
IPSJ SIG Technical Report

Complexity of Minimum Certificate Dispersal

Problem with Tree Structure

Taisuke IZUMI †1 Tomoko IZUMI †2

Hirotaka ONO †3 Koichi WADA†1

Given an n-vertex graph G = (V, E) and a set R ⊆ {{x, y} | x, y ∈ V } of re-

quests, we consider to assign a set of edges to each vertex in G so that for every

request {u, v} in R the union of the edge sets assigned to u and v contains a path

from u to v. The Minimum Certificate Dispersal Problem (MCD) is defined as

one to find an assignment that minimizes the sum of the cardinality of the edge

set assigned to each vertex. This problem has been shown to be LOGAPX-

complete for the most general setting, and APX-hard and 2-approximable in

polynomial time for dense request sets, where R forms a clique. In this paper,

we investigate the complexity of MCD with sparse (tree) structures. We first

show that MCD is APX-hard when R is a tree, even a star. We then explore

the problem from the viewpoint of the maximum degree ∆ of the tree: MCD for

tree request set with constant ∆ is solvable in polynomial time, while that with

∆ = Ω(n) is 2.56-approximable in polynomial time but hard to approximate

within 1.01 unless P=NP. As for the structure of G itself, we show that the

problem can be solved in polynomial time if G is a tree.

1. Introduction
Background and Motivation. Let G = (V, E) be a graph and R ⊆ {{x, y} | x, y ∈
V } be a set of pairs of vertices, which represents requests about reachability between

two vertices. For given G and R, we consider an assignment of a set of edges to each

vertex in G. The assignment satisfies a request {u, v} if the union of the edge sets

assigned to u and v contains a path from u to v. The Minimum Certificate Disper-

†1 Nagoya Institute of Technology

†2 Ritsumeikan University

†3 Kyushu University

sal Problem (MCD) is the one to find the assignment satisfying all requests in R that

minimizes the sum of the cardinality of the edge set assigned to each vertex.

This problem is motivated by a requirement in public-key based security systems,

which are known as a major technique for supporting secure communication in a dis-

tributed system [2, 5, 6, 8–10, 13, 14]. The main problem of the systems is to make each

user’s public key available to others in such a way that its authenticity is verifiable. One

of well-known approaches to solve this problem is based on public-key certificates. A

public-key certificate contains the public key of a user v encrypted by using the private

key of another user u. If a user u knows the public key of another user v, user u can

issue a certificate from u to v. Any user who knows the public key of u can use it to

decrypt the certificate from u to v for obtaining the public key of v. All certificates

issued by users in a network can be represented by a certificate graph: Each vertex

corresponds to a user and each directed edge corresponds to a certificate. When a user

w has communication request to send messages to a user v securely, w needs to know

the public key of v to encrypt the messages with it. For satisfying a communication

request from a vertex w to v, vertex w needs to get vertex v’s public-key. To compute

v’s public-key, w uses a set of certificates stored in w and v in advance. Therefore, in a

certificate graph, if a set of certificates stored in w and v contains a path from w to v,

then the communication request from w to v is satisfied. In terms of cost to maintain

certificates, the total number of certificates stored in all vertices must be minimized for

satisfying all communication requests.

The previous work mainly focuses on directed variants of MCD, in which graph G is

directed. Jung et al. discussed MCD with a restriction of available paths in [10] and

proved that the problem is NP-hard. In their work, to assign edges to each vertex, only

the restricted paths that are given for each request is allowed to be used. MCD with no

restriction about available paths was first formulated in [14]. This variant is also proved

to be NP-hard even if the input graph is a strongly connected directed graph. On the

other hand, MCD for directed graphs with R forming a clique is polynomially solvable

for bidirectional trees and rings, and Cartesian products of graphs such as meshes and

hypercubes [14].

Based on these work, the (in)approximability of MCD for directed graphs has been

1 c⃝ 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.3
2011/9/6

IPSJ SIG Technical Report

studied from the viewpoint of the topological structure of R (not G) [9]. Since MCD is

doubly structured (one is the graph G itself and the other is the request structure R),

the hardness of MCD depends not only on the topology of G but also on the one of R.

In view of these observation, the (in)approximability of MCD for directed graphs is in-

vestigated for general case and R forming a clique, as a typical community structure. It

was shown that the former case is O(log |V |)-approximable in polynomial time but has

no polynomial time algorithm whose approximation factor is better than 0.2266 log |V |
unless P=NP. The latter case is 2-approximable but has no polynomial time algorithm

whose approximation factor is better than 1.001, unless P=NP. In [9], the undirected

variant of MCD is also considered, and 1.5-approximation algorithm for the case when

R forming a clique is presented.

These results naturally raise a new question: For the hardness of approximation or

constant-factor approximability, is such a dense structure (i.e., clique) essential? For

example, how is the case when R is sparse, e.g., a tree? This paper further investigates

the (in)approximability of MCD when R forms a tree, as another typical topology.

Our Contribution. We investigate the complexity of MCD with tree structure. Here,

we say “with tree structure” in two senses. One is the case when R forms a tree, and

the other is the case when G itself is a tree. One reason of this focus has already been

mentioned above. Another reason is that a tree is a minimal connected structure; even

if G (resp., R) is not a tree, by solving MCD for G′, a spanning tree of G (resp., for a

spanning tree R′ of R), we can obtain an upper bound on the optimal solution (resp.,

a lower bound on the optimal solution) of the original MCD problem.

For MCD with tree R, we show that the hardness and approximability depend on

the maximum degree ∆ of tree R: MCD for tree R with constant degree is solvable

in polynomial time while that with Ω(n) degree is APX-hard. As for MCD for tree

G, we present a polynomial optimal algorithm. The followings are summary of our

contributions:

• R is an arbitrary tree: First we consider MCD for the case when R is a star. Even

in this simplest setting, MCD is shown to be APX-hard: MCD for undirected

graph G with sparse R is still APX-hard. Moreover, the reduction to the Steiner

tree problem for unweighted graphs(STREE) leads to an upper bound 1.28 on ap-

proximation ratio for MCD with star request sets. For arbitrary tree R, it is shown

that there is a 2.56-approximate algorithm for MCD by utilizing the approximation

algorithm for star R.

• R is a tree with ∆ = O(log |V |): By using a similar analysis to arbitrary tree R, the

upper bound of approximation ratio for MCD can be reduced to 2. In particular,

if R is a star with ∆ = O(log n) MCD is polynomially solvable.

• R is a tree with constant degree: This case is polynomially solvable. These imply

that the hardness of MCD for tree R heavily depends on its maximum degree. A

key idea is to define normal solutions. Our dynamic programming based algorithm

searches not the whole solution space but (much smaller) normal solution space.

• G is an arbitrary tree: In this case also, a positive result is shown. For any re-

quest set R (not restricted to a tree), our algorithm outputs an optimal solution

in polynomial time. The algorithm exploits the polynomial time solvability of

VERTEX-COVER for bipartite graphs.

The remainder of the paper is organized as follows. In Section 2, we formally define

the Minimum Certificate Dispersal Problem (MCD). Section 3 shows the hardness and

approximability of MCD with star request sets, and Section 4 extends it to the approx-

imability of MCD with tree request sets. In Section 5, we present a polynomial time

algorithm that optimally solves MCD for tree request with constant degree. Section 6

shows an optimal algorithm for MCD with undirected tree graphs. Section 7 concludes

the paper.

2. Minimum Certificate Dispersal Problem
While the Minimum Certificate Dispersal (MCD) Problem is originally defined for

directed graphs, we deal with its undirected variant, where the given graph is undi-

rected. The difference between them is the meaning of assignment an edge to a vertex:

In the standard MCD, an edge (u, v) means a certificate from u to v. In the undirected

variant of MCD, edge means a bidirectional certificate from u to v and v to u which is

not separable. Since we treat the undirected variants of MCD throughout this paper,

we simply refer those problems as MCD. In the following, we give the formal definition

2 c⃝ 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.3
2011/9/6

IPSJ SIG Technical Report

of MCD problem.

Let G = (V, E) be an undirected graph, where V and E are the sets of vertices and

edges in G, respectively. An edge in E connects two distinct vertices in V . The edge

between vertex u and v is denoted by {u, v}. The numbers of vertices and edges in G

are denoted by n and m, respectively (i.e., n = |V |, m = |E|). A sequence of edges

p(v0, vk) = {v0, v1}, {v1, v2}, . . . , {vk−1, vk} is called a path from v0 to vk of length k. A

path p(v0, vk) can be represented by a sequence of vertices p(v0, vk) = (v0, v1, . . . , vk).

For a path p(v0, vk), v0 and vk are called the endpoints of the path. A shortest path

from u to v is the one whose length is the minimum of all paths from u to v, and the

distance from u to v is the length of a shortest path from u to v, denoted by d(u, v).

A dispersal D of an undirected graph G = (V, E) is a family of sets of edges indexed

by V , that is, D = {Dv ⊆ E | v ∈ V }. We call Dv a local dispersal of v. A local disper-

sal Dv indicates the set of edges assigned to v. The cost of a dispersal D, denoted by

c(D), is the sum of the cardinalities of all local dispersals in D (i.e., c(D) = Σv∈V |Dv|).
A request is a reachable unordered pair of vertices in G. For a request {u, v}, u and v

are called the endpoints of the request. We say a dispersal D of G satisfies a set R of

requests if a path between u and v is included in Du ∪ Dv for any request {u, v} ∈ R.

Given two dispersals D and D′ of G, the union of two dispersals {Dv ∪ D′
v | v ∈ V } is

denoted by D ∪ D′.

The Minimum Certificate Dispersal Problem (MCD) is defined as follows:

Definition 2.1 (Minimum Certificate Dispersal Problem (MCD))

INPUT: An undirected graph G = (V, E) and a set R of requests.

OUTPUT: A dispersal D of G satisfying R with minimum cost.

The minimum among costs of dispersals of G that satisfy R is denoted by cmin(G, R).

Let DOpt be an optimal dispersal of G which satisfies R (i.e., DOpt is one such that

c(DOpt) = cmin(G, R)).

Since R is a set of unordered pairs of V , it naturally defines an undirected graph

HR = (VR, ER) where VR = {u, v | {u, v} ∈ R} and ER = R. The request set R is

called tree if HR is a tree, and is also called star if it is a tree with exactly one internal

vertex. The maximum degree of HR is denoted by ∆R. The problem of MCD restricting

HR to tree or star with degree ∆R is called MCD-tree(∆R) and MCD-star(∆R). We also

denote the problem of MCD restricting HR to tree (or star) with degree ∆R = O(f(n))

for some function f(n) as MCD-tree(O(f(n))) (or MCD-star(O(f(n))). When we do

not consider any constraint to the maximum degree, the argument ∆R is omitted.

3. MCD for Star Request Sets
The NP-hardness and inapproximability of directed MCD for strongly-connected

graphs are shown in the previous work[14]. In this section, we prove that MCD is

APX-hard even if we assume that HR is a star. The proof is by the reduction from/to

the Steiner-tree problem.

Definition 3.1 (Steiner-tree Problem (STREE))

INPUT: An undirected connected graph G = (V, E) and a set T ⊆ V of terminals.

OUTPUT: A minimum-cardinality subset of edges E′ ⊆ E that connects all terminals

in T .

We often use the notation STREE(t) and STREE(O(f(n))), which are the Steiner-

tree problems for a terminal set with cardinality at most t and t = O(f(n)) respectively.

Theorem 3.1

There exists a polynomial time ρ-approximation algorithm for MCD-star(∆) if and only

if there exists a polynomial time ρ-approximation algorithm for STREE(∆ + 1).

Proof.

We prove the only-if part and if part can be proved in almost the same way as the proof

of the only-if part. Given an instance (G = (V, E), T) of STREE(t + 1), we construct

an instance (G′, R) of MCD-star(t) as G = G′ and R = {{vr, u} | u ∈ T \ {vr}}, where

t = ∆R and vr is an arbitrary vertex in T . To prove the theorem, it suffices to show that

any feasible solution of MCD (G′, R) (resp. (G, T)) can be transformed to a feasible

solution of (G, T) (resp. (G′, R)) with no gain of solution cost. Then because (G′, R)

and (G, T) have the same optimal cost and thus any ρ-approximated solution of (G′, R)

induces an ρ-approximated solution of (G, T).

From MCD-star(∆) to STREE(∆+1): Given a feasible solution D = {Dv | v ∈ V }

3 c⃝ 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.3
2011/9/6

IPSJ SIG Technical Report

of (G′, R), we can construct a feasible solution S = ∪v∈V Dv of STREE. Since S nec-

essarily includes a path between any pair in R, its induced graph is connected and

contains all vertices in T = VR. Thus, S is a feasible solution for STREE and its cost

is at most
∑

v∈V
|Di|.

From STREE(∆ + 1) to MCD-star(∆): Given a feasible solution S of (G, T), we

obtain the solution of MCD-star by assigning all edges in S(⊆ E) to the internal vertex

vr of HR. Since Dvr connects all vertices in VR, any request in R is satisfied. Thus

D = {Dvr = S} ∪ {Dv = ∅ | v ∈ V, v ̸= vr} is a feasible solution of (G, R) and its cost

is equal to |S|.
Then since MCD-star(∆) and STREE(∆+1) have the same optimal cost, the theorem

is proved. 2

Since STREE is APX-hard [1] and its known upper and lower bounds for the ap-

proximation factor are 1.28 and 1.01, respectively [3, 12], we can obtain the following

corollary.

Corollary 3.1

MCD-star is APX-hard, has a polynomial time 1.28-approximation algorithm, and

has no polynomial time algorithm with an approximation factor less than 1.01 unless

P = NP .

4. MCD for Tree Request Sets
4.1 Tree Structure with Arbitrary Degree

The general approximability of MCD-tree can be shown by the following theorem:

Theorem 4.1

Provided any ρ-approximation algorithm for MCD-star, there is a polynomial time 2ρ-

approximation algorithm for MCD-tree.

We first introduce the construction of the algorithm: Given an instance (G =

(V, E), R) of MCD-tree, we regard HR as a rooted tree by picking up an arbitrary

vertex as its root. Letting depth(v) (v ∈ VR) be the distance from the root to v

on HR, we partition the request set R into two disjoint subsets Ri (i ∈ {0, 1}) as

Ri = {{u, v} | depth(u) < depth(v) and depth(u) mod 2 = i}. Note that both R1 and

R0 respectively form two forests where each connected component is a star. Thus, using

any algorithm for MCD-star (denoted by A), we can obtain two solutions of (G, R1) and

(G, R0) by independently solving the problems associated with each connected compo-

nent. Letting Dj be the solution of instance (G, Rj), the union D1 ∪ D0 is the final

solution of our algorithm.

It is obvious that the returned solution is feasible. Since both of c(D1) and c(D0) are

the lower bound of the optimal cost for (G, R), the algorithm achieves approximation

ratio 2ρ. In the following, we show the proof details of Theorem 4.1.

Proof.

Let Opt(G, R) be an optimal solution of (G, R), and A(G, R) be the solution of

(G, R) returned by algorithm A. Installing ρ-approximation algorithm of MCD-star

into A, we can obtain ρ-approximated solutions of (G, R1) and (G, R0) because each

connected component of V 1
R and V 0

R is a star (trivially, the set of ρ-approximated

solutions corresponding to each connected components induces an ρ-approximated

solution of the whole instance). Thus, we have c(A(G, Rj)) ≤ ρc(Opt(G, Rj))

(j ∈ {0, 1}). Furthermore, since Rj ⊆ R holds for any j ∈ {0, 1}, we also have

c(Opt(G, Rj)) ≤ c(Opt(G, R)). Letting S be the solution of (G, R) finally returned and

cmax = max{c(Opt(G, R1)), c(Opt(G, R0))}, we finally obtain c(S) ≤ c(A(G, R1))) +

c(A(G, R0)) ≤ 2ρcmax ≤ 2ρOpt(G, R). The theorem is proved. 2

The above theorem and Corollary 3.1 leads the following corollary:

Corollary 4.1

MCD-tree has a polynomial time 2.56-approximation algorithm.

4.2 Tree Structures with O(log n) Degree

In the proof of Theorem 4.1, we have shown that the approximated solution for in-

stance (G, R) of MCD-tree can be constructed by solving several MCD-star instances.

Thus, if ∆R = O(log n), each decomposed star has O(log n) vertices (that is, an instance

of MCD-star(O(log n))). By Theorem 3.1, MCD-star(O(log n)) and STREE(O(log n))

4 c⃝ 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.3
2011/9/6

IPSJ SIG Technical Report

have the same complexity and STREE(O(log n)) is optimally solved in polynomial time

[4]. Therefore, Theorem4.1 leads the following corollary.

Corollary 4.2

There is an optimal algorithm to solve MCD-star(O(log n)) in polynomial time and

there is an approximation factor 2 polynomial time algorithm for MCD-tree(O(log n)).

5. Tree Structures with Constant Degree
In this section, we provide an algorithm that returns the optimal dispersal for any

instance of MCD-tree(O(1)). Throughout this section, we regard HR as a rooted tree

by picking up an arbitrary vertex r in VR as its root. Given a vertex u ∈ VR, let par(u)

be the parent of u, and let Child(u) be the set of u’s children.

A request {u, v} is well-satisfied by a feasible D if there exists a vertex αu,v such that

Du contains a path from u to αu,v and Dv contains a path from αu,v to v. Then, vertex

αu,v is called the connecting point of request {u, v} in D.

We begin with the following fundamental property:

Lemma 5.1

For any instance (G, R) of MCD-tree, there is an optimal solution that well-satisfies all

requests in R.

Proof.

The proof is done in a constructive way. That is, we show that it is possible to transform

any optimal solution to one well-satisfying all requests with no extra cost. Let D be an

optimal solution, U be the set of vertices having at least one request not well-satisfied,

and u be the vertex farthest from r in U . Since u is the farthest, only the request be-

tween u and its parent is not well-satisfied in all requests related to u. Let v = par(u)

for short. To prove the lemma, it suffices to show that we can obtain a solution D′

where c(D) = c(D′) holds, any request well-satisfied in D is also done in D′, and {u, v}
is well-satisfied. Let e0, e1, · · · ek be the sequence of edges in G organizing a path from

u to v. From the fact that {u, v} is not well-satisfied, there exists an edge ej ∈ Du

such that ep ∈ Dv for some p < j and eq ∈ Dv for any q > j. Since request {u, u′} is

u’
u vowned by vej

connecting point of {u, u’}owned by u’
：owned by u connecting point of {u, v} (contradiction)

1 Illustration of the proof of Lemma 5.1: If ej ∈ Du is used to satisfy request {u, u′}, Du contains a

path terminating with ej because {u, u′} is well-satisfied. It follows that request {u, v} becomes

well-satisfied, which is a contradiction.

well-satisfied for any u′ ∈ Child(u), there is a path Pu′ in Du from u to αu,u′ in Du.

Then, for any u′ ∈ Child(u), each Pu′ does not contain ej because {u, v} becomes well-

satisfied if ej ∈ Pu′ holds for some u′ (see Figure 1). Thus, we can construct a dispersal

D′ as D′
x = Dx for any x ̸= u, v, D′

u = Du \ {ej} and D′
v = Dv ∪{ej}, which is feasible

and has the same cost as D. Repeating the construction, we can make request {u, v}
well-satisfied. Since this procedure does not break the well-satisfied property of any

other request, we can eventually obtain a feasible solution well-satisfying all requests

without extra cost. The lemma is proved. 2

By the above lemma, we can reduce the search space to one where each feasible

solution well-satisfies all requests. In the following argument, we assume that every

request has a connecting point in the optimal dispersal. The principle of our algorithm

is to determine the connecting points recursively from the leaf side of HR via dynamic

programming. Let TR(u) = (VR(u), ER(u)) be the subtree of HR rooted by u, D∗(u, α)

be a dispersal for instance (G, ER(u)) with the smallest cost such that Du contains a

path to from u to α. Note that D∗(r, r) is an optimal solution of (G, R). We define

γ(u) = |Child(u)| for short. The key recurrence of the dynamic programming can be

stated by the following lemma:

Lemma 5.2

Let u and α be vertices in V and let A = (α1, ..., αγ(u)) ∈ V γ(u). Then the following

equality holds:

5 c⃝ 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.3
2011/9/6

IPSJ SIG Technical Report

c(D∗(u, α)) = min
A∈V |γ(u)|

{c(DOpt(G, EA ∪ {{u, α}})) +
∑

uk∈Child(u)

c(D∗(uk, αk))}

where EA = {{u, α1}, {u, α2}, · · · , {u, αγ(u)}}.

Proof.

Let α′
k be the connecting point of {u, uk} in D∗(u, α), and D∗

u be u’s local disper-

sal in D∗(u, α). To prove the lemma, it suffices to show that the right-hand expres-

sion is equal to the left for A = (α′
1, α

′
2, · · · , α′

γ(u)). Since D∗
u has a path to any

vertex α′
k ∈ A, the edge-induced subgraph by D∗

u is one connecting all vertices in

A ∪ {u, α}. That is, it is a feasible solution for instance (G, EA ∪ {{u, α}}), and thus

we have |D∗
u| ≥ c(DOpt(G, EA ∪ {{u, α}})). Combining the optimality of D∗(uk, α′

k)

for any uk ∈ Child(u), we can conclude that the right-hand is equal to the optimal cost

c(D∗(u, α)). 2

This recurrence naturally induces a polynomial time algorithm for MCD-tree(O(1)).

The pseudo-code of the algorithm is shown in Algorithm 1. The algorithm main-

tains a table D∗, where each entry D∗[u][α] stores the solution D∗(u, α). The core

of the algorithm is to fill the table following the recurrence of Lemma 5.2: As-

sume an arbitrary ordering σ = u1, u2, · · ·u|VR| of vertices in VR where any ver-

tex appears after all of its descendants have appeared. To compute the solution

to be stored in D∗[ui][α], the algorithm considers all possible choices of connecting

points to ui’s children. Let q1, q2, · · · qγ(ui) be the children of ui. Fixing a choice

A = (αui,q1 , αui,q2 , · · ·αui,qγ(ui)) of connecting points (in the pseudo-code, αk corre-

sponds to αui,qk), the algorithm determines the local dispersal to u by computing the

optimal solution for (G, EA ∪{{ui, α}}). Note that this can be computed in polynomial

time because the request set forms a constant-degree star. By Theorem 3.1, it is equiva-

lent to STREE(O(1)). Letting D′ be the computed solution for (G, EA ∪{{ui, α}}). we

obtain D = D′ ∪D∗[q1][αui,q1]∪D∗[q2][αui,q2]∪ · · · ∪D∗[qγ(u)][αui,qγ(u)]. Importantly,

we can assume that only D′
u is nonempty in D′ (recall the construction of MCD-star

solutions from STREE solutions), which implies that Dui has a path to any connect-

ing point αui,qj in A. Since it Dqj has a path from qj to αui,qj from the definition of

Algorithm 1 Polynomial Time Algorithm for MCD-tree(O(1))

1: D∗[VR][V] : the array storing the computed solutions

2: (All entries are initialized by a dummy solution with cost ∞)

3: σ = u1, u2, · · ·u|VR| : an ordering of VR

4: containing parent-child relationship on HR (children come earlier).

5: for each ui ∈ VR in order of σ do

6: Let Q = (q1, q2, · · · qγ(ui)
) be an arbitrary ordering of Child(ui)

7: for each (A, α) = ((α1, α2, · · · , αγ(ui)
), α) ∈ V γ(ui) × V do

8: D′ ← the optimal solution of (G, EA ∪ {{u, α}}) s.t. only D′
ui

is nonempty.

9: /∗ EA = {{ui, α1}, {ui, α2}, · · · {ui, αγ(ui)
}} ∗/

10: D ← D′ ∪
(∪

j∈[1,γ(ui)]
D∗[qj][αj]

)
11: if c(D∗[ui][α]) > c(D) then D∗[ui][α]← D

12: endfor

13: endfor

14: return D∗[u|VR|][u|VR|]

∗[qi][αui,qj], Dui ∪Dqj necessarily has the path between ui and qj , That is the feasibility

of D is guaranteed. If D is better than the solution already computed (for other choice

of A), D∗[ui][α] is updated by D. After the computation for all possible choices of A,

D∗[ui][α] stores the optimal solution. Finally, after filling all entries of the table, the

algorithm returns D∗[u|VR|][u|VR|], which is the optimal solution for instance (G, R).

Lemma 5.2 obviously derives the correctness of Algorithm 1. Since we assume that

the maximum degree of tree HR is a constant, the number of tuples of A is also a

constant. Thus the number of possible choices about A is bounded by a polynomial of

n. It follows that the running time of Algorithm 1 is bounded by a polynomial of n.

We can have the following theorem:

Theorem 5.1

There is a polynomial time algorithm solving MCD-tree(O(1)).

6. MCD for Tree Graphs
While the previous sections focus on the structure of HR, in this section, we look at

6 c⃝ 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.3
2011/9/6

IPSJ SIG Technical Report

the structure of graph G: We show that MCD is solvable in polynomial time if G is a

tree. In the algorithm, we compute for each edge e ∈ E which Du should contain e; for

each e ∈ E, we decide {u ∈ V | e ∈ Du}. For this decision about e ∈ E, we utilize a

bipartite graph that represents whether a request {u, v} should use e in its path.

Let T = (V, E) be a tree and R be a request set. Now we consider to decide

{u ∈ V | e ∈ Du} for an edge e = {u, v} ∈ E. By deleting e = {u, v} from T , we

obtain two subtrees Tu = (Vu, Eu) and Tv = (Vv, Ev) of T , where Tu and Tv con-

tain u and v, respectively. Note that Vu ∩ Vv = ∅ and V = Vu ∪ Vv. From these

two subtrees Tu and Tv, we construct a bipartite graph Buv = (Vu ∪ Vv, Euv), where

Euv = {{a, b} ∈ R | a ∈ Vu, b ∈ Vv}. It should be noted that {e} is an a-b cut for every

{a, b} ∈ Euv, since T is a tree. Thus, this bipartite graph represents that if an edge

{wi, wj} ∈ Euv, at least one of wi or wj should have e = {u, v} in its local dispersal,

i.e., e ∈ Du ∪ Dv, otherwise D does not satisfy request {wi, wj} due to cut {e}.
This condition is interpreted as a vertex cover of Buv. A vertex cover C of a graph

is a set of vertices such that each edge in its edge set is incident to at least one vertex

in C. Namely, a necessary condition of D satisfying R is that for each e = {u, v},
Cuv = {w ∈ V | e ∈ Dw} is a vertex cover of Buv. We call this vertex cover condition.

It can be shown that the vertex cover condition is also sufficient for D to satisfy R.

Suppose that a dispersal D satisfies the vertex cover condition. For a request {a0, ak}
and its unique path p(a0, ak) = (a0, a1, . . . , ak) on T , by the definition of Buv, every

Baiai+1 contains edge {a0, ak}. By the vertex cover condition, {ai, ai+1} ∈ Da0 ∪ Dak

holds for i = 0, . . . , k − 1, which implies Da0 ∪ Dak contains path p(a0, ak); D satisfies

request {a0, ak}.
By these arguments, the vertex cover condition is equivalent to the feasibility of D.

Also it can be seen that choices of vertex cover of Buv and another Bu′v′ are indepen-

dent to each other in terms of the feasibility of D. These imply that the union of the

minimum size of vertex cover for Buv’s is an optimal solution of MCD for tree G.

From these, we obtain the following algorithm: For every edge {u, v} in T , we first

compute a minimum vertex cover Cuv of bipartite graph Buv. Then, let Dw = {{u, v} ∈
E | w ∈ Cuv} and output. Since VERTEX-COVER problem for bipartite graphs can

be solved via the maximum matching problem [11], whose time complexity is O(
√

nm)

time, where n and m are the numbers of vertices and edges, respectively [7]. Thus,

MCD for undirected tree G can be solved in O(n1.5|R|) time.

Theorem 6.1

For an undirected tree graph G and any request R, MCD is solvable in O(n1.5|R|) time.

7. Concluding remarks
We have considered undirected variants of the MCD problem with tree structures

and shown that for MCD with tree R, the hardness and approximability depend on the

maximum degree of tree R and MCD for any R can be solved in polynomial time if G

is a tree.

There are interesting open problems as follows;

• The hardness of MCD-tree(O(log n)): Even NP-hardness of that class is not proved

yet. Precisely, no hardness result is found for MCD-tree(∆R) where ∆R = o(n)

and ∆R = ω(1).

• The graph class of G allowing any request set R to be tractable: The case of

trees (shown in this paper) is only the known class making the problem solvable

in polynomial time. We would like to know what sparse graph classes (e.g., rings,

series-parallel graphs, and planar graphs) can be solved for any request R in poly-

nomial time. In particular, for MCD of rings with any request R we would like to

decide whether it is NP-hard or P.

• Related to the question right above, we would like to extend the DP technique for

MCD-tree(O(1)) presented in Section 5 to other wider classes of HR. Some sparse

and degree-bounded graphs might be its candidates. In fact, the key of polynomial

time running time of Algorithm 1 is based only on the following two conditions: (1)

There exists an optimal solution that well-satisfies R, (2) There exists an ordering

σ on VR such that every cut ({σ(1), . . . , σ(i)}, {σ(i + 1), . . . , σ(|VR|)}) on HR has

a constant size.

• The complexity gap between undirected MCD and directed MCD: In general, di-

rected MCD is not easier than undirected MCD in the sense that the latter is a

special case of the former. But it is unknown whether it is proper or not. It is

not quite trivial to transform any known complexity result for MCD into directed

7 c⃝ 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.3
2011/9/6

IPSJ SIG Technical Report

MCD, and vice versa.

Acknowledgment

This work is supported in part by KAKENHI no. 22700010, 21500013, 21680001 and

22700017, and Foundation for the Fusion of Science and Technology (FOST).

References
1) M.Bern and P.Plassmann. The steiner problem with edge lengths 1 and 2. Infor-

mation Processing Letters, 32(4):171–176, September 1989.

2) S.Capkun, L.Buttyan, and J.-P. Hubaux. Self-organized public-key management

for mobile ad hoc networks. IEEE Transactions on Mobile Computing, 2(1):52–64,

March 2003.

3) M.Chleb́ık and J.Chleb́ıková. The steiner tree problem on graphs: Inapproxima-

bility results. Theoretical Computer Science, 406(3):207–214, October 2008.

4) S.E. Dreyfus and R.A. Wagner. The steiner problem in graphs. Networks, 1:195–

207, 1972.

5) M.G. Gouda and E.Jung. Certificate dispersal in ad-hoc networks. In in Pro-

ceeding of the 24th International Conference on Distributed Computing Systems

(ICDCS’04), pages 616–623, March 2004.

6) M.G. Gouda and E.Jung. Stabilizing certificate dispersal. In in Proceeding of the

7th International Symposium on Self-Stabilizing Systems (SSS’05), pages 140–152,

October 2005.

7) J.E. Hopcroft and R.M. Karp. An n2.5 algorithm for maximum matchings in

bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

8) J.Hubaux, L.Buttyan, and S.Capkun. The quest for security in mobile ad hoc

networks. In in Proceeding of the 2nd ACM international symposium on Mobile ad

hoc networking and computing (Mobihoc’01), pages 146–155, October 2001.

9) T.Izumi, T.Izumi, H.Ono, and K.Wada. Approximability and inapproximabil-

ity of the minimum certificate dispersal problem. Theoretical Computer Science,

411(31-33):2773–2783, June 2010.

10) E.Jung, E.S. Elmallah, and M.G. Gouda. Optimal dispersal of certificate chains.

In in Proceeding of the 18th International Symposium on Distributed Computing

(DISC’04), pages 435–449, October 2004.

11) D.Kónig. Graphs and matrices. Matematikai és Fizikai Lapok, 38:116–119, 1931.

in Hungarian.

12) G.Robin and A.Zelikovsky. Improved steiner tree approximation in graphs. In

in Proceedings of the 11th annual ACM-SIAM Symposium on Discrete Algorithms

(SODA’00), pages 770–779, 2000.

13) H. Zheng, S.Omura, J. Uchida, and K.Wada. An optimal certificate dispersal

algorithm for mobile ad hoc networks. IEICE Transactions on Fundamentals, E88-

A(5):1258–1266, May 2005.

14) H.Zheng, S.Omura, and K.Wada. An approximation algorithm for minimum cer-

tificate dispersal problems. IEICE Transactions on Fundamentals, E89-A(2):551–

558, February 2006.

8 c⃝ 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.3
2011/9/6

