
情報処理学会研究報告
IPSJ SIG Technical Report

The Complexity of Free Flood Filling Games

Hiroyuki Fukui†1 Akihiro Nakanishi†1 Ryuhei Uehara†1

Takeaki Uno†2 Yushi Uno†3

Abstract The flood filling games on a graph is a kind of graph coloring game.

The one player version of the game is known as Flood-It, and the two player

version is known as Honey-Bee Game. We consider the case that the player

can color arbitrary vertex. This version is called free flood filling game. We

concentrate at the one player version of the free flood filling game on a graph.

In this paper, we show that the free Flood-It is NP-complete on trees with only

three colors, and it is polynomial time solvable on paths and cycles with any

number of colors.

Keywords Flood-It, Honey-Bee game, graph coloring.

1. Introduction

The flood filling game is played on a precolored board, and each player colors a cell

on the board in a turn. When a cell is colored with the same color as its neighbor,

they will be merged into one colored area. If a player changes the color of one of the

cells belonging to a colored area of the same color, the color of all cells in the area are

changed. The game finishes when all cells are colored with one color. The one player

flood filling game is known as Flood-It. In Flood-It, each cell is a precolored square, the

†1 Japan Advanced Institute of Science and Technology

†2 National Institute of Informatics

†3 Osaka Prefecture University

図 1 A sequence of five moves on a 5 × 5 Flood-

It board.
図 2 A snapshot of the Honey-Bee game. The human

player changes the color of the top-left corner.

board consists of n × n cells, the player always changes the color of the top-left corner

cell, and the goal is to minimize the number of turns?1. The two player flood filling

game is known as Honey-Bee game played on a honeycomb board ?2. The board is also

precolored, and each player alternately colors his/her specified hexagon with any color

except the color of the other players specified hexagon. The game finishes when all cells

belong to one of two areas containing the specified hexagons of the players. Then the

player who eventually occupies more areas wins.

In the original flood filling games, each player colors a specified cell. However, it is

natural to extend the game that the player can color any cell. We say that the original

game is fixed and the extended game is free. The game board also can be generalized

to a general graph; that is, the vertex set corresponds to the set of cells, and two cells

are neighbors if and only if the corresponding vertices are adjacent in the graph. It

is also natural to parameterize the number c of colors. Recently, the generalized flood

filling game on a general graph is investigated from the viewpoint of computational

complexity1)–3). The known results can be summarized as follows:

• Two player, fixed, and general graphs: PSPACE-complete2).

• Two player, fixed, and series parallel graphs: NP-hard2).

?1 You can play Flood-It on the Web page at http://floodit.appspot.com/.

?2 You can play Honey-Bee game on the Web page at http://www.ursulinen.asn-graz.ac.at/Bugs/

htm/games/biene.htm.

1 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.7
2011/9/6

情報処理学会研究報告
IPSJ SIG Technical Report

• One player, fixed, split graphs, and c is unbounded: NP-complete2).

• One player, fixed, split graphs, and c is a constant: in P2).

• One player, fixed, trees, and c ≥ 3: NP-complete2).

• One player, fixed, and co-comparability graphs: in P2).

• One player, free/fixed, general graphs, and c ≥ 3: NP-complete1).

• One player, free/fixed, general graphs, and c ≤ 2: in P3).

In this paper, we add two new results as follows:

Theorem1 The free flood filling game for one player is NP-complete even on trees

with three colors.

Theorem 1 improves one of the results in2) from “fixed” to “free.”

Theorem2 The free flood filling game for one player on a path is in P. More pre-

cisely, given a colored path of length n with |C| colors, the optimal way to flood fill the

path can be found in O(|C|n3) time and O(|C|n2) space.

Using the same resources, we can extend Theorem 2 to cycles.

2. Preliminaries

We model the flood filling game in the following graph-theoretic manner. The game

board is a connected, simple, loopless, undirected graph G = (V, E). We denote by n

and m the number of vertices and edges, respectively. There is a set C of colors, and

every vertex v ∈ V is precolored (as input) with some color col(v) ∈ C. Note that we

may have an edge {u, v} ∈ E with col(u) = col(v). For a color c ∈ C, the subset Vc

contains all vertices in V of color c. For a vertex v ∈ V and color c ∈ C, we define the

color-c-neighborhood Nc(v) as the set of vertices in Vc either adjacent to v or connected

to v by a path of vertices of color c. Similarly, we denote by Nc(W) = ∪w∈W Nc(w) the

color-c-neighborhood of a subset W ⊆ V . For a given graph G = (V, E) and the color-

ing col(), a coloring operation (v, c) for v ∈ V and c ∈ C is defined by, for each vertex

v′ ∈ Nc′(v) ∪ {v} with c′ = col(v), setting col(v′) = c. For a given graph G = (V, E)

and a sequence ((v1, c1), (v2, c2), . . . , (vk, ck)) of coloring operations in V × C, we let

G0 = G and Gi is the graph obtained by the coloring operation (vi, ci) on Gi−1 for

each i = 1, 2, . . . , k. In the case, we denote by Gi−1 →(vi,ci) Gi and G0 →i Gi for each

0 ≤ i ≤ k. Then the problems in this paper are defined as follows:

Problem 1: Fixed flood filling game

Input : A graph G = (V, E), a vertex s ∈ V , and an integer k such that each

vertex in V is precolored with col(v) ∈ C;

Output: Determine if there is a sequence of operations ((s, c1), (s, c2), . . . , (s, ck))

of length k such that all vertices in the resulting graph G′ (i.e. G →k G′)

have the same color;

Problem 2: Free flood filling game

Input : A graph G = (V, E) and an integer k such that each vertex in V is

precolored with col(v) ∈ C;

Output: Determine if there is a sequence of operations

((v1, c1), (v2, c2), . . . , (vk, ck)) of length k such that all vertices in the

resulting graph G′ (i.e. G →k G′) have the same color;

For these problems, if a sequence of operations of length k colors the graph, the

sequence is called solution of length k.

3. NP-completeness on trees

In this section, we show NP-completeness of the free flood filling game on trees even

with three colors. This is based on the NP-completeness of a similar problem; the fixed

flood filling game. As mentioned in Introduction, the fixed flood filling game on trees is

NP-complete even with three colors2). We reduce this fixed game to our free game. Let

T = (V, E), s, and k be the input of the fixed flood filling game. That is, T is a tree, s

is the fixed vertex in V we can color, and k is the number of turns to color all vertices.

The reduction is simple. We first make n copies T1 = (V1, E1), T2 = (V2, E2), . . .,

Tn = (Vn, En) of the tree T , where n = |V |. All vertices in Tis are distinct except the

copies of s; all the trees share the specified vertex s. Let T be the resulting graph. That

is, the vertex set of T is V1 ∪ V2 ∪ · · · ∪ Vn which is disjoint union of n copies of V \ {s}
and the unique vertex s. Hence the number of vertices in T is n(n−1)+1 = n2−n+1.

2 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.7
2011/9/6

情報処理学会研究報告
IPSJ SIG Technical Report

Clearly, T is a tree. The reduction can be done in polynomial time. We now show the

following lemma:

Lemma3 The fixed flood filling game on T has a solution of length k if and only if

the free flood filling game on T has a solution of length k.

Proof. Without loss of generality, we assume that all vertices in T are colored by

a sequence of coloring operations ((s, c1), (s, c2), . . . , (s, ck)) for given k, and this is a

shortest solution for the problem. Clearly, all vertices in T are also colored by this

sequence since T consists of n copies of T that share the common vertex s. Hence, it is

sufficient to show that T cannot have any solution of length k′ < k.

We first observe that any connected graph G = (V, E) has a solution of length at

most |V | − 1; pick any edge e = (u, v) with col(u) 6= col(v), change the color to make

col(u) = col(v), and repeat this process until all the vertices have the same color. This

greedy algorithm eventually makes all vertices in the same color after at most |V | − 1

coloring operations.

To derive a contradiction, we assume that all vertices in T are colored by a sequence

of coloring operations ((v1, c
′
1), (v2, c

′
2), . . . , (vk′ , c′k′)) with k′ < k. By the observation

and assumption, we have k′ < k < n. Then, since we have n copies of T , there exists

a subtree Ti = (Vi, Ei) in T such that Vi contains no vertex in the sequence. That is,

all vertices in Vi are colored by changing the color of s. Hence this sequence is also

the solution of T for the fixed flood filling game, which contradicts that any shortest

solution of T is of length k.

Theorem 1 immediately follows Lemma 3. We note that using the result in3), we

can show that the free flood filling game on trees is polynomial time solvable if the

number of colors is at most 2. Hence the number three of colors in Theorem 3 cannot

be improved unless P = NP.

4. Polynomial time algorithm on paths

In this section, we assume that G = (V, E) is a path Pn of length n − 1; that is,

V = {v1, . . . , vn} and E = {{vi, vi+1} | 1 ≤ i ≤ n − 1}. We denote by P [i, j] the

subpath induced by {vi, vi+1, . . . , vj} (e.g. Pn = P [1, n]). We first employ a standard

dynamic programming technique with the following table:

T [i, j, c] : the minimum number of coloring operations to make all the vertices

vi, vi+1, . . . , vj in the color c.

We note that we do not take care of the colors of the vertices vi−1 and vj+1. In

other words, we do not mind if col(vi−1) = col(vi) or col(vi−1) 6= col(vi). For each

i = 1, 2, . . . , n, we initialize as follows:

T [i, i, c] =

0 if col(vi) = c

1 otherwise.

Then, with careful case analysis, for each i and j with i < j and each color c ∈ C, we

obtain the following relationship for all possible i′ and j′ with i < i′ < j′ < j and color

c′ 6= c:

T [i, j, c] = min
i<i′<j′<j,c′ 6=c

{

T [i, i′, c′] + 1 + T [i′ + 1, j, c],

(color the left part of color c′ with color c) (1)

T [i, i′, c] + T [i′ + 1, j, c′] + 1,

(color the right part of color c′ with color c) (2)

T [i, i′, c] + T [i′ + 1, j′, c′] + 1 + T [j′ + 1, j, c],

(color the vertices in P [i′ + 1, j′] of color c′) (3)

T [i, j, c′] + 1 (color all vertices of color c′ with color c) (4)

}

Then, the optimal solution is obtained by evaluation of minc T [1, n, c]. Now we consider

an efficient computation of the table.

Lemma4 The table T [i, j, c] can be computed in O(|C|n3) time and O(|C|n2) space.

Proof. By a straightforward implementation, the table T [i, j, c] can be computed in

O(|C|2n4) time and O(|C|n2) space as follows: First, the algorithm initializes T [i, i, c]

for each i defined above in O(cn) time. We let ` = j − i. The algorithm next fills the

table T [i, j, c] for each ` = 1, 2, . . . , n − 1 and c ∈ C. For each `, there are n − ` + 1

pairs of (i, j) with i < j. We fix ` = j − i and i and j. Then the computation of

T [i, i′, c′] + 1 + T [i′ + 1, j, c] in (1) and T [i, i′, c] + T [i′ + 1, j, c′] + 1 in (2) takes O(|C|`)

3 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.7
2011/9/6

情報処理学会研究報告
IPSJ SIG Technical Report

time since i′ takes `−1 different values and c′ takes |C|−1 different values. To compute

T [i, i′, c] + T [j′, j, c] + T [i′, j′, c] + 1 in (3), the number of possible combinations of i′

and j′ with i < i′ < j′ < j is
(

j−i−2
2

)
. Thus the computation of (3) takes O(|C|`2)

time. The computation of (4) for a fixed ` is postponed until all computations of (1),

(2), and (3) for the ` are done. After that, the algorithm first finds the minimum value

of T [i, j, c] for each c ∈ C. Then, it updates T [i, j, c] properly. Thus, for each fixed pair

(i, j) the computation of (4) requires O(|C|) time.

Therefore, for each ` = 1, 2, . . . , n−1 and c ∈ C, the computation of (1), (2), (3) takes

(n − ` + 1)O(|C|`2) time, and the computation of (4) requires (n − ` + 1)O(|C|) time.

Since the choices of each ` are n − ` + 1 and that of c are |C|, the total computation

time is O(|C|2n4).

Now we turn to an efficient implementation.

The most costly computation is (4), which requires to compute T [i, i′, c] + T [i′ +

1, j′, c′] + 1 + T [j′ + 1, j, c]. This is the case that the paths P [i, i′] and P [j′ + 1, j]

are colored with c, and P [i′ + 1, j′] is colored with c′. Then we pick any vertex in

P [i′ + 1, j′] and color it with color c, and obtain the path P [i, j] colored with c. This

situation can be regarded as follows. We have the paths P [i′ + 1, j′] of color c′ and

P [j′ +1, j] of color c. Then we pick up any vertex in P [i′ +1, j′] and color it with color

c, and obtain the path P [i′ + 1, j] colored with c. After that, we join the path P [i, i′]

of color c and the other path P [i′ + 1, j] of color c with no coloring operation. From

this viewpoint, this cost is exactly given by T [i, i′, c] + T [i′ + 1, j, c]. That is, we obtain

T [i, i′, c] + T [i′ + 1, j′, c′] + 1 + T [j′ + 1, j, c] = T [i, i′, c] + T [i′ + 1, j, c].

For a faster implementation, we introduce a new table T̄ [i, j, c] defined as follows:

T̄ [i, j, c] = min
c′ 6=c

T [i, j, c′]

That is, the table T̄ [i, j, c] gives the minimum cost to color the path P [i, j] with any

color but c. Instead of “taking the minimum value for all c′ ∈ C \ {c}” to compute (1)

to (4), we can obtain the value from this new table. Furthermore, since T [i, j, c] cannot

be better than T̄ [i, j, c], we can define

T [i, j] = min
c∈C

T [i, j, c]

and use it instead of T̄ [i, j, c] defined above. This observation simplifies the algorithm

description furthermore.

Using these tricks, we can implement the algorithm in Algorithm 3. Since we can

assume that |C| ≤ n, it is easy to see that this modified algorithm runs in O(|C|n3)

time with O(|C|n2) space.

Algorithm 3: Naive implementation for computing T[i,j,c]

Input : A path Pn = (V, E) of length n − 1 such that each vertex in V is

precolored with col(v) ∈ C;

Output: The minimum number of coloring operations to color Pn with a color

c ∈ C;

foreach i = 1, 2, . . . , n do

foreach c ∈ C do

if col(vi) = c then T [i, i, c] = 0 else T [i, i, c] = 1;

T [i, i] = 0;

foreach c ∈ C do

foreach ` = 1, 2, . . . , n − 1 do

foreach i = 1, 2, . . . , n − ` do

j = i + `;

T [i, j, c] = n ; /* Trivial upper bound */

foreach i′ = i + 1, i + 2, . . . , j − 2 do

T [i, j, c] = min{T [i, j, c], T [i, i′] + 1 + T [i′ + 1, j, c], T [i, i′, c] + T [i′ +

1, j] + 1, T [i, i′, c] + T [i′ + 1, j, c]};

T [i, j] = n ; /* Trivial upper bound */

foreach c′ ∈ C do

T [i, j] = min{T [i, j], T [i, j, c′]};

T [i, j, c] = min{T [i, j, c], T [i, j] + 1};

output T [1, n];

4 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.7
2011/9/6

情報処理学会研究報告
IPSJ SIG Technical Report

Corollary5 The free flood filling game for one player on a cycle is in P. The run-

ning time is as the same as Theorem 2.

Proof. In order to deal with a cycle, we have to modify the definition of the table

T [i, j, c]. In Lemma 4, T [i, j, c] is the table for the interval [i, j] with i < j. For a cycle,

we extend it to the case j > i that means the interval [j, j + 1, . . . , n − 1, n, 1, 2, . . . , i].

The modification is straightforward, and the running time is the same up to constant

factor.

5. Concluding remarks

In this paper, we show that the free flood filling game is intractable even on trees,

and tractable on paths and cycles. Intuitively, to solve the game efficiently, it seems

that we need some kind of linear structure. Hence the investigation of the complexity

of the game on interval graphs and their subclasses is nice future work.

参 考 文 献

1) David Arthur, Raphaël Clifford, Markus Jalsenius, Ashley Montanaro, and Ben-

jamin Sach. The Complexity of Flood Filling Games. In FUN 2010, pages 307–318.

Lecture Notes in Computer Science Vol.6099, Springer-Verlag, 2010.

2) Rudolf Fleischer and GerhardJ. Woeginger. An Algorithmic Analysis of the Honey-

Bee Game. In FUN 2010, pages 178–189. Lecture Notes in Computer Science

Vol.6099, Springer-Verlag, 2010.

3) Aurélie Lagoutte. 2-Free-Flood-It is polynomial. Technical report,

arXiv:1008.3091v1, 2010.

5 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.7
2011/9/6

