0 × 1 × 11. Although we have to admit
a box to have volume 0, this solves the open problem mentioned in literature.
Moreover, once we admit that a box can be of volume 0, a long rectangular
strip can be folded to an arbitrary number of boxes of volume 0. We next
consider for finding common non-orthogonal developments that fold to plural
incongruent orthogonal boxes. In literature, only orthogonal folding lines or
with 45 degree lines were considered. In this paper, we show some polygons
that can fold to two incongruent orthogonal boxes in more general directions.

図 1 キュビガミパズル．
Fig. 1 Cubigami.

1. Introduction

Since Lubiw and O’Rourke posed the problem in 19961), polygons that can fold to a

(convex) polyhedron have been investigated. In a book about geometric folding algo-

rithms by Demaine and O’Rourke in 2007, many results about such polygons are given2)

[Chapter 25]. Such polygons have an application in the form of toys and puzzles. For

example, the puzzle “cubigami” (Figure 1) is developed by Miller and Knuth, and it

is a common development of all tetracubes except one (of surface area 16). One of

the many interesting problems in this area is that whether there exists a polygon that

folds to plural incongruent orthogonal boxes. Biedl et al. answered “yes” by finding two

polygons that fold to two incongruent orthogonal boxes3) (see also2) [Figure 25.53]).

Later, Mitani and Uehara constructed infinite families of orthogonal polygons that fold

to two incongruent orthogonal boxes4). However, it is open that whether there is a

polygon that can fold to three or more boxes.

First, we give an affirmative answer to this open problem, at least in some weak sense.

That is, we give a polygon that can fold to three incongruent orthogonal boxes of size

†1 Massachusetts Institute of Technology

†2 北陸先端科学技術大学院大学
Japan Advanced Institute of Science and Technology

†3 Freie Universität Berlin

c© 2011 Information Processing Society of Japan1

Vol.2011-AL-136 No.11
2011/9/6



情報処理学会研究報告
IPSJ SIG Technical Report

0× 1× 11, 1× 1× 5, and 1× 2× 3. Note that one of the boxes is degenerate, as it has a

side of length 0. Such a box is sometimes called a “doubly covered rectangle” (e.g.,5)).

For boxes of positive volume, the existence of three boxes with a common unfolding is

still open.

The polygon is found as a side effect of the enumeration of common developments of

boxes of size 1 × 1 × 5 and 1 × 2 × 3. In the previous result by Mitani and Uehara4),

they randomly generated common developments of these boxes, and they estimated the

number of common developments of these boxes at around 7000. However, they overes-

timated it since their algorithm did not exclude some symmetric cases. We enumerate

all common developments of boxes of size 1× 1× 5 and 1× 2× 3, which can be found

on a Web page?1. As a result, the number of common developments of these boxes is

2263. Among 2263 developments, the development in Figure 2 is the only one that can

fold to 0× 1× 11.

Once we admit that a box can be a doubly covered rectangle, we have a new view

of this problem since a doubly covered rectangle seems to be easier to construct than a

box of positive volume. Indeed, we show that a sufficient long rectangular strip can be

folded to an arbitrary number of doubly covered rectangles.

Next we turn to another approach to this topic. In an early draft by Biedl et al.3),

they showed a common development of two boxes of size 1× 2× 4 and
√

2×
√

2× 3
√

2

(Figure 3). In the development, two folding ways to two boxes are not orthogonal.

That is, the set of folding lines of a box intersect the other set of folding lines by 45

degrees. This development motivates us to the following problem: Is there any common

development of two incongruent boxes such that two sets of folding lines intersect by an

angle different from 45 or 90 degrees? We give an affirmative answer to this question.

2. Common orthogonal developments of boxes of size 1 × 1 × 5 and
1 × 2 × 3

For a positive integer S, we denote by P (S) the set of three integers a, b, c with

0 < a ≤ b ≤ c and ab + bc + ca = S, i.e., P (S) = {(a, b, c) | ab + bc + ca = S}. When

?1 http://www.jaist.ac.jp/~uehara/etc/origami/net/all-22.html

(c) 0x1x11

(a) 1x1x5

(b) 1x2x3

図 2 三つの異なる箱を折れる共通の展開図．(a) 大きさ 1 × 1 × 5 の箱を折るときの折り線．(b) 大きさ
1 × 2 × 3 の箱を折るときの折り線．(c) 大きさ 0 × 1 × 11 の箱を折るときの折り線．

Fig. 2 A common development of three different boxes. (a) Folding lines to make a 1 × 1 × 5 box.

(b) Folding lines to make a 1 × 2 × 3 box. (c) Folding lines to make a 0 × 1 × 11 box.

we only consider the case that folding lines are on the edges of unit squares, it is nec-

essary to satisfy |P (S)| ≥ k to have a polygon of size 2S that can fold to k incongruent

orthogonal boxes of positive volumes. The smallest S with P (S) ≥ 2 is 11 and we have

P (11) = {(1, 1, 5), (1, 2, 3)}. In this section, we concentrate at this special case. That

is, we consider the developments that consist of 22 unit squares. Mitani and Uehara

developed two randomized algorithms that try to find common developments of two dif-

ferent boxes4). Both algorithms essentially generate common developments randomly.

Using the faster algorithm, they also estimated the number of common developments

of the boxes of size 1×1×5 and 1×2×3 at around 7000. However, they overestimated

it since their algorithm did not exclude some symmetric cases.
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(a) 1x2x4 box (b)   2x  2x3  2 box

図 3 Biedl たちによる二つの異なる箱の共通の展開図3)．(a) 大きさ 1 × 2 × 4 の箱を折るときの折り線．(b) 大
きさ

√
2 ×

√
2 × 3

√
2 の箱を折るときの折り線．

Fig. 3 A common development of two different boxes by Biedl et al.3). (a) Folding lines to make a

1 × 2 × 4 box. (b) Folding lines to make a
√

2 ×
√

2 × 3
√

2 box.

We develop another algorithm that tries all common developments of these boxes.

For a common development P of the boxes, let P ′ be a connected subset of P . That

is, P ′ be a set of unit squares and it produces a connected simple polygon. Then,

clearly, we can stick P ′ on these two boxes without overlap. We use the term common

partial development of the boxes to denote such a smaller polygon. For example, one

unit square is the common partial development of the boxes of surface area 1, and a

rectangle of size 1× 2 is the common development of them of surface area 2, and so on.

Let Li be the set of common partial developments of the boxes of surface area i. Then

|L1| = |L2| = 1, and |L3| = 2, and one of our main results is |L22| = 2263. The outline

of the first algorithm is described in Figure 4.

We implemented the algorithm and obtain all common developments in L22
?1. One

can find all of them at http://www.jaist.ac.jp/~uehara/etc/origami/net/all-22.

html. All the values of Li with 1 ≤ i ≤ 22 are shown in Table 1. The first main theorem

is as follows:

Theorem 1 The number of the common developments of boxes of size 1 × 1 × 5

and 1× 2× 3 into unions of unit squares is 2263.

?1 The first program with a naive implementation was too slow. We tuned it with many technical

tricks, and now it outputs L22 in around 10 hours.

let L1 be a set of one unit square;

for i = 2, 3, 4, . . . , 22 do

Li ← ∅;
for each common partial development P in Li−1 do

for every polygon P+ of size i obtained by attaching a unit square to P do

check if P+ is a common partial development, and add it into Li if it is a new

one;

end for

end for

end for

output L22.

図 4 面積 22 の異なる箱が二つ折れるすべての多角形を出力するアルゴリズム．
Fig. 4 An algorithm that generates all common developments of two different boxes of area 22.

i 1 2 3 4 5 6 7 8 9 10 11 12

Li 1 1 2 5 12 35 108 368 1283 4600 16388 57439

i-ominos 1 1 2 5 12 35 108 369 1285 4655 17073 63600

i 13 14 15 16 17 18

Li 193383 604269 1632811 3469043 5182945 4917908

i-ominos 238591 901971 3426576 13079255 50107909 192622052

i 19 20 21 22

Li 2776413 882062 133037 2263

表 1 大きさ 1 × 1 × 5 の箱と大きさ 1 × 2 × 3 の共通の部分展開図で，面積が i(1 ≤ i ≤ 22) のものの個数．（比
較のため，1 ≤ i ≤ 18 に対しては i-オミノの個数も示した．）

Table 1 The number of common partial developments of two boxes 1× 1× 5 and 1× 2× 3 of surface

area i with 1 ≤ i ≤ 22. (For 1 ≤ i ≤ 18, we give the number of i-ominos, for comparison.)
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3. Boxes including doubly-covered rectangles

3.1 Three boxes of surface area 22

図 5 三つの異なる箱が折れる共通の展開図によるタイリング．
Fig. 5 Tiling by the common development of three different boxes.

Among the 2263 developments in Theorem 1, there is only one development that gives

an affirmative answer to the open problem in4):

Theorem 2 There is a common development of three boxes of size 1×1×5, 1×2×3,

and 0 × 1 × 11. Moreover, the development is a polygon such that (1) it can fold to

three boxes by orthogonal folding lines, and (2) it forms a tiling.

Proof. The development is depicted in Figure 2. It is easy to see that all folding lines

in Figure 2(a)-(c) are orthogonal. The tiling is given in Figure 5.

In Theorem 2(1), one may complain that some folding lines are not on the edges

of unit squares. Then, split each unit square into four unit squares. On the refined

development for three boxes of surface area 88, we again have the claims in Theorem 2

for the boxes of size 2 × 2 × 10, 2 × 4 × 6, and 0 × 2 × 22, and all folding lines are on

the edges of unit squares.

3.2 A rectangular strip can be folded to an arbitrary number of doubly-

covered rectangles

Theorem 3 A rectangular L× 1 paper (L > 1) can be folded into at least

2 + bLc
different doubly-covered rectangles in at least

1 +
⌊

L
4

⌋
+

⌈
L
4

⌉
+ bLc

different ways.

Proof. Figure 6a shows how a long ribbon of width 1 can be wrapped by “twisting”

a)

b)

p0
p1

p2

a

b

c

h0

h1

p0

a

b

c

q0

q1

図 6 二重被覆長方形をリボンで折るための別の方法．
Fig. 6 Another way of folding a ribbon to a doubly-covered rectangle.

it around a rectangular strip. Here we show that we can obtain bLc different doubly

covered rectangles based on this way. First, we consider the points p0, q0, q1, a, b, c, in

Figure 6b). (Without loss of generality, we assume that q0b ≥ q1a.) Let p1 be the center

of bc, and hi is the point such that pihi is a perpendicular of ab for i = 0, 1. We first

observe that p0a and bc are in parallel, the angles ap0b and p0bc are right angles, and p0

is the center of q0q1. Thus, careful analysis tells us that 4q0p0b, 4h0p0b, and 4h1p1a

are congruent. By symmetry, 4q1p0a, 4h0p0a, and 4h1p1b are also congruent. Hence

the points ap0bp1 form a rectangle. Therefore, the folding lines in Figure 6a) can be

obtained by filling the rectangles like Figure 6b). Let k and w be the number of the

rectangles and the length of the diagonal of the rectangle, respectively. Then, to obtain

a feasible folding lines, we need k ≥ 1, kw = L, and w = ab ≥ 1. Therefore, for each

k = 1, 2, . . . , bLc, we can obtain a doubly covered rectangle of size p0b and kp0a.

In addition, we have the two ways of folding the ribbon in half along the long axis

(leading to a L× 1
2

rectangle) or along the short axis (leading to a (L/2)×1 rectangle).

We next turn to another idea of folding. Figure 7a shows how a long ribbon of width

1 can be wrapped by “winding” it around a rectangular strip in such a way that the

space between successive windings is equal to the width of the ribbon. By bending it

backward at the end, as in Figure 7b–c, one obtains a doubly covered strip. Figure 7d
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図 7 リボンで二重被覆長方形を折る．わかりやすいように，リボンの片方の面に影をつけてある．
Fig. 7 Folding a ribbon to a doubly-covered rectangle. For better visibility, one side of the ribbon

is shaded.

shows the geometric construction: start with a right triangle ABC with the long side

d = BC = cot α + tan α on a long edge of the ribbon and the right angle A on the

opposite edge. When the length L of the ribbon is an even multiple of d (L = 2n · d),

the folding will close into a doubly covered rectangle.

図 8 二重被覆長方形をリボンで折るための別の方法．
Fig. 8 A different way of folding a ribbon to a doubly-covered rectangle

The minimum possible value of d is 2. d changes continuously with α, and any value

of d larger than 2 can be obtained. So n, the number of repetitions, can take all values

between 1 and nmax := bL/4c. For each n in this range, one can form a right triangle

ABC with hypotenuse d = L/(2n) and legs 1
2
(
√

d2 + 2d±
√

d2 − 2d). One can use the

longer leg as the wrapping direction, as in Figure 7, or the shorter leg, as in Figure 8.

This leads to doubly covered rectangles of dimensions
(
n · 1

2
(
√

d2 + 2d +
√

d2 − 2d)
)
×

1
2
(
√

d2 + 2d−
√

d2 − 2d) and 1
2
(
√

d2 + 2d+
√

d2 − 2d)×
(
n · 1

2
(
√

d2 + 2d−
√

d2 − 2d)
)
.

For d = 2, the two possibilities coincide. So the total number of possibilities is

bL/4c+ dL/4e − 1. This equals 2bL/4c except when L is a multiple of 4. In this case,

we have to subtract 1 to compensate the overcounting for the case d = 2.

But we can see that each doubly covered rectangle by winding can be also obtained

by twisting. Hence we obtain 2 + bLc different doubly covered rectangles in total.

4. Non-orthogonal polygons that fold to two incongruent boxes

Figure 9 shows a common unfolding of a 4 × 4 × 8 box and a
√

10 × 2
√

10 × 2
√

10

box. It was obtained by solving an integer programming problem. The integer pro-

gramming model formulates the problem of selecting a subset of 160 unit squares of the

axis-aligned square grid underlying Figure 9, subject to the following constraints.

( 1 ) They should form a connected set in the plane.

( 2 ) When folded on the 4× 4× 8 box, every square of the surface is covered exactly

once. (There are no overlaps.)

( 3 ) When folded on the
√

10× 2
√

10× 2
√

10 box, every part of the surface is covered

exactly once. Note that the surface of the
√

10× 2
√

10× 2
√

10 box can be parti-

tioned into 160 unit squares, which are however not aligned with the edges of the

box. These squares result from folding the standard grid onto the box surface as

shown in Figure 9. Some of these squares bend across an edge of the box.

The algorithm of Section 2 can be viewed as a systematic incremental way of finding

all solutions to this problem.

The dimensions of the boxes were chosen as follows: A 1× 1× 2 box has surface area

10, and a 1 × 2 × 2 box has surface area 16. By scaling the first box with the factor

4 and the second box with the factor
√

10, we get two boxes with equal surface areas.

A square lattice of side length
√

10 can be embedded on the standard integer grid by

choosing the vector
(
1
3

)
as a generating “unit vector”.

The alignment of the two box unfoldings, with the symmetric layout of two “central”

faces sharing two vertices, was fixed and was chosen by hand.

Figure 10 has been made from Figure 9 in an attempt to conceal the obvious folding

directions. Further puzzles along these lines (for printing and cutting out) are given on

c© 2011 Information Processing Society of Japan5

Vol.2011-AL-136 No.11
2011/9/6



情報処理学会研究報告
IPSJ SIG Technical Report

a web page?1.

図 9 二つの異なる箱が折れる共通の展開図．ある箱を折るための折り線は，他方の箱を折るための折り線とは直交
しない．交わる角度は arctan 3 ≈ 72◦ である．

Fig. 9 A common development of two different boxes. The set of folding lines for one box intersect

the other set by neither 90 nor 45 degrees, but at arctan 3 ≈ 72◦.

5. Concluding remarks

It is an open question if a polygon exists that can fold to three or more orthog-

onal boxes such that all of them have positive volume. We are exploring the pos-

sibility to find such examples by our integer programming model of Section 4. If

we take the approach in Section 2, the smallest S with |P (S)| ≥ 3 is given by

P (23) = {(1, 1, 11), (1, 2, 7), (1, 3, 5)}. Thus we need to construct polygons of surface

area 46, which is much bigger than 22.

In Section 3.2, we use three different ideas for folding a rectangular ribbon R to a

?1 http://www.inf.fu-berlin.de/~rote/Software/folding-puzzles/

図 10 二つの異なる箱が折れる共通の展開図．図 9 の境界線を変更して作成．
Fig. 10 A common development of two different boxes. This has been obtained from Figure 9 by

modifying the boundary.

doubly-covered rectangle. It would be interesting to classify all ways of folding ribbons

into doubly-covered rectangles. In fact, we can generalize the ideas of “twisting” and

“winding”; see Figure 11. These folding ways correspond to a kind of the billiard ball

problem on a rectangular table. Hence, to specify all the folding ways in the figures, we

have to find all pairs of relatively prime integers p and q with pq = bcLc for c = 1, 1/4.

The number of such pairs seems to be related to the maximal value of prime divisors

of numbers in reduced residue system for bcLc ?2.
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図 11 二重被覆長方形を折りための「ねじり折り」と「巻き付け折り」の一般化．
Fig. 11 A generalization of twist/wind folding to a doubly covered rectangle.
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and Andrew Winslow—for helpful comments and for providing a stimulating environ-

ment.

参 考 文 献

1) J.O’RourkeDepartment of Computer Science, Smith College (1996).

2) J.O’RourkeCambridge University Press (2007).

3) J.ShallitNotes from the University of Waterloo Algorithmic Problem Session

(1999).

4) R.Ueharapp.39–42 (2008).

5) pages Vol.Monthly 114, pp.602–609 (2007).

c© 2011 Information Processing Society of Japan7

Vol.2011-AL-136 No.11
2011/9/6


